Anagrus nilaparvatae is the dominant egg parasitoid of rice planthoppers and plays an important role in biological control. Symbiotic bacteria can significantly influence the development, survival, reproduction and po...Anagrus nilaparvatae is the dominant egg parasitoid of rice planthoppers and plays an important role in biological control. Symbiotic bacteria can significantly influence the development, survival, reproduction and population differentiation of their hosts. To study the influence of temperature on symbiotic bacterial composition in the successive generations of A. nilaparvatae, A. nilaparvatae were raised under different constant temperatures of 22 °C, 25 °C, 28 °C, 31 °C and 34 °C. Polymerase chain reaction-denaturing gradient gel electrophoresis was used to investigate the diversity of symbiotic bacteria. Our results revealed that the endophytic bacteria of A. nilaparvatae were Pantoea sp., Pseudomonas sp. and some uncultured bacteria. The bacterial community composition in A. nilaparvatae significantly varied among different temperatures and generations, which might be partially caused by temperature, feeding behavior and the physical changes of hosts. However, the analysis of wsp gene showed that the Wolbachia in A. nilaparvatae belonged to group A, sub-group Mors and sub-group Dro. Sub-group Mors was absolutely dominant, and this Wolbachia composition remained stable in different temperatures and generations, except for the 3rd generation under 34 °C during which sub-group Dro became the dominant Wolbachia. The above results suggest that the continuous high temperature of 34 °C can influence the Wolbachia community composition in A. nilaparvatae.展开更多
The effect of carbendazim applications on the diversity and structure of a soil bacterial community was studied under field conditions using temperature gradient gel electrophoresis (TGGE) and partial sequence analy...The effect of carbendazim applications on the diversity and structure of a soil bacterial community was studied under field conditions using temperature gradient gel electrophoresis (TGGE) and partial sequence analysis of PCR-amplified 16S rRNA gene. After four successive introductions of carbendazim at a level of 0.94 kg active ingredient (a.i.)/ha, the genetic diversity (expressed as Shannon index, H′) decreased from 1.43 in the control to 1.29 in treated soil. This harmful effect seems to increase with the concentration of carbendazim. The value of H' in the soil treated with carbendazim at 4.70 kg a.i./ha was reduced to 1.05 (P ≤ 0.05). The structure of soil bacterial community was also affected after four repeated applications of carbendazim at levels of 0.94, 1.88 and 4.70 kg a.i./ha, as seen in the relative intensities of the individual band. However, the bacterial community in carbendazim-treated soil recovered to that in the control 360 d after the first treatment. The results indicated that repeated applications of carbendazim could reduce soil microbial diversity and alter the bacterial community structure temporarily.展开更多
基金supported jointly by the National Basic Research Program of China (Grant No. 2010CB126202)the Agro-Industry R&D Special Fund of China (Grant No. 200903051)Zhejiang Provincial Key Project on Agricultural Science of China (Grant No. 2011C12022)
文摘Anagrus nilaparvatae is the dominant egg parasitoid of rice planthoppers and plays an important role in biological control. Symbiotic bacteria can significantly influence the development, survival, reproduction and population differentiation of their hosts. To study the influence of temperature on symbiotic bacterial composition in the successive generations of A. nilaparvatae, A. nilaparvatae were raised under different constant temperatures of 22 °C, 25 °C, 28 °C, 31 °C and 34 °C. Polymerase chain reaction-denaturing gradient gel electrophoresis was used to investigate the diversity of symbiotic bacteria. Our results revealed that the endophytic bacteria of A. nilaparvatae were Pantoea sp., Pseudomonas sp. and some uncultured bacteria. The bacterial community composition in A. nilaparvatae significantly varied among different temperatures and generations, which might be partially caused by temperature, feeding behavior and the physical changes of hosts. However, the analysis of wsp gene showed that the Wolbachia in A. nilaparvatae belonged to group A, sub-group Mors and sub-group Dro. Sub-group Mors was absolutely dominant, and this Wolbachia composition remained stable in different temperatures and generations, except for the 3rd generation under 34 °C during which sub-group Dro became the dominant Wolbachia. The above results suggest that the continuous high temperature of 34 °C can influence the Wolbachia community composition in A. nilaparvatae.
基金supported by the National High Technology Research and Development Program (863) of China(No. 2007AA06Z306)the Major State Basic Research Development Program of China (No. 2009CB119000)+3 种基金the National Natural Science Foundation of China (No.30771254)the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20070335113)the National Key Technology R&D Program of China(No. 2006BAI09B03)the Zhejiang Natural Science Foundation (No. Z306260)
文摘The effect of carbendazim applications on the diversity and structure of a soil bacterial community was studied under field conditions using temperature gradient gel electrophoresis (TGGE) and partial sequence analysis of PCR-amplified 16S rRNA gene. After four successive introductions of carbendazim at a level of 0.94 kg active ingredient (a.i.)/ha, the genetic diversity (expressed as Shannon index, H′) decreased from 1.43 in the control to 1.29 in treated soil. This harmful effect seems to increase with the concentration of carbendazim. The value of H' in the soil treated with carbendazim at 4.70 kg a.i./ha was reduced to 1.05 (P ≤ 0.05). The structure of soil bacterial community was also affected after four repeated applications of carbendazim at levels of 0.94, 1.88 and 4.70 kg a.i./ha, as seen in the relative intensities of the individual band. However, the bacterial community in carbendazim-treated soil recovered to that in the control 360 d after the first treatment. The results indicated that repeated applications of carbendazim could reduce soil microbial diversity and alter the bacterial community structure temporarily.