Viscoelasticity and temperature can significantly affect the performance of a dielectric elastomer. In the current study, we use a thermodynamic model to describe the effect of temperature and viscoelasticity on the e...Viscoelasticity and temperature can significantly affect the performance of a dielectric elastomer. In the current study, we use a thermodynamic model to describe the effect of temperature and viscoelasticity on the electromechanical response undergoing a cyclic electric load by taking into account of the temperature dependent dielectric constant. Because of the significant viscoelasticity in the dielectric elastomer, the deformation and the nominal electric displacement can not keep in phase with the electric field at low frequencies. The results show that the magnitude of the cyclic electromechanical actuation strain increases with the decrease of the temperature and decreases with the increasing frequency, and viscoelasticity can result in significant hysteresis for dielectric elastomers under a relative low temperature and a low frequency.展开更多
基金supported by the Doctoral Fund of Ministry of Education of China(20120201110030)
文摘Viscoelasticity and temperature can significantly affect the performance of a dielectric elastomer. In the current study, we use a thermodynamic model to describe the effect of temperature and viscoelasticity on the electromechanical response undergoing a cyclic electric load by taking into account of the temperature dependent dielectric constant. Because of the significant viscoelasticity in the dielectric elastomer, the deformation and the nominal electric displacement can not keep in phase with the electric field at low frequencies. The results show that the magnitude of the cyclic electromechanical actuation strain increases with the decrease of the temperature and decreases with the increasing frequency, and viscoelasticity can result in significant hysteresis for dielectric elastomers under a relative low temperature and a low frequency.