期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Heat-induced temperature enhancement in the polar summer ionosphere 被引量:1
1
作者 XU Bin CHENG MuSong +4 位作者 XU ZhengWen WU Jun WANG ZhanGe XUE Kun WU Jian 《Advances in Polar Science》 2011年第2期101-110,共10页
Observation data recorded by the European Incoherent Scatter Scientific Association in TromsФ, Norway in August 2009 were analyzed to determine the heating effects in polar summer ionospheric modification experiments... Observation data recorded by the European Incoherent Scatter Scientific Association in TromsФ, Norway in August 2009 were analyzed to determine the heating effects in polar summer ionospheric modification experiments. There are two types of increases in electron temperature: large relative increases in a narrow range near 150 km and greater absolute increases in a wider range at 150-400 km. The percentage increase in temperature linearly increases with heating power, but the rate of increase decreases with increasing pump frequency. A clear two-dimensional distribution was found for the measurement made on August 15, and the beating effects are greater closer to the direction of the geomagnetic field. The heating effects obviously depend on the angle between the heating beam and geomagnetic field; as the angle increases, the heating effect decreases. 展开更多
关键词 Ionosphere heating European Incoherent Scatter Scientific Association electron temperature enhancement polarionosphere
下载PDF
Study of Temperature Enhancement of the Photorefractive Effect in Ce:Fe:LiNbO_3 Crystal
2
作者 李铭华 王家昌 +1 位作者 徐玉恒 许克彬 《Journal of Rare Earths》 SCIE EI CAS CSCD 1995年第4期302-304,共3页
in the range of 20 to 120 ℃, the two-beam coupling exponential gain coefficient and the four-wave mixing phase conjugation reflectivity have been investigated. It is shown that the values such as the gain, the phase... in the range of 20 to 120 ℃, the two-beam coupling exponential gain coefficient and the four-wave mixing phase conjugation reflectivity have been investigated. It is shown that the values such as the gain, the phase conjugation reflectivity and the response speed increase as the temperature increases. At about 55, 71 and 110℃, extraordinary enhancement of the gain and the phase conjugation reflectivity were observed.The mechanism is analyzed by the phase change in the crystal at these temperatures. 展开更多
关键词 Ce: Fe: LiNbO_3 crystal Exponential gain Phase conjugation reflectivity temperature enhancement Phase change
下载PDF
Ultralow-noise single-photon detection based on precise temperature controlled photomultiplier with enhanced electromagnetic shielding 被引量:1
3
作者 Mingyu Wang Zhengyong Li +4 位作者 Yanhui Cai Yi Zhang Xiangkong Zhan Haiyang Wang Chongqing Wu 《Chinese Optics Letters》 SCIE EI CAS CSCD 2017年第10期7-10,共4页
We demonstrate an ultralow-noise single-photon detection system based on a sensitive photomultiplier tube(PMT) with precise temperature control, which can capture fast single photons with intervals around 10 ns.By i... We demonstrate an ultralow-noise single-photon detection system based on a sensitive photomultiplier tube(PMT) with precise temperature control, which can capture fast single photons with intervals around 10 ns.By improvement of the electromagnetic shielding and introduction of the self-differencing method, the dark counts(DCs) are cut down to ~1%. We further develop an ultra-stable PMT cooling subsystem and observe that the DC goes down by a factor of 3.9 each time the temperature drops 10°C. At -20°C it is reduced 400 times with respect to the room temperature(25°C), that is, it becomes only 2 counts per second, which is on par with the superconducting nanowire detectors. Meanwhile, despite a 50% loss, the detection efficiency is still 13%. Our detector is available for ultra-precise single-photon detection in environments with strong electromagnetic disturbances. 展开更多
关键词 PMT Ultralow-noise single-photon detection based on precise temperature controlled photomultiplier with enhanced electromagnetic shielding
原文传递
Leidenfrost drops on micro/nanostructured surfaces 被引量:2
4
作者 Vishal TALARI Prakhar BEHAR +2 位作者 Yi LU Evan HARYADI Dong LIU 《Frontiers in Energy》 SCIE CSCD 2018年第1期22-42,共21页
In the Leidenfrost state, the liquid drop is levitated above a hot solid surface by a vapor layer generated via evaporation from the drop. The vapor layer thermally insulates the drop from the heating surface, causing... In the Leidenfrost state, the liquid drop is levitated above a hot solid surface by a vapor layer generated via evaporation from the drop. The vapor layer thermally insulates the drop from the heating surface, causing deteriorated heat transfer in a myriad of important engineering applications. Thus, it is highly desirable to suppress the Leidenfrost effect and elevate the Leidenfrost temperature. This paper presents a comprehensive review of recent literature concerning the Leidenfrost drops on micro/nanostructured surfaces with an emphasis on the enhancement of the Leidenfrost temperature. The basic physical processes of the Leidenfrost effect and the key characteristics of the Leidenfrost drops were first intro- duced. Then, the major findings of the influence of various micro/nanoscale surface structures on the Leidenfrost temperature were presented in detail, and the underlying enhancement mechanism for each specific surface topology was also discussed. It was concluded that multiscale hierarchical surfaces hold the best promise to significantly boost the Leidenfrost temperature by combin- ing the advantages of both micro- and nanoscale structures. 展开更多
关键词 Leidenfrost drop Leidenfrost temperature heat transfer enhancement miero/nanostructured surfaces
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部