This paper presents a fiber optic temperature measuring system used for measuring the temperature in many occasions. The system is of reflective type and composed of thermostatic bimetal plate, lever piston framewo...This paper presents a fiber optic temperature measuring system used for measuring the temperature in many occasions. The system is of reflective type and composed of thermostatic bimetal plate, lever piston framework, optical grating and optical fiber probes. When the temperature changes, the thermostatic bimetal plate deforms. Through lever piston framework, the optical grating produces displacement in the upright direction. Thus the change of the temperature is transformed into the upright displacement of the optical grating. Optical fiber probes are used for detecting the number of streak lines of the optical grating′s displacement depending on the change of temperature. The detected signal can be transmitted to the control center through optical fiber cable up to distance of 1 km. The measurable range of this system reaches 100℃ with accuracy of ±0.2℃.展开更多
A single-mode polymer optical fiber (POF) with highly photosensitive core doped with benzil dimethyl ketal (BDK) is fabricated and used for writing Bragg grating through the two-beam interference method. The Bragg...A single-mode polymer optical fiber (POF) with highly photosensitive core doped with benzil dimethyl ketal (BDK) is fabricated and used for writing Bragg grating through the two-beam interference method. The Bragg wavelength of the grating is about 1570 nm, while the full-width at half-maximum (FWHM) of the reflection peak is 0.3 nm. The temperature response of POF Bragg grating is theoretically analyzed and experimentally measured in contrast to silica optical fiber Bragg grating (FBG). The result shows that the temperature character of POF Bragg grating is negative, which is opposite to the silica optical FBG. The absolute value of the temperature response of POF Bragg grating is one order of magnitude higher than that of the silica optical FBG, making POF Bragg grating appear to be very attractive for constructing temperature sensors with high resolution.展开更多
In this paper, the spectrum shift properties of the center reflection wavelength detected to be based on the FBG sensor with ambient temperature change. The basic theoretical methods and numerical simulation for the s...In this paper, the spectrum shift properties of the center reflection wavelength detected to be based on the FBG sensor with ambient temperature change. The basic theoretical methods and numerical simulation for the spectral properties of uniform Bragg grating is analyzed by using coupling mode theory which is optical properties of high sensitivity fiber Bragg grating on temperature sensor in accordance with experiment.展开更多
A new radiation-hard germano-silicate glass optical fiber with a pure silica glass buffer and a boron-doped silica glass inner cladding was fabricated for temperature sensor application based on the fiber Bragg gratin...A new radiation-hard germano-silicate glass optical fiber with a pure silica glass buffer and a boron-doped silica glass inner cladding was fabricated for temperature sensor application based on the fiber Bragg grating(FBG)underg-ray irradiation environment.The temperature dependences of optical attenuation at 1550.5 nm and Bragg reflection wavelength shift from 18℃to 40℃before theγ-ray irradiation were about 4.57´10^(-4)dB/℃and 5.48 pm/℃,respectively.The radiation-induced optical attenuation at 1550.5 nm and the radiation-induced Bragg reflection wavelength shift under theγ-ray irradiation with the total dose of 22.85 kGy at 35℃were about 0.03 dB/m and 0.12 nm,respectively,with theγ-ray irradiation sensitivity of 5.25´10^(-3)pm/Gy.The temperature and theγ-ray irradiation dependence of optical attenuation at 1550.5 nm in the FBG written fiber with boron-doped silica glass inner cladding were about 6 times and 4 times lower than that in the FBG written fiber without boron-doped silica glass inner cladding under a temperature change from 18℃to 40℃and theγ-ray irradiation with the total dose of 22.85 kGy at 35℃,respectively.Furthermore,the effect of temperature increase on the Bragg reflection wavelength of the FBG written fiber with boron-doped silica inner cladding was much larger about 1000 times than that of theγ-ray irradiation.However,no influence on the reflection power of the Bragg wavelengths and the full width at half maximum(FWHM)bandwidth under temperature and theγ-ray irradiation change was found.Also,after theγ-ray irradiation with the dose of 22.85 kGy,no significant change in the refractive index was found but the residual stresses developed in the fiber were slightly relaxed or retained.展开更多
In some applications in structural health monitoring (SHM), the acoustic emission (AE) detection technology is used in the high temperature environment. In this paper, a high-temperature-resistant AE sensing syste...In some applications in structural health monitoring (SHM), the acoustic emission (AE) detection technology is used in the high temperature environment. In this paper, a high-temperature-resistant AE sensing system is developed based on the fiber Bragg grating (FBG) sensor. A novel high temperature FBG AE sensor is designed With a high signal-to-noise ratio (SNR) compared with the traditional FBG AE sensor. The output responses of the designed sensors with different sensing fiber lengths also are investigated both theoretically and experimentally. Excellent AE detection results are obtained using the proposed FBG AE sensing system over a temperature range from 25℃ to 200℃. The experimental results indicate that this FBG AE sensing system can well meet the application requirement in AE detecting areas at high temperature.展开更多
A method of measuring vibration by using fiber Bragg grating (FBG) and demodulating the spectrum by blazed grating is introduced. The sensor system is made of a simple supported beam with a FBG adhered to its upper su...A method of measuring vibration by using fiber Bragg grating (FBG) and demodulating the spectrum by blazed grating is introduced. The sensor system is made of a simple supported beam with a FBG adhered to its upper surface. A blazed grating is used to demodulate the changing spectrum that is got from the sensor system, and a line charge-coupled device (CCD) is used to accept the diffraction spectrum. Through analyzing the number of the CCD's pixels, we can get the amplitude of vibration and the change of the temperature. The experimental results show that the vibration amplitude of the exciter matches the detected signal under the stable frequency. The temperature shift and vibration signal are also successfully separated.展开更多
文摘This paper presents a fiber optic temperature measuring system used for measuring the temperature in many occasions. The system is of reflective type and composed of thermostatic bimetal plate, lever piston framework, optical grating and optical fiber probes. When the temperature changes, the thermostatic bimetal plate deforms. Through lever piston framework, the optical grating produces displacement in the upright direction. Thus the change of the temperature is transformed into the upright displacement of the optical grating. Optical fiber probes are used for detecting the number of streak lines of the optical grating′s displacement depending on the change of temperature. The detected signal can be transmitted to the control center through optical fiber cable up to distance of 1 km. The measurable range of this system reaches 100℃ with accuracy of ±0.2℃.
基金supported by the National Natural Science Foundation of China (Nos. 50703038, 50773075,21074123, and 50973101)the Chinese Academy of Sciences (Nos. kjcx3.syw.H02 and kjcx2-yw-m11)+1 种基金China Postdoctoral Science Foundation (No. 20100470038)the "Hundred Talents Program" of the Chinese Academy of Sciences
文摘A single-mode polymer optical fiber (POF) with highly photosensitive core doped with benzil dimethyl ketal (BDK) is fabricated and used for writing Bragg grating through the two-beam interference method. The Bragg wavelength of the grating is about 1570 nm, while the full-width at half-maximum (FWHM) of the reflection peak is 0.3 nm. The temperature response of POF Bragg grating is theoretically analyzed and experimentally measured in contrast to silica optical fiber Bragg grating (FBG). The result shows that the temperature character of POF Bragg grating is negative, which is opposite to the silica optical FBG. The absolute value of the temperature response of POF Bragg grating is one order of magnitude higher than that of the silica optical FBG, making POF Bragg grating appear to be very attractive for constructing temperature sensors with high resolution.
基金Supported by Beijing Educational Committee Foundation (Km200310005022) and (00KG040)
文摘In this paper, the spectrum shift properties of the center reflection wavelength detected to be based on the FBG sensor with ambient temperature change. The basic theoretical methods and numerical simulation for the spectral properties of uniform Bragg grating is analyzed by using coupling mode theory which is optical properties of high sensitivity fiber Bragg grating on temperature sensor in accordance with experiment.
基金This work was partially supported by the Korea Electric Power Corporation Research Institute(Grant No.KEPRI-16-23)the Korea Industrial Complex Corporation Industrial Cluster Competitiveness Enhancement Project(Grant No.RGJ18014),South Korea.
文摘A new radiation-hard germano-silicate glass optical fiber with a pure silica glass buffer and a boron-doped silica glass inner cladding was fabricated for temperature sensor application based on the fiber Bragg grating(FBG)underg-ray irradiation environment.The temperature dependences of optical attenuation at 1550.5 nm and Bragg reflection wavelength shift from 18℃to 40℃before theγ-ray irradiation were about 4.57´10^(-4)dB/℃and 5.48 pm/℃,respectively.The radiation-induced optical attenuation at 1550.5 nm and the radiation-induced Bragg reflection wavelength shift under theγ-ray irradiation with the total dose of 22.85 kGy at 35℃were about 0.03 dB/m and 0.12 nm,respectively,with theγ-ray irradiation sensitivity of 5.25´10^(-3)pm/Gy.The temperature and theγ-ray irradiation dependence of optical attenuation at 1550.5 nm in the FBG written fiber with boron-doped silica glass inner cladding were about 6 times and 4 times lower than that in the FBG written fiber without boron-doped silica glass inner cladding under a temperature change from 18℃to 40℃and theγ-ray irradiation with the total dose of 22.85 kGy at 35℃,respectively.Furthermore,the effect of temperature increase on the Bragg reflection wavelength of the FBG written fiber with boron-doped silica inner cladding was much larger about 1000 times than that of theγ-ray irradiation.However,no influence on the reflection power of the Bragg wavelengths and the full width at half maximum(FWHM)bandwidth under temperature and theγ-ray irradiation change was found.Also,after theγ-ray irradiation with the dose of 22.85 kGy,no significant change in the refractive index was found but the residual stresses developed in the fiber were slightly relaxed or retained.
基金This research is supported by the National Natural Science Foundation of China (Grant Nos. 61403233, 61503218, 61573226, and 61473176), the Excellent Young and Middle-Aged Scientist Award Grant of Shandong Province of China (No. BS2013DX018), and the Natural Science Foundation of Shandong Province for Outstanding Young Talents (No. ZR2015JL021).
文摘In some applications in structural health monitoring (SHM), the acoustic emission (AE) detection technology is used in the high temperature environment. In this paper, a high-temperature-resistant AE sensing system is developed based on the fiber Bragg grating (FBG) sensor. A novel high temperature FBG AE sensor is designed With a high signal-to-noise ratio (SNR) compared with the traditional FBG AE sensor. The output responses of the designed sensors with different sensing fiber lengths also are investigated both theoretically and experimentally. Excellent AE detection results are obtained using the proposed FBG AE sensing system over a temperature range from 25℃ to 200℃. The experimental results indicate that this FBG AE sensing system can well meet the application requirement in AE detecting areas at high temperature.
文摘A method of measuring vibration by using fiber Bragg grating (FBG) and demodulating the spectrum by blazed grating is introduced. The sensor system is made of a simple supported beam with a FBG adhered to its upper surface. A blazed grating is used to demodulate the changing spectrum that is got from the sensor system, and a line charge-coupled device (CCD) is used to accept the diffraction spectrum. Through analyzing the number of the CCD's pixels, we can get the amplitude of vibration and the change of the temperature. The experimental results show that the vibration amplitude of the exciter matches the detected signal under the stable frequency. The temperature shift and vibration signal are also successfully separated.