Nanofluidics in hydrophilic nanopores is a common issue in many natural and industrial processes. Among all,the mass transport of nanofluidics is most concerned. Besides that, the heat transfer of a fluid flow in nano...Nanofluidics in hydrophilic nanopores is a common issue in many natural and industrial processes. Among all,the mass transport of nanofluidics is most concerned. Besides that, the heat transfer of a fluid flow in nano or micro channels is always considered with adding nanoparticles into the flow, so as to enhance the heat transfer by convection between the fluid and the surface. However, for some applications with around 1 nm channels such as nano filtration or erosion of rocks, there should be no nanoparticles included. Hence, it is necessary to figure out the heat transfer mechanism in the single phase nanofluidics. Via non-equilibrium molecular dynamics simulations, we revealed the heat transfer inside nanofluidics and the one between fluid and walls by setting simulation into extremely harsh condition. It was found that the heat was conducted by molecular motion without temperature gradient in the area of low viscous heat, while it was transferred to the walls by increasing the temperature of fluids. If the condition back to normal, it was found that the viscous heat of nanofluidics could be easily removed by the fluid-wall temperature drop of less than 1 K.展开更多
基金Supported by the National Basic Research Program of China(2015CB655301)the National Natural Science Foundation of China(21506091)+2 种基金the Jiangsu Natural Science Foundations(BK20150944)the Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund(the second phase)the Project of Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Nanofluidics in hydrophilic nanopores is a common issue in many natural and industrial processes. Among all,the mass transport of nanofluidics is most concerned. Besides that, the heat transfer of a fluid flow in nano or micro channels is always considered with adding nanoparticles into the flow, so as to enhance the heat transfer by convection between the fluid and the surface. However, for some applications with around 1 nm channels such as nano filtration or erosion of rocks, there should be no nanoparticles included. Hence, it is necessary to figure out the heat transfer mechanism in the single phase nanofluidics. Via non-equilibrium molecular dynamics simulations, we revealed the heat transfer inside nanofluidics and the one between fluid and walls by setting simulation into extremely harsh condition. It was found that the heat was conducted by molecular motion without temperature gradient in the area of low viscous heat, while it was transferred to the walls by increasing the temperature of fluids. If the condition back to normal, it was found that the viscous heat of nanofluidics could be easily removed by the fluid-wall temperature drop of less than 1 K.