The global surface temperature change since the mid-19th century has caused general concern and intensive study. However, long-term changes in the marginal seas, including the seas east of China, are not well understo...The global surface temperature change since the mid-19th century has caused general concern and intensive study. However, long-term changes in the marginal seas, including the seas east of China, are not well understood because long-term observations are sparse and, even when they exist, they are over limited areas. Preliminary results on the long-term variability of sea surface temperature (SST) in summer and winter in the seas east of China during the period of 1957-2001 are reported using the Ocean Science Database of Institute of Oceanology, Chinese Academy of Sciences, the coastal hydrological station in situ and satellite data. The results show well-defined warming trends in the study area. However warming and cooling trends vary from decade to decade, with steady and rapid warming trends after the 1980s and complicated spatial patterns. The distribution of SST variation is intricate and more blurred in the areas far away from the Kuroshio system. Both historical and satellite data sets show significant warming trends after 1985. The warming trends are larger and spread to wider areas in winter than in summer, which means decrease in the seasonal cycle of SST probably linked with recently observed increase of the tropical zooplankton species in the region. Spatial structures of the SST trends are roughly consistent with the circulation pattern especially in winter when the meridional SST gradients are larger, suggesting that a horizontal advection may play an important role in the long-term SST variability in winter.展开更多
A stratus-sea fog event that occurred over the Yellow and East China Seas on 3 June 2011 is investigated using observations and a numerical model, with a focus on the effects of background circulation and Sea Surface ...A stratus-sea fog event that occurred over the Yellow and East China Seas on 3 June 2011 is investigated using observations and a numerical model, with a focus on the effects of background circulation and Sea Surface Temperature Front (SSTF) on the transition of stratus into sea fog. Southerly winds of a synoptic high-pressure circulation transport water vapor to the Yellow Sea, creating conditions favorable for sea fog/stratus formation. The subsidence from the high-pressure contributes to the temperature inversion at the top of the stratus. The SSTF forces a secondary circulation within the ABL (Atmospheric Boundary Layer), the sinking branch of which on the cold flank of SSTF helps lower the stratus layer fiLrther to reach the sea surface. The cooling effect over the cold sea surface counteracts the adiabatic warming induced by subsidence. The secondary circulation becomes weak and the fog patches are shrtmk heavily with the smoothed SSTE A conceptual model is proposed for the transition of stratus into sea fog over the Yellow and East China Seas. Finally, the analyses suggest that sea fog frequency will probably decrease due to the weakened SSTF and the reduced subsidence of secondary circulation under global wanning.展开更多
As an important marginal sea under the influences of both the Changjiang River and the Kuroshio, the East China Sea (ECS) environment is sensitive to both continental and oceanic forcing. Paleoenvironmental records ...As an important marginal sea under the influences of both the Changjiang River and the Kuroshio, the East China Sea (ECS) environment is sensitive to both continental and oceanic forcing. Paleoenvironmental records are essential for understanding the long-term environmental evolution of the ECS and adjacent areas. However, paleo-temperature records from the ECS shelf are currently very limited. In this study, the U^K_37 and TEX86 paleothermometers were used to reconstruct surface and subsurface temperature changes of the mud area southwest of the Cheju Island (Site F10B) in the ECS during the Holocene. The results indicate that temperature changes of F 10B during the early Holocene (11.6-6.2 kyr) are associated with global climate change. During the period of 6.2-2.5 kyr, the similar variability trends of smoothing average of AT (the difference between surface and subsurface temperature) of Site F10B and the strength of the Kuroshio suggest that the Kuroshio influence on the site started around 6.2kyr when the Kuroshio entered the Yellow Sea and continued to 2.5 kyr. During the late Holocene (2.5-1.45 kyr), apparent decreases of U^K_37 sea surface temperature (SST) and AT imply that the direct influence of the Kuroshio was reduced while cold eddy induced by the Kuroshio gradually controlled hydrological conditions of this region around 2.5 kyr.展开更多
Although the mid-late Holocene cold and dry event about 4000years ago (the 4ka event) has been observed almost globally, it was most prominent in terrestrial climate proxies from the lower latitudes. Here we evaluat...Although the mid-late Holocene cold and dry event about 4000years ago (the 4ka event) has been observed almost globally, it was most prominent in terrestrial climate proxies from the lower latitudes. Here we evaluate the oceanic response to this event in terms of a Holocene sea surface temperature (SST) record reconstructed using the U^7 index for Core B3 on the continen- tal shelf of the East China Sea. The record reveals a large temperature drop of about 5~C from the mid-Holocene (24.7~C at 5.6ka) to the 4ka event (19.2~C at 3.8ka). This mid-late Holocene cooling period in Core B3 correlated with (i) decreases in the East Asia summer monsoon intensity and (ii) the transition period with increased E1 Nifio/Southern Oscillation activities in the Equatorial Pa- cific. Our SST record provides oceanic evidence for a more global nature of the mid-late Holocene climate change, which was most likely caused by a southward migration of the Intertropical Converge Zone in response to the decreasing summer solar insolation in the Northern Hemisphere. However, the large SST drop around Core B3 indicates that the mid-late Holocene cooling was regionally amplified by the initiation/strengthening of eddy circulation/cold front which caused upwelling and resulted in additional SST de- crease. Upwelling during the mid-late Holocene also enhanced with surface productivity in the East China Sea as reflected by higher alkenone content around Core B3.展开更多
Three warm currents, the Kuroshio, its shelf intrusion branch in the northeast of Taiwan and the Taiwan Warm Current (hereafter TWC), dominate the circulation pattern in the East China Sea (hereafter ECS). Their o...Three warm currents, the Kuroshio, its shelf intrusion branch in the northeast of Taiwan and the Taiwan Warm Current (hereafter TWC), dominate the circulation pattern in the East China Sea (hereafter ECS). Their origination, routes and variation in winter and summer are studied. Their relationship with four major high and low temperature centers is analyzed. Differing from the previous opinion, we suggest that the four major centers are generated to a great extent by the interaction of the currents in the ECS. In summer, a cold water belt in the northeast of Taiwan is preserved from winter between the Kuroshio and the TWC. The shelf intrusion branch of the Kuroshio separates the water belt, and two low temperature centers generate in the northeast of Taiwan. In the southern ECS, the TWC transports more heat flux northward to form a warm pool. But it is separated in the lower layer by the cold water driven by the intrusion branch of the Kuroshio. So the TWC and the intrusion branch of the Kuroshio play a dominating role to generate the high temperature center. The interaction among the eastward TWC, the northward Tsushima Warm Current (hereafter TSWC) and the southward Su Bei Coastal Flow (hereafter SBCF) generates the low temperature center in the northern ECS. In winter, the strengthening of the shelf intrusion branch of the Kuroshio obscures the two low temperature centers in the northeast of Taiwan. For the weakening of the TWC, the high temperature center in the southern ECS vanishes, and the low temperature center in the northern ECS shifts to south.展开更多
Ecological adaptation and ecological groups of pelagic ostracods were examined in the East China Sea (23°30′-33°00′N, 118°30′ -128°00′E), in relation to temperature and salinity. The data we...Ecological adaptation and ecological groups of pelagic ostracods were examined in the East China Sea (23°30′-33°00′N, 118°30′ -128°00′E), in relation to temperature and salinity. The data were collected in four surveys conducted from 1997 to 2000. The density, yield density, or negative exponent models were used to determine the optimal temperature and salinity of water for the thriving growth of pelagic ostracods. Thereafter, ecological groups and potential distribution patterns of pelagic ostracods were determined based on the predicted parameters such as optimal temperature and salinity, consulting the geographic distribution. The analytical results indicate that, among the numerical dominant pelagic ostracods in the East China Sea (ECS), Euconchoecia aculeata, E. elongata, E. chierchiae, E. maimai, and Cypridina dentata, etc. are offshore subtropical water species. These species are widely distributed in the area, and they can be brought by the warm current to north offshore during spring and winter. The predicated optimal temperature (OT) and optimal salinity (OS) for Paraconchoecia decipiens, P. echinata, P. spini- fera, P. oblonga, Conchoecia magna and Porroeciaporrecta are all greater than 25℃ and 34 separately. These species are mainly distributed in the waters of the Kuroshio, the Taiwan Warm Current, and the Taiwan Strait, and therefore are designated as ocean- ic tropical water species. On the other hand, Pseudoconchoecia concerttrica is considered as offshore subtropical water species based on its geographical distribution although its OT is 19℃. The other species, though their OSs are approximately 34 and with OTs ranging from 20° to 25℃, are considered as offshore subtropical water species because they were found to be widely distributed from the South China Sea to the East China Sea.展开更多
Global warming has become a notable trend especially since an abrupt climate change in 1976. Response of the East China Sea (ECS) to the global warming trend, however, is not well understood because of sparse long-t...Global warming has become a notable trend especially since an abrupt climate change in 1976. Response of the East China Sea (ECS) to the global warming trend, however, is not well understood because of sparse long-term observation. In this paper, hydrographic observation data of 1957-1996 are collected and reviewed to study climatological variability in northern ECS. Significant warming trends are found in both summer and winter. In summer, the average SST is about 0.46℃ higher during the period of 1977-1996 than that of 1957-1976, and the Taiwan Warm Current Water (TWCW) was strengthened. In winter, despite of the cooling effect in the coastal areas adjacent to the Changjiang (Yangtze) River Estuary (CRE), the average SST increase was about 0.53℃ during the same period. The causes of this SST warming up in summer are different from in winter. The warming trend and intensification of the TWCW in summer were primarily influenced by the strengthening of the Kuroshio transport, while the warming in winter was mainly induced by the variability of the climate system.展开更多
This study investigated the ef fects of two typhoons(Nari and Wipha) on sea surface temperature(SST) and chlorophyll- a(Chl- a) concentration. Typhoons Nari and Wipha passed through the Yellow Sea on September 13, 200...This study investigated the ef fects of two typhoons(Nari and Wipha) on sea surface temperature(SST) and chlorophyll- a(Chl- a) concentration. Typhoons Nari and Wipha passed through the Yellow Sea on September 13, 2007 and the East China Sea(ECS) on September 16, 2007, respectively. The SST and Chl- a data were obtained from the Aqua/Terra MODIS and NOAA18, respectively, and the temperature and salinity in the southeast of the study area were observed in situ from Argo. The average SST within the study area dropped from 26.33°C on September 10 to a minimum of 22.79°C on September 16. Without the usual phenomenon of ‘right bias', the most striking response of SST was in the middle of the typhoons' tracks, near to coastal waters. Strong cooling of the upper layers of the water column was probably due to increased vertical mixing, discharge from the Changjiang River estuary, and heavy rainfall. During the typhoons, average Chl-a increased by 11.54% within the study area and by 21.69% in the off shore area near to the southeast ECS. From September 1 to 13, average Chl-a was only 0.10 mg/m^3 in the of fshore waters but it reached a peak of >0.17 mg/m^3 on September 18. This large increase in Chl-a concentration in of fshore waters might have been triggered by strong vertical mixing, upwelling induced by strong typhoons, and sedimentation and nutrient infl ux following heavy rainfall.展开更多
Sea surface temperatures (SSTs) in the southwestern South China Sea have been reconstructed for the past 160 ka using the U37^k paleothermometer from the core MD01 - 2392. The temperature differences between glacial...Sea surface temperatures (SSTs) in the southwestern South China Sea have been reconstructed for the past 160 ka using the U37^k paleothermometer from the core MD01 - 2392. The temperature differences between glacial times ( MISs 6 and 2) and interglacial times ( MISs 5.5 and 1) are 2.2 ~ 2.5 ℃. Younger Dryas event during the last deglaciation was documented in both the planktonic foraminiferal δ^18 and SST records. After MIS 5.5, SSTs displayed a progressive cooling from 28.6 to 24.5 ℃ culminating at the LGM. During this gradual cooling period, warm events such as MISs 5.3, 5.1 and 3 were also clearly documented. By comparison of SST between the study core and Core 17954, a pattern of low or no meridional SST gradients during the interglacial periods and high meridional SST gradients during the glacial periods was exhibited. This pattern indicates the much stronger East Asian winter monsoon at the glacial than at the interglacial periods. Spectral analysis gives two prominent cycles:41 and 23 ka, with the former more pronounced, suggesting that SSTs in the southern SCS varied in concert with high-latitude processes through the connection of East Asian winter monsoon.展开更多
The East China Sea is a productive marginal sea with a wide continental shelf and plays an important role in absorbing atmospheric carbon dioxide and transferring terrigenous organic matter to the open ocean. To inves...The East China Sea is a productive marginal sea with a wide continental shelf and plays an important role in absorbing atmospheric carbon dioxide and transferring terrigenous organic matter to the open ocean. To investigate the roles of heterotrophic bacteria in the biogeochemical dynamics in the East China Sea, bacterial biomasses (BB) and productions (BP) were measured in four cruises. The spatial distributions of the BB and the BP were highly season-dependent. Affected by the Changjiang River discharge, the BB and the BP were high in shelf waters (bottom depth not deeper than 50 m) and generally decreased offshore in August 2009. In December 2009 to lanuary 2010, and November to December 2010, the BB and the BP were high in waters with medium bottom depth. The onshore-offshore decreasing trends of the BB and the BP also existed in May-June 2011, when the BB was significantly higher than in other cruises in shelf break waters (bottom depth deeper than 50 m but not deeper than 200 m). The results of generalized additive models (GAM) suggest that the BB increased with the temperature at a range of 8-20~C, increased with the chlorophyll concentration at a range of 0.02-3.00 mg/m3 and then declining, and decreased with the salinity from 28 to 35. The relationship between the temperature and the log-transformed bacterial specific growth rate (SGR) was linear. The estimated temperature coefficient (Q10) of the SGR was similar with that of the phytoplankton growth. The SGR also increased with the chlorophyll concentration. The ratio of the bacterial to phytoplankton production ranged from less than 0.01 to 0.40, being significantly higher in November December 2010 than in May-June 2011. Calculated from the bacterial production and growth efficiency, the bacterial respiration consumed, on average, 59%, 72% and 23% of the primary production in August 2009, November-December 2010, and May-/une 2011, respectively.展开更多
Spatio-temporal distribution of chub mackerel Scomber japonicus is strongly susceptible to climate variability.In this study,a weighting-based habitat suitability index(HSI)model was established to assess the impacts ...Spatio-temporal distribution of chub mackerel Scomber japonicus is strongly susceptible to climate variability.In this study,a weighting-based habitat suitability index(HSI)model was established to assess the impacts of Pacific Decadal Oscillation(PDO)on habitat range and distribution of S.japonicus in the East China Sea(ECS)using vertical water temperature at depths of 2.5 m,25 m and 50 m.Results showed that the optimal HSI model selected from ten weighting scenarios can yield reliable predictions.Correlation analysis revealed a significant negative relationship between the PDO index and water temperature anomaly at different depths.The water temperatures at three different layers on the fishing ground of S.japonicus tended to be low in the warm PDO phase and high in the cold PDO phase,respectively.The range of suitable habitats and its spatial distribution exhibited large differences between the warm and cold PDO regimes.During a warm PDO phase,vertical water temperature became cool,and the monthly preferred water temperature at each depth for S.japonicus shifted southeastward.Consequently,habitat quality dramatically decreased,and suitable habitat ranges also reduced and moved southeastward.Conversely,in a cool PDO phase,with the warmer vertical water temperature and northwestward shift of the preferred water temperature,the suitable habitats enlarged and migrated in the same direction.Our findings indicate that the PDO produced significant impacts on habitat range and distribution of S.japonicus in the East China Sea.展开更多
To reconstruct the productivity changes for the last 10 500 a in the northeastern East China Sea (ECS), biogenic compounds (such as carbonate, organic carbon and opal), marine micropaleontological fossils (plankt...To reconstruct the productivity changes for the last 10 500 a in the northeastern East China Sea (ECS), biogenic compounds (such as carbonate, organic carbon and opal), marine micropaleontological fossils (planktonic foraminifera, benthic foraminifera, radiolarian and silicoflagellate) and the compositional characters of benthic foraminifera fauna analyses were carried out on a sediment core DOC082 obtained from the western slope of Okinawa Trough (29°13.93′N, 128°08.53′E; 1 128 m water depth). The long-term changes of biogenic and micropaleontological proxies display some similarities through the last 10 500 a, which show three different phases: lower values are recorded during the early and middle ttolocene (before about 4 000 a BP), followed by an abrupt and remarkable increase at about 4 000 a BP, the late Holocene (after about 3 000 a BP) is characterized by continuously high values. The multi-proxy data of paleoproductivity and percents of benthic foraminifera genera (Uvigerina and Bulimina) show that during the early and middle Holocene (10 500-4 000 a BP) productivity was relatively low with a sudden and distinct increase at about 4 000 a BP, and the late Holocene (3 400-0 a BP) is marked by significantly higher productivity. Also, the radiolarian-based sea surface temperature (SST) records reveal a distinct decline in SST in the late Holocene after 3 200 a BP, very different from the early and middle Holocene. For the last 3 000 a, the enhanced biological productivity and distinctly lower SST indicate a major change of oceanographic conditions in the northeastern ECS. These marine environmental anomalies are consistent with other paleoclimatic records for the late Holocene in the Chinese continent and its surrounding regions. After analyzing the mechanisms of modern productivity and SST changes in the northeastern ECS, and based on the climatic anomalies in the Chinese continent and variations in the Kuroshio Current during modern El Nino periods, we suggest that the anomalous environmental conditions in the northeastern ECS may imply intensified El Nino activity during the late Holocene.展开更多
The macroalgal blooms of floating brown algae Sargassum horneri are increasing in the Yellow Sea and East China Sea during the past few years.However,the annual pattern of Sargassum bloom is not well characterized.To ...The macroalgal blooms of floating brown algae Sargassum horneri are increasing in the Yellow Sea and East China Sea during the past few years.However,the annual pattern of Sargassum bloom is not well characterized.To study the developing pattern and explore the impacts from hydro-meteorologic environment,high resolution satellite imageries were used to monitor the distribution,coverage and drifting of the pelagic Sargassum rafts in the Yellow Sea and East China Sea from September 2019 to August 2020.Sargassum blooms were detected from October 2019 to June 2020 and presented two successive drifting paths that both initiated from around 37°N.The first path spanned smaller spatial scale and shorter period,starting with a bloom of 3 km^(2) distribution area near the eastern tip of Shandong Peninsula in late October 2019 and drifted southwards,hit the Pyropia aquaculture area in early January 2020,then vanished in the northwest of East China Sea(ca.32°N)around end of January.The second path began with a large distribution area of 23000 km^(2) east of 123°E in late January 2020,firstly moved southwards in the central Yellow Sea and northern East China Sea(north of 29°N)till late April,then turned northwards with monsoon wind and vanished from late June to August.The mean sea surface temperature of 8℃ to 20℃ in the Sargassum bloom areas corresponded to in situ observed temperature range for vegetative growth and floating of S.horneri.There was no observed floating Sargassum blooms during July through September in the Yellow Sea and East China Sea.The results indicate that floating S.horneri is unable to complete life cycle in the Yellow Sea and East China Sea,and provide insights to the future management of Sargassum blooms.Further studies are needed to validate the pattern and source of annual Sargassum bloom in the Yellow Sea and East China Sea.展开更多
Many evidences for gas hydrate bearing sediments had been found in the continental slope of the East China Sea,such as bottom simulating reflections(BSRs),undersea gas springs,pyrite associated with methane leakage,mu...Many evidences for gas hydrate bearing sediments had been found in the continental slope of the East China Sea,such as bottom simulating reflections(BSRs),undersea gas springs,pyrite associated with methane leakage,mud diapirs/mud volcanos,bottom-water methane anomalies and so on.In this study,six key stratigraphic interfaces including T_0(seafloor),T_1(LGM,23 kyr B.P.),T_2(2.58 Myr),T_3(5.33 Myr),T_4(11.02 Myr)and T_5(16.12 Myr)were identified,and then five third-order sequences of SQIII1 to SQIII5 were divided.However,T5 in southern continental slope is not found,which shows that the middle-northern Okinawa Trough had begun to rift in the early Miocene,earlier than the southern segment.Four system tracts including lowstand systems tract(LST),transgressive systems tract(TST),highstand systems tract(HST)and falling stage systems tract(FSST)are further divided.The marine erosion interface of 11.02 Myr and regressive unconformity interface of 23 kyr B.P.indicate two large-scale sea level drop events in the research area.Seven typical seismic facies identified in the continental slope are continental shelf-edge deltas,littoral fluvial-delta plains,incised channels or submarine canyons,slope fans,submarine fans or coastal sandbars,littoral-neritic finegrained sediments,mud volcanos and some other geological bodies respectively.The minimum water depth for hydrate occurrence in the Okinawa Trough is 630 m,and the thickness of gas hydrate stability zone in continental slope is between 0 and 590 m.The calculated bottom boundary of hydrate stability zone is slightly deeper than BSRs on the seismic sections.The re-depositional turbidite sand bodies,such as canyon channels,slope fans and submarine fans developed in Quaternary strata,are the predominant hydrate reservoirs.According to developing process,the dynamic accumulation of hydrate systems can be divided into three evolutionary stages including canyon erosion and hydrate stability zone migration stage,sediments destabilizing and methane leakage stage,and channel filling and hydrate re-occurrence stage.展开更多
Bottom temperature variation (BTV) is a serious problem in determining the thermal gra- dient and heat flow of the sediments in shallow seas. The water depth of the East China Sea shelf is mostly below 150m, and the h...Bottom temperature variation (BTV) is a serious problem in determining the thermal gra- dient and heat flow of the sediments in shallow seas. The water depth of the East China Sea shelf is mostly below 150m, and the heat flow measurement is strongly affected by BTV. Following a statistical algorithm, we rechecked the temperature and thermal conductivity data of the cruises KX90-1 and KX91-1, carried out by a cooperation program of China and Japan, and calculate the heat flow in a site without long-term temperature record. The calculated heat flow in the site was 58.6±3.6 mW/m2, being just within the range of the drill heat flow value of East China Sea shelf. The inversed amplitude spectrum of BTV has a peak in frequency of 1/10 per year, and the annual component is also an important part. Comparison with two lakes of Lake Greifensee and Lac Leman (i.e. Lake Geneva), which are in different water depth, revealed that with increasing water depth, the peak of amplitude spectrum moved towards low frequency components. The heat flow values calculated in this paper and from petroleum bore hole in East China Sea shelf are much more close to that in southeast China than in Okinawa Trough.展开更多
Process of sea surface diurnal warming has drawn a lot of attention in recent years, but that occurs in shelf seas was rarely addressed. In the present work, surface diurnal warming strength in the East China Sea was ...Process of sea surface diurnal warming has drawn a lot of attention in recent years, but that occurs in shelf seas was rarely addressed. In the present work, surface diurnal warming strength in the East China Sea was calculated by the sea surface temperature(SST) data derived from the MODIS sensors carried by the satellites Aqua and Terra. Due to transit time difference, both the number of valid data and the surface diurnal warming strength computed by the MODIS-Aqua data are relatively larger than Terra. Therefore, the 10-year MODIS-Aqua data from 2005 to 2014 were used to analyze the monthly variability of the surface diurnal warming. Generally, the surface diurnal warming in the East China sea is stronger in summer and autumn but weaker in winter and spring, while it shows different peaks in different regions. Large events with ΔT≥5 K have also been discussed. They were found mainly in coastal area, especially near the Changjiang(Yangtze) River estuary. And there exists a high-incidence period from April to July. Furthermore, the relationship between surface diurnal warming and wind speed was discussed. Larger diurnal warming mainly lies in areas with low wind speed. And its possibility decreases with the increase of wind speed. Events with ΔT ≥2.5 K rarely occur when wind speed is over 12 m/s. Study on surface diurnal warming in the East China Sea may help to understand the daily scale air-sea interaction in the shelf seas. A potential application might be in the marine weather forecasts by numerical models. Its impact on the coastal eco-system and the activities of marine organisms can also be pursued.展开更多
The prediction of sea surface temperature (SST) is an essential task for an operational ocean circulation model. A sea surface heat flux, an initial temperature field, and boundary conditions directly affect the acc...The prediction of sea surface temperature (SST) is an essential task for an operational ocean circulation model. A sea surface heat flux, an initial temperature field, and boundary conditions directly affect the accuracy of a SST simulation. Here two quick and convenient data assimilation methods are employed to improve the SST simulation in the domain of the Bohai Sea, the Yellow Sea and the East China Sea (BYECS). One is based on a surface net heat flux correction, named as Qcorrection (QC), which nudges the flux correction to the model equation; the other is ensemble optimal interpolation (EnOI), which optimizes the model initial field. Based on such two methods, the SST data obtained from the operational SST and sea ice analysis (OSTIA) system are assimilated into an operational circulation model for the coastal seas of China. The results of the simulated SST based on four experiments, in 2011, have been analyzed. By comparing with the OSTIA SST, the domain averaged root mean square error (RMSE) of the four experiments is 1.74, 1.16, 1.30 and 0.91~C, respectively; the improvements of assimilation experiments Exps 2, 3 and 4 are about 33.3%, 25.3%, and 47.7%, respectively. Although both two methods are effective in assimilating the SST, the EnOI shows more advantages than the QC, and the best result is achieved when the two methods are combined. Comparing with the observational data from coastal buoy stations, show that assimilating the high-resolution satellite SST products can effectively improve the SST prediction skill in coastal regions.展开更多
The El Ni?o Southern Oscillation(ENSO) is a natural phenomenon that relates to the fluctuation of temperatures over the Pacific Ocean. The ENSO significantly affects the ocean dynamics including upwelling event and co...The El Ni?o Southern Oscillation(ENSO) is a natural phenomenon that relates to the fluctuation of temperatures over the Pacific Ocean. The ENSO significantly affects the ocean dynamics including upwelling event and coastal front. A recent study discovered the seasonal upwelling in the east coast of Peninsular Malaysia(ECPM), which is significant to the fishery industry in this region. Thus, it is vital to have a better understanding of the influence of ENSO towards the coastal upwelling and thermal front in the ECPM. The sea surface temperature(SST) data achieved from moderate resolution imaging spectroradiometer(MODIS) aboard Aqua satellite are used in this study to observe the SST changes from 2005 to 2015. However, due to cloud cover issue, a reconstruction of data set is applied to MODIS data using the data interpolating empirical orthogonal function(DINEOF) to fill in the missing gap in the dataset based on spatial and temporal available data. Besides, a wavelet transformation analysis is done to determine the temperature fluctuation throughout the time series. The DINEOF results show the coastal upwelling in the ECPM develops in July and reaches its peak in August with a clear cold water patch off the coast. There is also a significant change of SST distribution during the El Ni?o years which weaken the coastal upwelling event along the ECPM. The wavelet transformation analysis shows the highest temperature fluctuation is in 2009–2010 which indicates the strongest El Ni?o throughout the time period. It is suggested that the El Ni?o is favourable for the stratification in water column thus it is weakening the upwelling and thermal frontal zone formation in ECPM waters.展开更多
The effects of tidal currents(i.e., barotropic and internal tides) are important in the biogeochemistry of a coastal shelf sea. The high-frequency of currents and near-bottom temperatures collected in three consecutiv...The effects of tidal currents(i.e., barotropic and internal tides) are important in the biogeochemistry of a coastal shelf sea. The high-frequency of currents and near-bottom temperatures collected in three consecutive southwest monsoon seasons(May, June, July and August of 2013 until 2015) is presented to reveal the role of the tidal currents to the temperature variability in the coastal shelf sea of the east coast of Peninsular Malaysia(ECPM),south of the South China Sea(SCS). The results of a spectral density and harmonic analysis demonstrate that the near-bottom temperature variability and the tidal currents are influenced by diurnal(O_1 and K_1) and semidiurnal(M_2) tidal currents. The spectral density of residual currents(detided data) at 5, 10 and 16 m depth also shows significant peaks at the diurnal tidal frequency(K_1) and small peaks at the semidiurnal tidal frequency(M_2)indicating the existence of internal tides. The result of the horizontal kinetic energy(HKE) shows a strong intermittent energy of internal tides in the ECPM with the strongest energy is found at 16 m depth during a sporadic cooling event in June and July. A high horizontal cross-shore heat flux(16 m) also indicates strong intrusions of cooler water into the ECPM in June and July. During the short duration of cold pulse water observed in June and July, a cross-wavelet analysis also reveals the strong relationship between the near-bottom temperatures and the internal tidal currents at the diurnal tidal frequency. The intrusion of this cooler water is probably related to the monsoon-induced upwelling in June. It is loosely interpreted that the interaction between the strong barotropic tides and the steep slope in the central basin of the SCS under the stratified condition in southwest monsoon has generated these internal tides. The dissipation of internal tides from the slope area probably has driven the cold-upwelled water into the ECPM coastal shelf sea when the upwelling intensity is the highest in June and July.展开更多
By using the monthly mean grid data of NCAR/NCEP reanalysis at 500 hPa geopotential height from 1958 to 1997,the relationship between the Northeast cold vortex and the western Pacific subtropical high was analyzed.The...By using the monthly mean grid data of NCAR/NCEP reanalysis at 500 hPa geopotential height from 1958 to 1997,the relationship between the Northeast cold vortex and the western Pacific subtropical high was analyzed.The influence of the sea surface temperature(SST) and outgoing longwave radiation(OLR) on the Northeast cold vortex and subtropical high was studied.As was shown in the results,in summer,there was a positive correlation between the Northeast cold vortex and the subtropical high,and an anti-phase relationship existed between the threshold characteristic line of GMS-SST=28 ℃ and the height index of the Northeast cold vortex and the subtropical high.With the gradual northward moving of the threshold characteristic line,the subtropical high was weakening,and the Northeast cold vortex was increasing and strengthening.展开更多
基金The Strategic Priority Research Program of Chinese Academy of Sciences under contract No. XDA05090404Open Fund of the key Laboratory of Ocean Circulation and Waves,Chinese Academy of Scineces under No. KLOCAW1201The Knowledge Innovation Program of Chinese Academy of Sciences under contract Nos KZCX1-YW-12 and KZCX2-YW-Q11-02
文摘The global surface temperature change since the mid-19th century has caused general concern and intensive study. However, long-term changes in the marginal seas, including the seas east of China, are not well understood because long-term observations are sparse and, even when they exist, they are over limited areas. Preliminary results on the long-term variability of sea surface temperature (SST) in summer and winter in the seas east of China during the period of 1957-2001 are reported using the Ocean Science Database of Institute of Oceanology, Chinese Academy of Sciences, the coastal hydrological station in situ and satellite data. The results show well-defined warming trends in the study area. However warming and cooling trends vary from decade to decade, with steady and rapid warming trends after the 1980s and complicated spatial patterns. The distribution of SST variation is intricate and more blurred in the areas far away from the Kuroshio system. Both historical and satellite data sets show significant warming trends after 1985. The warming trends are larger and spread to wider areas in winter than in summer, which means decrease in the seasonal cycle of SST probably linked with recently observed increase of the tropical zooplankton species in the region. Spatial structures of the SST trends are roughly consistent with the circulation pattern especially in winter when the meridional SST gradients are larger, suggesting that a horizontal advection may play an important role in the long-term SST variability in winter.
文摘A stratus-sea fog event that occurred over the Yellow and East China Seas on 3 June 2011 is investigated using observations and a numerical model, with a focus on the effects of background circulation and Sea Surface Temperature Front (SSTF) on the transition of stratus into sea fog. Southerly winds of a synoptic high-pressure circulation transport water vapor to the Yellow Sea, creating conditions favorable for sea fog/stratus formation. The subsidence from the high-pressure contributes to the temperature inversion at the top of the stratus. The SSTF forces a secondary circulation within the ABL (Atmospheric Boundary Layer), the sinking branch of which on the cold flank of SSTF helps lower the stratus layer fiLrther to reach the sea surface. The cooling effect over the cold sea surface counteracts the adiabatic warming induced by subsidence. The secondary circulation becomes weak and the fog patches are shrtmk heavily with the smoothed SSTE A conceptual model is proposed for the transition of stratus into sea fog over the Yellow and East China Seas. Finally, the analyses suggest that sea fog frequency will probably decrease due to the weakened SSTF and the reduced subsidence of secondary circulation under global wanning.
基金supported by the National Basic Research Program of China(973 Program 2010CB428901)the National Natural Science Foundation of China(Grant Nos.41221004,41276068)the ‘111’ Project
文摘As an important marginal sea under the influences of both the Changjiang River and the Kuroshio, the East China Sea (ECS) environment is sensitive to both continental and oceanic forcing. Paleoenvironmental records are essential for understanding the long-term environmental evolution of the ECS and adjacent areas. However, paleo-temperature records from the ECS shelf are currently very limited. In this study, the U^K_37 and TEX86 paleothermometers were used to reconstruct surface and subsurface temperature changes of the mud area southwest of the Cheju Island (Site F10B) in the ECS during the Holocene. The results indicate that temperature changes of F 10B during the early Holocene (11.6-6.2 kyr) are associated with global climate change. During the period of 6.2-2.5 kyr, the similar variability trends of smoothing average of AT (the difference between surface and subsurface temperature) of Site F10B and the strength of the Kuroshio suggest that the Kuroshio influence on the site started around 6.2kyr when the Kuroshio entered the Yellow Sea and continued to 2.5 kyr. During the late Holocene (2.5-1.45 kyr), apparent decreases of U^K_37 sea surface temperature (SST) and AT imply that the direct influence of the Kuroshio was reduced while cold eddy induced by the Kuroshio gradually controlled hydrological conditions of this region around 2.5 kyr.
基金supported by the National Basic Research Program of China (973 Program 2010CB428901)the Natural Science Foundation of China (Grant Nos. 41221004 and 41020164005)
文摘Although the mid-late Holocene cold and dry event about 4000years ago (the 4ka event) has been observed almost globally, it was most prominent in terrestrial climate proxies from the lower latitudes. Here we evaluate the oceanic response to this event in terms of a Holocene sea surface temperature (SST) record reconstructed using the U^7 index for Core B3 on the continen- tal shelf of the East China Sea. The record reveals a large temperature drop of about 5~C from the mid-Holocene (24.7~C at 5.6ka) to the 4ka event (19.2~C at 3.8ka). This mid-late Holocene cooling period in Core B3 correlated with (i) decreases in the East Asia summer monsoon intensity and (ii) the transition period with increased E1 Nifio/Southern Oscillation activities in the Equatorial Pa- cific. Our SST record provides oceanic evidence for a more global nature of the mid-late Holocene climate change, which was most likely caused by a southward migration of the Intertropical Converge Zone in response to the decreasing summer solar insolation in the Northern Hemisphere. However, the large SST drop around Core B3 indicates that the mid-late Holocene cooling was regionally amplified by the initiation/strengthening of eddy circulation/cold front which caused upwelling and resulted in additional SST de- crease. Upwelling during the mid-late Holocene also enhanced with surface productivity in the East China Sea as reflected by higher alkenone content around Core B3.
基金supported by the key project of the National Natural Science Foundation of China under contract Nos 40730842 and 40706016the National Key Basic Research Program of China under contract No2006CB403605China"908" Project under contract No908-02-01-03
文摘Three warm currents, the Kuroshio, its shelf intrusion branch in the northeast of Taiwan and the Taiwan Warm Current (hereafter TWC), dominate the circulation pattern in the East China Sea (hereafter ECS). Their origination, routes and variation in winter and summer are studied. Their relationship with four major high and low temperature centers is analyzed. Differing from the previous opinion, we suggest that the four major centers are generated to a great extent by the interaction of the currents in the ECS. In summer, a cold water belt in the northeast of Taiwan is preserved from winter between the Kuroshio and the TWC. The shelf intrusion branch of the Kuroshio separates the water belt, and two low temperature centers generate in the northeast of Taiwan. In the southern ECS, the TWC transports more heat flux northward to form a warm pool. But it is separated in the lower layer by the cold water driven by the intrusion branch of the Kuroshio. So the TWC and the intrusion branch of the Kuroshio play a dominating role to generate the high temperature center. The interaction among the eastward TWC, the northward Tsushima Warm Current (hereafter TSWC) and the southward Su Bei Coastal Flow (hereafter SBCF) generates the low temperature center in the northern ECS. In winter, the strengthening of the shelf intrusion branch of the Kuroshio obscures the two low temperature centers in the northeast of Taiwan. For the weakening of the TWC, the high temperature center in the southern ECS vanishes, and the low temperature center in the northern ECS shifts to south.
基金The Major Research Plan of the National Natural Science Foundation of China under contract No.90511005"908" Project of China un-der contract No.908 -02-01-03
文摘Ecological adaptation and ecological groups of pelagic ostracods were examined in the East China Sea (23°30′-33°00′N, 118°30′ -128°00′E), in relation to temperature and salinity. The data were collected in four surveys conducted from 1997 to 2000. The density, yield density, or negative exponent models were used to determine the optimal temperature and salinity of water for the thriving growth of pelagic ostracods. Thereafter, ecological groups and potential distribution patterns of pelagic ostracods were determined based on the predicted parameters such as optimal temperature and salinity, consulting the geographic distribution. The analytical results indicate that, among the numerical dominant pelagic ostracods in the East China Sea (ECS), Euconchoecia aculeata, E. elongata, E. chierchiae, E. maimai, and Cypridina dentata, etc. are offshore subtropical water species. These species are widely distributed in the area, and they can be brought by the warm current to north offshore during spring and winter. The predicated optimal temperature (OT) and optimal salinity (OS) for Paraconchoecia decipiens, P. echinata, P. spini- fera, P. oblonga, Conchoecia magna and Porroeciaporrecta are all greater than 25℃ and 34 separately. These species are mainly distributed in the waters of the Kuroshio, the Taiwan Warm Current, and the Taiwan Strait, and therefore are designated as ocean- ic tropical water species. On the other hand, Pseudoconchoecia concerttrica is considered as offshore subtropical water species based on its geographical distribution although its OT is 19℃. The other species, though their OSs are approximately 34 and with OTs ranging from 20° to 25℃, are considered as offshore subtropical water species because they were found to be widely distributed from the South China Sea to the East China Sea.
基金Supported by the National Basic Research Program of China (No. 2006CB403601)the Knowledge Innovation Program of the Chinese Academy of Sciences (No.KZCX2-YW-Q11-02)
文摘Global warming has become a notable trend especially since an abrupt climate change in 1976. Response of the East China Sea (ECS) to the global warming trend, however, is not well understood because of sparse long-term observation. In this paper, hydrographic observation data of 1957-1996 are collected and reviewed to study climatological variability in northern ECS. Significant warming trends are found in both summer and winter. In summer, the average SST is about 0.46℃ higher during the period of 1977-1996 than that of 1957-1976, and the Taiwan Warm Current Water (TWCW) was strengthened. In winter, despite of the cooling effect in the coastal areas adjacent to the Changjiang (Yangtze) River Estuary (CRE), the average SST increase was about 0.53℃ during the same period. The causes of this SST warming up in summer are different from in winter. The warming trend and intensification of the TWCW in summer were primarily influenced by the strengthening of the Kuroshio transport, while the warming in winter was mainly induced by the variability of the climate system.
基金Supported by the National Marine Important Charity Special Foundation of China(No.201305019)the National Natural Science Foundation of China(No.41340049)+4 种基金the Natural Foundation of Guangdong(No.2014A030313603)the Science and Technology Planning Project of Guangdong(No.2013B030200002)the Zhejiang’s Post-Doctoral Funding(No.BSH1301015)the Novel Project for Developing University Sponsored by GDOU(No.GDOU2014050226)the Second Institute of Oceanography,State Oceanic Administration Post-Doctoral Starting Fund(No.JG1319)
文摘This study investigated the ef fects of two typhoons(Nari and Wipha) on sea surface temperature(SST) and chlorophyll- a(Chl- a) concentration. Typhoons Nari and Wipha passed through the Yellow Sea on September 13, 2007 and the East China Sea(ECS) on September 16, 2007, respectively. The SST and Chl- a data were obtained from the Aqua/Terra MODIS and NOAA18, respectively, and the temperature and salinity in the southeast of the study area were observed in situ from Argo. The average SST within the study area dropped from 26.33°C on September 10 to a minimum of 22.79°C on September 16. Without the usual phenomenon of ‘right bias', the most striking response of SST was in the middle of the typhoons' tracks, near to coastal waters. Strong cooling of the upper layers of the water column was probably due to increased vertical mixing, discharge from the Changjiang River estuary, and heavy rainfall. During the typhoons, average Chl-a increased by 11.54% within the study area and by 21.69% in the off shore area near to the southeast ECS. From September 1 to 13, average Chl-a was only 0.10 mg/m^3 in the of fshore waters but it reached a peak of >0.17 mg/m^3 on September 18. This large increase in Chl-a concentration in of fshore waters might have been triggered by strong vertical mixing, upwelling induced by strong typhoons, and sedimentation and nutrient infl ux following heavy rainfall.
基金This work was financially supported by the National Natural Science Foundation of China under contract No.40103006the National Key Basic Research Special Funds of China under contract No.G200078500.
文摘Sea surface temperatures (SSTs) in the southwestern South China Sea have been reconstructed for the past 160 ka using the U37^k paleothermometer from the core MD01 - 2392. The temperature differences between glacial times ( MISs 6 and 2) and interglacial times ( MISs 5.5 and 1) are 2.2 ~ 2.5 ℃. Younger Dryas event during the last deglaciation was documented in both the planktonic foraminiferal δ^18 and SST records. After MIS 5.5, SSTs displayed a progressive cooling from 28.6 to 24.5 ℃ culminating at the LGM. During this gradual cooling period, warm events such as MISs 5.3, 5.1 and 3 were also clearly documented. By comparison of SST between the study core and Core 17954, a pattern of low or no meridional SST gradients during the interglacial periods and high meridional SST gradients during the glacial periods was exhibited. This pattern indicates the much stronger East Asian winter monsoon at the glacial than at the interglacial periods. Spectral analysis gives two prominent cycles:41 and 23 ka, with the former more pronounced, suggesting that SSTs in the southern SCS varied in concert with high-latitude processes through the connection of East Asian winter monsoon.
基金The National Basic Research Program(973 Program)of China through Grant under contract No.2009CB421203the Fundamental Research Funds for the Central Universities of Xiamen University of China under contract Nos 2011121007 and 2012121058+3 种基金the State Key Laboratory of Tropical Oceanography,South China Sea Institute of Oceanology,Chinese Academy of Sciences of China under contract No.LTO1103the Hong Kong Research Grant Council General Research Fund under contract Nos 661809,661610 and 661911the National Natural Science Foundation of China under contract Nos 40906082,41176112 and 41330961the Public Science and Technology Research Funds Projects of Ocean under contract No.201005015-5
文摘The East China Sea is a productive marginal sea with a wide continental shelf and plays an important role in absorbing atmospheric carbon dioxide and transferring terrigenous organic matter to the open ocean. To investigate the roles of heterotrophic bacteria in the biogeochemical dynamics in the East China Sea, bacterial biomasses (BB) and productions (BP) were measured in four cruises. The spatial distributions of the BB and the BP were highly season-dependent. Affected by the Changjiang River discharge, the BB and the BP were high in shelf waters (bottom depth not deeper than 50 m) and generally decreased offshore in August 2009. In December 2009 to lanuary 2010, and November to December 2010, the BB and the BP were high in waters with medium bottom depth. The onshore-offshore decreasing trends of the BB and the BP also existed in May-June 2011, when the BB was significantly higher than in other cruises in shelf break waters (bottom depth deeper than 50 m but not deeper than 200 m). The results of generalized additive models (GAM) suggest that the BB increased with the temperature at a range of 8-20~C, increased with the chlorophyll concentration at a range of 0.02-3.00 mg/m3 and then declining, and decreased with the salinity from 28 to 35. The relationship between the temperature and the log-transformed bacterial specific growth rate (SGR) was linear. The estimated temperature coefficient (Q10) of the SGR was similar with that of the phytoplankton growth. The SGR also increased with the chlorophyll concentration. The ratio of the bacterial to phytoplankton production ranged from less than 0.01 to 0.40, being significantly higher in November December 2010 than in May-June 2011. Calculated from the bacterial production and growth efficiency, the bacterial respiration consumed, on average, 59%, 72% and 23% of the primary production in August 2009, November-December 2010, and May-/une 2011, respectively.
基金the National Key R&D Program of China(No.2018YFD0900906)the National Natural Science Foundation of China(No.41906073)+1 种基金the Natural Science Foundation of Shanghai(No.19ZR1423000)the Shanghai Universities First-Class Disciplines Project(Fisheries A).
文摘Spatio-temporal distribution of chub mackerel Scomber japonicus is strongly susceptible to climate variability.In this study,a weighting-based habitat suitability index(HSI)model was established to assess the impacts of Pacific Decadal Oscillation(PDO)on habitat range and distribution of S.japonicus in the East China Sea(ECS)using vertical water temperature at depths of 2.5 m,25 m and 50 m.Results showed that the optimal HSI model selected from ten weighting scenarios can yield reliable predictions.Correlation analysis revealed a significant negative relationship between the PDO index and water temperature anomaly at different depths.The water temperatures at three different layers on the fishing ground of S.japonicus tended to be low in the warm PDO phase and high in the cold PDO phase,respectively.The range of suitable habitats and its spatial distribution exhibited large differences between the warm and cold PDO regimes.During a warm PDO phase,vertical water temperature became cool,and the monthly preferred water temperature at each depth for S.japonicus shifted southeastward.Consequently,habitat quality dramatically decreased,and suitable habitat ranges also reduced and moved southeastward.Conversely,in a cool PDO phase,with the warmer vertical water temperature and northwestward shift of the preferred water temperature,the suitable habitats enlarged and migrated in the same direction.Our findings indicate that the PDO produced significant impacts on habitat range and distribution of S.japonicus in the East China Sea.
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences (Project No. KZCX2-YW-221)the State Key Basic Research and Development Plan of China (Project No2007CB815903)the National Natural Science Foundation of China (Project No. 40506015)
文摘To reconstruct the productivity changes for the last 10 500 a in the northeastern East China Sea (ECS), biogenic compounds (such as carbonate, organic carbon and opal), marine micropaleontological fossils (planktonic foraminifera, benthic foraminifera, radiolarian and silicoflagellate) and the compositional characters of benthic foraminifera fauna analyses were carried out on a sediment core DOC082 obtained from the western slope of Okinawa Trough (29°13.93′N, 128°08.53′E; 1 128 m water depth). The long-term changes of biogenic and micropaleontological proxies display some similarities through the last 10 500 a, which show three different phases: lower values are recorded during the early and middle ttolocene (before about 4 000 a BP), followed by an abrupt and remarkable increase at about 4 000 a BP, the late Holocene (after about 3 000 a BP) is characterized by continuously high values. The multi-proxy data of paleoproductivity and percents of benthic foraminifera genera (Uvigerina and Bulimina) show that during the early and middle Holocene (10 500-4 000 a BP) productivity was relatively low with a sudden and distinct increase at about 4 000 a BP, and the late Holocene (3 400-0 a BP) is marked by significantly higher productivity. Also, the radiolarian-based sea surface temperature (SST) records reveal a distinct decline in SST in the late Holocene after 3 200 a BP, very different from the early and middle Holocene. For the last 3 000 a, the enhanced biological productivity and distinctly lower SST indicate a major change of oceanographic conditions in the northeastern ECS. These marine environmental anomalies are consistent with other paleoclimatic records for the late Holocene in the Chinese continent and its surrounding regions. After analyzing the mechanisms of modern productivity and SST changes in the northeastern ECS, and based on the climatic anomalies in the Chinese continent and variations in the Kuroshio Current during modern El Nino periods, we suggest that the anomalous environmental conditions in the northeastern ECS may imply intensified El Nino activity during the late Holocene.
基金The National Key Research and Development Program of China under contract No.2016YFC1402100the National Natural Science Foundation of China under contract No.41876137+2 种基金the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)under contract No.2018SDKJ0505-4the NSFC-Shandong Joint Funded Project under contract No.U1606404the UNDP/GEF YSLME PhaseⅡProject。
文摘The macroalgal blooms of floating brown algae Sargassum horneri are increasing in the Yellow Sea and East China Sea during the past few years.However,the annual pattern of Sargassum bloom is not well characterized.To study the developing pattern and explore the impacts from hydro-meteorologic environment,high resolution satellite imageries were used to monitor the distribution,coverage and drifting of the pelagic Sargassum rafts in the Yellow Sea and East China Sea from September 2019 to August 2020.Sargassum blooms were detected from October 2019 to June 2020 and presented two successive drifting paths that both initiated from around 37°N.The first path spanned smaller spatial scale and shorter period,starting with a bloom of 3 km^(2) distribution area near the eastern tip of Shandong Peninsula in late October 2019 and drifted southwards,hit the Pyropia aquaculture area in early January 2020,then vanished in the northwest of East China Sea(ca.32°N)around end of January.The second path began with a large distribution area of 23000 km^(2) east of 123°E in late January 2020,firstly moved southwards in the central Yellow Sea and northern East China Sea(north of 29°N)till late April,then turned northwards with monsoon wind and vanished from late June to August.The mean sea surface temperature of 8℃ to 20℃ in the Sargassum bloom areas corresponded to in situ observed temperature range for vegetative growth and floating of S.horneri.There was no observed floating Sargassum blooms during July through September in the Yellow Sea and East China Sea.The results indicate that floating S.horneri is unable to complete life cycle in the Yellow Sea and East China Sea,and provide insights to the future management of Sargassum blooms.Further studies are needed to validate the pattern and source of annual Sargassum bloom in the Yellow Sea and East China Sea.
基金supported by the National Natural Science Foundation of China (Nos. 41806073, 41530963)the Natural Science Foundation of Shandong Province (No. ZR 2017BD014)+1 种基金the Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minerals, Shandong University of Science and Technology (No. DMSM 2017042)the Fundamental Research Funds for the Central Universities (Nos. 201964016, 201851023)
文摘Many evidences for gas hydrate bearing sediments had been found in the continental slope of the East China Sea,such as bottom simulating reflections(BSRs),undersea gas springs,pyrite associated with methane leakage,mud diapirs/mud volcanos,bottom-water methane anomalies and so on.In this study,six key stratigraphic interfaces including T_0(seafloor),T_1(LGM,23 kyr B.P.),T_2(2.58 Myr),T_3(5.33 Myr),T_4(11.02 Myr)and T_5(16.12 Myr)were identified,and then five third-order sequences of SQIII1 to SQIII5 were divided.However,T5 in southern continental slope is not found,which shows that the middle-northern Okinawa Trough had begun to rift in the early Miocene,earlier than the southern segment.Four system tracts including lowstand systems tract(LST),transgressive systems tract(TST),highstand systems tract(HST)and falling stage systems tract(FSST)are further divided.The marine erosion interface of 11.02 Myr and regressive unconformity interface of 23 kyr B.P.indicate two large-scale sea level drop events in the research area.Seven typical seismic facies identified in the continental slope are continental shelf-edge deltas,littoral fluvial-delta plains,incised channels or submarine canyons,slope fans,submarine fans or coastal sandbars,littoral-neritic finegrained sediments,mud volcanos and some other geological bodies respectively.The minimum water depth for hydrate occurrence in the Okinawa Trough is 630 m,and the thickness of gas hydrate stability zone in continental slope is between 0 and 590 m.The calculated bottom boundary of hydrate stability zone is slightly deeper than BSRs on the seismic sections.The re-depositional turbidite sand bodies,such as canyon channels,slope fans and submarine fans developed in Quaternary strata,are the predominant hydrate reservoirs.According to developing process,the dynamic accumulation of hydrate systems can be divided into three evolutionary stages including canyon erosion and hydrate stability zone migration stage,sediments destabilizing and methane leakage stage,and channel filling and hydrate re-occurrence stage.
基金Supported by the National High Technology R&D Program of China (2004AA616060)
文摘Bottom temperature variation (BTV) is a serious problem in determining the thermal gra- dient and heat flow of the sediments in shallow seas. The water depth of the East China Sea shelf is mostly below 150m, and the heat flow measurement is strongly affected by BTV. Following a statistical algorithm, we rechecked the temperature and thermal conductivity data of the cruises KX90-1 and KX91-1, carried out by a cooperation program of China and Japan, and calculate the heat flow in a site without long-term temperature record. The calculated heat flow in the site was 58.6±3.6 mW/m2, being just within the range of the drill heat flow value of East China Sea shelf. The inversed amplitude spectrum of BTV has a peak in frequency of 1/10 per year, and the annual component is also an important part. Comparison with two lakes of Lake Greifensee and Lac Leman (i.e. Lake Geneva), which are in different water depth, revealed that with increasing water depth, the peak of amplitude spectrum moved towards low frequency components. The heat flow values calculated in this paper and from petroleum bore hole in East China Sea shelf are much more close to that in southeast China than in Okinawa Trough.
基金Supported by the Zhejiang Provincial Natural Science Foundation(No.LY17D060003)the Shandong Provincial Natural Science Foundation(No.ZR2015DQ006)+1 种基金the National Narutal Science Foundation of China(Nos.41306035,41206006)the National Key R&D Plan of China(No.2016YFC1401404)
文摘Process of sea surface diurnal warming has drawn a lot of attention in recent years, but that occurs in shelf seas was rarely addressed. In the present work, surface diurnal warming strength in the East China Sea was calculated by the sea surface temperature(SST) data derived from the MODIS sensors carried by the satellites Aqua and Terra. Due to transit time difference, both the number of valid data and the surface diurnal warming strength computed by the MODIS-Aqua data are relatively larger than Terra. Therefore, the 10-year MODIS-Aqua data from 2005 to 2014 were used to analyze the monthly variability of the surface diurnal warming. Generally, the surface diurnal warming in the East China sea is stronger in summer and autumn but weaker in winter and spring, while it shows different peaks in different regions. Large events with ΔT≥5 K have also been discussed. They were found mainly in coastal area, especially near the Changjiang(Yangtze) River estuary. And there exists a high-incidence period from April to July. Furthermore, the relationship between surface diurnal warming and wind speed was discussed. Larger diurnal warming mainly lies in areas with low wind speed. And its possibility decreases with the increase of wind speed. Events with ΔT ≥2.5 K rarely occur when wind speed is over 12 m/s. Study on surface diurnal warming in the East China Sea may help to understand the daily scale air-sea interaction in the shelf seas. A potential application might be in the marine weather forecasts by numerical models. Its impact on the coastal eco-system and the activities of marine organisms can also be pursued.
基金The Ocean Public Welfare Industry Research Special of China under contract No.201105009the Fundamental Research Funds for Central Universities of China under contract No.2013B20714+1 种基金the National Natural Science Foundation of China under contract Nos 41222038 and 41206023the National Basic Research Program of China(973 Program)under contract No.2011CB403606
文摘The prediction of sea surface temperature (SST) is an essential task for an operational ocean circulation model. A sea surface heat flux, an initial temperature field, and boundary conditions directly affect the accuracy of a SST simulation. Here two quick and convenient data assimilation methods are employed to improve the SST simulation in the domain of the Bohai Sea, the Yellow Sea and the East China Sea (BYECS). One is based on a surface net heat flux correction, named as Qcorrection (QC), which nudges the flux correction to the model equation; the other is ensemble optimal interpolation (EnOI), which optimizes the model initial field. Based on such two methods, the SST data obtained from the operational SST and sea ice analysis (OSTIA) system are assimilated into an operational circulation model for the coastal seas of China. The results of the simulated SST based on four experiments, in 2011, have been analyzed. By comparing with the OSTIA SST, the domain averaged root mean square error (RMSE) of the four experiments is 1.74, 1.16, 1.30 and 0.91~C, respectively; the improvements of assimilation experiments Exps 2, 3 and 4 are about 33.3%, 25.3%, and 47.7%, respectively. Although both two methods are effective in assimilating the SST, the EnOI shows more advantages than the QC, and the best result is achieved when the two methods are combined. Comparing with the observational data from coastal buoy stations, show that assimilating the high-resolution satellite SST products can effectively improve the SST prediction skill in coastal regions.
文摘The El Ni?o Southern Oscillation(ENSO) is a natural phenomenon that relates to the fluctuation of temperatures over the Pacific Ocean. The ENSO significantly affects the ocean dynamics including upwelling event and coastal front. A recent study discovered the seasonal upwelling in the east coast of Peninsular Malaysia(ECPM), which is significant to the fishery industry in this region. Thus, it is vital to have a better understanding of the influence of ENSO towards the coastal upwelling and thermal front in the ECPM. The sea surface temperature(SST) data achieved from moderate resolution imaging spectroradiometer(MODIS) aboard Aqua satellite are used in this study to observe the SST changes from 2005 to 2015. However, due to cloud cover issue, a reconstruction of data set is applied to MODIS data using the data interpolating empirical orthogonal function(DINEOF) to fill in the missing gap in the dataset based on spatial and temporal available data. Besides, a wavelet transformation analysis is done to determine the temperature fluctuation throughout the time series. The DINEOF results show the coastal upwelling in the ECPM develops in July and reaches its peak in August with a clear cold water patch off the coast. There is also a significant change of SST distribution during the El Ni?o years which weaken the coastal upwelling event along the ECPM. The wavelet transformation analysis shows the highest temperature fluctuation is in 2009–2010 which indicates the strongest El Ni?o throughout the time period. It is suggested that the El Ni?o is favourable for the stratification in water column thus it is weakening the upwelling and thermal frontal zone formation in ECPM waters.
基金The Higher Institutional Centre of Excellent Universiti Malaysia Terengganu under contract No.TJ66928the Malaysia Coastal Observation Network Project under the Institute of Oceanography and Environment,Universiti Malaysia Terengganu of Malaysia
文摘The effects of tidal currents(i.e., barotropic and internal tides) are important in the biogeochemistry of a coastal shelf sea. The high-frequency of currents and near-bottom temperatures collected in three consecutive southwest monsoon seasons(May, June, July and August of 2013 until 2015) is presented to reveal the role of the tidal currents to the temperature variability in the coastal shelf sea of the east coast of Peninsular Malaysia(ECPM),south of the South China Sea(SCS). The results of a spectral density and harmonic analysis demonstrate that the near-bottom temperature variability and the tidal currents are influenced by diurnal(O_1 and K_1) and semidiurnal(M_2) tidal currents. The spectral density of residual currents(detided data) at 5, 10 and 16 m depth also shows significant peaks at the diurnal tidal frequency(K_1) and small peaks at the semidiurnal tidal frequency(M_2)indicating the existence of internal tides. The result of the horizontal kinetic energy(HKE) shows a strong intermittent energy of internal tides in the ECPM with the strongest energy is found at 16 m depth during a sporadic cooling event in June and July. A high horizontal cross-shore heat flux(16 m) also indicates strong intrusions of cooler water into the ECPM in June and July. During the short duration of cold pulse water observed in June and July, a cross-wavelet analysis also reveals the strong relationship between the near-bottom temperatures and the internal tidal currents at the diurnal tidal frequency. The intrusion of this cooler water is probably related to the monsoon-induced upwelling in June. It is loosely interpreted that the interaction between the strong barotropic tides and the steep slope in the central basin of the SCS under the stratified condition in southwest monsoon has generated these internal tides. The dissipation of internal tides from the slope area probably has driven the cold-upwelled water into the ECPM coastal shelf sea when the upwelling intensity is the highest in June and July.
文摘By using the monthly mean grid data of NCAR/NCEP reanalysis at 500 hPa geopotential height from 1958 to 1997,the relationship between the Northeast cold vortex and the western Pacific subtropical high was analyzed.The influence of the sea surface temperature(SST) and outgoing longwave radiation(OLR) on the Northeast cold vortex and subtropical high was studied.As was shown in the results,in summer,there was a positive correlation between the Northeast cold vortex and the subtropical high,and an anti-phase relationship existed between the threshold characteristic line of GMS-SST=28 ℃ and the height index of the Northeast cold vortex and the subtropical high.With the gradual northward moving of the threshold characteristic line,the subtropical high was weakening,and the Northeast cold vortex was increasing and strengthening.