Brassinosteroids(BRs)play critical roles in a wide range of plant developmental processes.However,it is unknown whether and how BRs mediate the effect of high temperature(HT)stress during anthesis on the pistil activi...Brassinosteroids(BRs)play critical roles in a wide range of plant developmental processes.However,it is unknown whether and how BRs mediate the effect of high temperature(HT)stress during anthesis on the pistil activity of photo-thermosensitive genetic male-sterile(PTSGMS)rice(Oryza sativa L.)lines.This study investigated the question.Three pot-grown PTSGMS rice lines were subjected to HT stress during anthesis.The contents of 24-epibrassinolide(24-EBL)and 28-homobrassinolide(28-HBL),the major forms of BR in rice plants,and levels of reactive oxygen species(ROS)or antioxidants(AOS),hydrogen peroxide(H2O2),1-aminocylopropane-1-carboxylic acid(ACC),ascorbic acid(AsA),and catalase activity in pistils,were determined.HT stress significantly reduced the contents of both 24-EBL and 28-EBL relative to those under normal temperatures,but the reduction varied by PTSGMS line.A line with higher BR contents under HT stress showed lower contents of ACC and H2O2,higher catalase activity and AsA content in pistils,and higher fertilization rate,seed-setting rate,and seed yield when the line was crossed with a restorer line,indicating that higher levels of BRs increase HT stress resistance.Applying 24-EBL,28-HBL or an inhibitor of BR biosynthesis confirmed the roles of BRs in response to HT stress.The results suggest that BRs mediate the effect of HT stress on pistil activity during anthesis and alleviate the harm of HT stress by increasing AOS and suppressing ROS generation.展开更多
Plant temperature (Tp) and its relations to the microclimate of rice colony and irrigation water were studied using a thermo-sensitive genic male sterile (TGMS) rice line, Pei'ai 64S. Significant differences in t...Plant temperature (Tp) and its relations to the microclimate of rice colony and irrigation water were studied using a thermo-sensitive genic male sterile (TGMS) rice line, Pei'ai 64S. Significant differences in the daily change of temperature were detected between Tp and air temperature at the height of 150 cm (TA). From 8:00 to 20:00, Tp was lower than TA, but they were similar during 21:00 to next 7:00. The maximum Tp occurred one hour earlier than the maximum TA, though they both reached the minimum at 6:00. Tp fluctuated less than TA. At the same height, during 6:00-13:00, Tp was higher than air temperature (Ta), and Tp reached the maximum one hour earlier than Ta. During the rest time on sunny day, Tp was close to or even a little lower than Ta. On overcast day, Tp was higher than Ta in the whole day, and both maximized at the same time. In addition, Tp was regulated by solar radiation, cloudage and wind speed in daytime, and by irrigation water at night. The present study indicated that a TA of 29.6℃ was the critical point, at which Tp was increased or decreased by irrigation water. Tp and the difference between water and air temperatures showed a conic relation. Tp fluctuation was also regulated by the absorption or reflection of solar radiation by leaves during daytime and release of heat energy during nighttime. By analysis on correlation and regression simulation, two models of Tp were established.展开更多
The effect of day length and temperature on the pollen fertility of five photoperiod-sensitive genic male-sterile japonica rice lines (PGMSR) and three temperature-sensitive genic malesterile indica rice lines (TGMSR)...The effect of day length and temperature on the pollen fertility of five photoperiod-sensitive genic male-sterile japonica rice lines (PGMSR) and three temperature-sensitive genic malesterile indica rice lines (TGMSR) were investigated in phytotron. The light source used for illumination was xenon lamp, and the light intensity which plant accepted on the leaf surface was 300—350μmol photons ms. The results indicated that pollens of PGMSR 7001S and E47S aborted completely whereas a little part of 31116S pollens appeared normal under long day photoperiod (LD,25℃,15h) (Table 1). High temperature (HT, 30℃, 12h) and lower temperature (LT,展开更多
Eight indica ( Oryza sativa L.) environment-sensitive genic male-sterile (EGMS) lines, 2-2S, K1405S, F131S, 2136S, Pei-Ai 64S, 1290S, GD-IS and N17S, were sequentially seeded with 10-15 d interval at three sites, Wuha...Eight indica ( Oryza sativa L.) environment-sensitive genic male-sterile (EGMS) lines, 2-2S, K1405S, F131S, 2136S, Pei-Ai 64S, 1290S, GD-IS and N17S, were sequentially seeded with 10-15 d interval at three sites, Wuhan in 1997, Guiyang in 1997 and Sanya in 1997 and 1998, China. The results of investigations on self-sterilities showed that all of eight EGMS lines had stable sterile periods of longer than 30 d at Wuhan. They can be used for seed production of two-line hybrid rice, but can not reproduce themselves. Their stable sterile periods were shorter than 30 d at Guiyang, they can reproduce themselves and can not be used for hybrid seed production. In Sanya, their stable sterile periods were longer than 150 d, all of eight lines can be used for seed production in summer and autumn and reproduce themselves in winter. The fertility of all eight lines were sensitive to temperature. The sensitive stages, sensitive duration and critical point of temperatures (CPT) of fertility alteration in various lines were different. The sensitive stages of 2-2S and K1405S were from 18 d to 9 d before heading, the sensitive durations were 7-10 d and the CPTs were 23.7-24.5 degreesC. The sensitive stage, sensitive duration and CPT of F131S were from 17 to 5 d before heading, 13 d and 24.3-24.7 degreesC, respectively. The sensitive stage, sensitive duration and CPT of 2136S were from 18 to 12 d before heading, 7 d and 24.6-25.1 degreesC:, respectively. The sensitive stages, sensitive durations of Pei-Ai 64S, 1290S, N17S and GD-1S were from 24 to 13 d before heading and 10-13 d. And their CPTs were 24.6-25.1 degreesC, 25.5-26.2 degreesC, 25.4-26.1 degreesC,, and 24.1-24.7 degreesC, respectively.展开更多
Changxuan 3S, a thermo-sensitive genic male sterile (TGMS) rice line with eui gene, is derived from the TGMS rice line Pei'ai 64S by irradiation with 350 Gy of ^60Co γ-ray. To elucidate the uppermost internode elo...Changxuan 3S, a thermo-sensitive genic male sterile (TGMS) rice line with eui gene, is derived from the TGMS rice line Pei'ai 64S by irradiation with 350 Gy of ^60Co γ-ray. To elucidate the uppermost internode elongation of the TGMS line with eui gene, Changxuan 3S and its parent Pei'ai 64S were used to study the effects of temperature on panicle exsertion. At 24℃, the uppermost internode of Changxuan 3S elongated the fastest from the 4^th day before flowering to 0 day (flowering), being 2.1-fold as that of Pei'ai 64S, whereas it elongated slowly during the 12^th day to the 4^th day before flowering and the 1^st to the 3^rd day after flowering. The uppermost internode of Changxuan 3S exserted from the flag leaf sheath at 22℃, 24℃ and 26℃, and the length of elongated uppermost internode increased with the decreasing temperatures. At 28℃, though the panicles of Changxuan 3S were still enclosed in the leaf sheath, the degree of panicle enclosure was significantly lower compared with Pei'ai 64S. Cytological studies on Changxuan 3S showed that the uppermost internode elongation was attributed to the increase of cell number and cell elongation, and the latter was more significant. Moreover, the numbers of outermost and innermost parenchyma cells and the cell length of the uppermost internode reduced with the increasing temperatures.展开更多
Two-line hybrid breeding can fully utilize heterosis in crops.In thermo-sensitive genic male sterile(TGMS)lines,low critical sterility-inducing temperature(CSIT)is vital to safeguard the production of two-line hybrid ...Two-line hybrid breeding can fully utilize heterosis in crops.In thermo-sensitive genic male sterile(TGMS)lines,low critical sterility-inducing temperature(CSIT)is vital to safeguard the production of two-line hybrid seeds in rice(Oryza sativa),but the molecular mechanism determining CSIT is unclear.Here,we report the cloning of CSIT1,which encodes an E3 ubiquitin ligase,and show that CSIT1 modulates the CSIT of thermo-sensitive genic male sterility 5(tms5)-based TGMS lines through ribosome-associated quality control(RQC).Biochemical assays demonstrated that CSIT1 binds to the 80S ribosomes and ubiquitinates abnormal nascent polypeptides for degradation in the RQC process.Loss of CSIT1 function inhibits the possible damage of tms5 to the ubiquitination system and protein translation,resulting in enhanced accumulation of anther-related proteins such as catalase to suppress abnormal accumulation of reactive oxygen species and premature programmed cell death in the tapetum,thereby leading to a much higher CSIT in the tms5-based TGMS lines.Taken together,our findings reveal a regulatory mechanism of CSIT,providing new insights into RQC and potential targets for future two-line hybrid breeding.展开更多
Insulated gate bipolar transistor(IGBT)modules are widely employed in high-power conversion systems.Their junction temperature ranks as one of the most important factors in the reliability of power semiconductor devic...Insulated gate bipolar transistor(IGBT)modules are widely employed in high-power conversion systems.Their junction temperature ranks as one of the most important factors in the reliability of power semiconductor devices.Thermo-sensitive electrical parameter(TSEP)is regarded as the promising solution to extract the junction temperature due to its non-invasion measurement,fast response and high accuracy.However,accurate collector current measurement is required if only the individual TSEP is adopted,which increases the complexity and cost.In this paper,the combined TSEP method is proposed to eliminate the influence of collector current(/c),where the turn-off delay time(tdoff)and maximum decrease rate of/c(max d/c/dt)are adopted and combined.The two TSEPs both have linear relationships withjunction temperature and/c.When they are combined mathematically,the influence of/c is eliminated.Experiments have been implemented to validate the effectiveness of the proposed approach.The comparison between combined TSEP and two individual TSEP methods are illustrated and analyzed.展开更多
基金supported by the National Natural Science Foundation of China(31771710,31901445)the National Key Research and Development Program of China(2016YFD03002064,2018YFD0300800)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Top Talent Supporting Program of Yangzhou University(2015-01)。
文摘Brassinosteroids(BRs)play critical roles in a wide range of plant developmental processes.However,it is unknown whether and how BRs mediate the effect of high temperature(HT)stress during anthesis on the pistil activity of photo-thermosensitive genetic male-sterile(PTSGMS)rice(Oryza sativa L.)lines.This study investigated the question.Three pot-grown PTSGMS rice lines were subjected to HT stress during anthesis.The contents of 24-epibrassinolide(24-EBL)and 28-homobrassinolide(28-HBL),the major forms of BR in rice plants,and levels of reactive oxygen species(ROS)or antioxidants(AOS),hydrogen peroxide(H2O2),1-aminocylopropane-1-carboxylic acid(ACC),ascorbic acid(AsA),and catalase activity in pistils,were determined.HT stress significantly reduced the contents of both 24-EBL and 28-EBL relative to those under normal temperatures,but the reduction varied by PTSGMS line.A line with higher BR contents under HT stress showed lower contents of ACC and H2O2,higher catalase activity and AsA content in pistils,and higher fertilization rate,seed-setting rate,and seed yield when the line was crossed with a restorer line,indicating that higher levels of BRs increase HT stress resistance.Applying 24-EBL,28-HBL or an inhibitor of BR biosynthesis confirmed the roles of BRs in response to HT stress.The results suggest that BRs mediate the effect of HT stress on pistil activity during anthesis and alleviate the harm of HT stress by increasing AOS and suppressing ROS generation.
基金supported by the National Natural Science Foundation of China (Grant No. 30370830)
文摘Plant temperature (Tp) and its relations to the microclimate of rice colony and irrigation water were studied using a thermo-sensitive genic male sterile (TGMS) rice line, Pei'ai 64S. Significant differences in the daily change of temperature were detected between Tp and air temperature at the height of 150 cm (TA). From 8:00 to 20:00, Tp was lower than TA, but they were similar during 21:00 to next 7:00. The maximum Tp occurred one hour earlier than the maximum TA, though they both reached the minimum at 6:00. Tp fluctuated less than TA. At the same height, during 6:00-13:00, Tp was higher than air temperature (Ta), and Tp reached the maximum one hour earlier than Ta. During the rest time on sunny day, Tp was close to or even a little lower than Ta. On overcast day, Tp was higher than Ta in the whole day, and both maximized at the same time. In addition, Tp was regulated by solar radiation, cloudage and wind speed in daytime, and by irrigation water at night. The present study indicated that a TA of 29.6℃ was the critical point, at which Tp was increased or decreased by irrigation water. Tp and the difference between water and air temperatures showed a conic relation. Tp fluctuation was also regulated by the absorption or reflection of solar radiation by leaves during daytime and release of heat energy during nighttime. By analysis on correlation and regression simulation, two models of Tp were established.
文摘The effect of day length and temperature on the pollen fertility of five photoperiod-sensitive genic male-sterile japonica rice lines (PGMSR) and three temperature-sensitive genic malesterile indica rice lines (TGMSR) were investigated in phytotron. The light source used for illumination was xenon lamp, and the light intensity which plant accepted on the leaf surface was 300—350μmol photons ms. The results indicated that pollens of PGMSR 7001S and E47S aborted completely whereas a little part of 31116S pollens appeared normal under long day photoperiod (LD,25℃,15h) (Table 1). High temperature (HT, 30℃, 12h) and lower temperature (LT,
文摘Eight indica ( Oryza sativa L.) environment-sensitive genic male-sterile (EGMS) lines, 2-2S, K1405S, F131S, 2136S, Pei-Ai 64S, 1290S, GD-IS and N17S, were sequentially seeded with 10-15 d interval at three sites, Wuhan in 1997, Guiyang in 1997 and Sanya in 1997 and 1998, China. The results of investigations on self-sterilities showed that all of eight EGMS lines had stable sterile periods of longer than 30 d at Wuhan. They can be used for seed production of two-line hybrid rice, but can not reproduce themselves. Their stable sterile periods were shorter than 30 d at Guiyang, they can reproduce themselves and can not be used for hybrid seed production. In Sanya, their stable sterile periods were longer than 150 d, all of eight lines can be used for seed production in summer and autumn and reproduce themselves in winter. The fertility of all eight lines were sensitive to temperature. The sensitive stages, sensitive duration and critical point of temperatures (CPT) of fertility alteration in various lines were different. The sensitive stages of 2-2S and K1405S were from 18 d to 9 d before heading, the sensitive durations were 7-10 d and the CPTs were 23.7-24.5 degreesC. The sensitive stage, sensitive duration and CPT of F131S were from 17 to 5 d before heading, 13 d and 24.3-24.7 degreesC, respectively. The sensitive stage, sensitive duration and CPT of 2136S were from 18 to 12 d before heading, 7 d and 24.6-25.1 degreesC:, respectively. The sensitive stages, sensitive durations of Pei-Ai 64S, 1290S, N17S and GD-1S were from 24 to 13 d before heading and 10-13 d. And their CPTs were 24.6-25.1 degreesC, 25.5-26.2 degreesC, 25.4-26.1 degreesC,, and 24.1-24.7 degreesC, respectively.
文摘Changxuan 3S, a thermo-sensitive genic male sterile (TGMS) rice line with eui gene, is derived from the TGMS rice line Pei'ai 64S by irradiation with 350 Gy of ^60Co γ-ray. To elucidate the uppermost internode elongation of the TGMS line with eui gene, Changxuan 3S and its parent Pei'ai 64S were used to study the effects of temperature on panicle exsertion. At 24℃, the uppermost internode of Changxuan 3S elongated the fastest from the 4^th day before flowering to 0 day (flowering), being 2.1-fold as that of Pei'ai 64S, whereas it elongated slowly during the 12^th day to the 4^th day before flowering and the 1^st to the 3^rd day after flowering. The uppermost internode of Changxuan 3S exserted from the flag leaf sheath at 22℃, 24℃ and 26℃, and the length of elongated uppermost internode increased with the decreasing temperatures. At 28℃, though the panicles of Changxuan 3S were still enclosed in the leaf sheath, the degree of panicle enclosure was significantly lower compared with Pei'ai 64S. Cytological studies on Changxuan 3S showed that the uppermost internode elongation was attributed to the increase of cell number and cell elongation, and the latter was more significant. Moreover, the numbers of outermost and innermost parenchyma cells and the cell length of the uppermost internode reduced with the increasing temperatures.
基金supported by the Open Competition Program of Top Ten Critical Priorities of Agricultural Science and Technology Innovation for the 14th Five-Year Plan of Guangdong Province(2022SDZG05)the National Natural Science Foundation of China(31921004,32172017,32101775,and 32172097)+4 种基金the Guangdong Basic and Applied Research Foundation(2019B030302006 and 2022B1515120036)the Laboratory of Lingnan Modern Agriculture Project(NZ2021002 and NT2021002)the China Postdoctoral Science Foundation(2021M691086)the Natural Science Foundation of Guangdong Province(2022A1515012496)the Double First-Class Discipline Promotion Project(2021B10564001 and 2023B10564004).
文摘Two-line hybrid breeding can fully utilize heterosis in crops.In thermo-sensitive genic male sterile(TGMS)lines,low critical sterility-inducing temperature(CSIT)is vital to safeguard the production of two-line hybrid seeds in rice(Oryza sativa),but the molecular mechanism determining CSIT is unclear.Here,we report the cloning of CSIT1,which encodes an E3 ubiquitin ligase,and show that CSIT1 modulates the CSIT of thermo-sensitive genic male sterility 5(tms5)-based TGMS lines through ribosome-associated quality control(RQC).Biochemical assays demonstrated that CSIT1 binds to the 80S ribosomes and ubiquitinates abnormal nascent polypeptides for degradation in the RQC process.Loss of CSIT1 function inhibits the possible damage of tms5 to the ubiquitination system and protein translation,resulting in enhanced accumulation of anther-related proteins such as catalase to suppress abnormal accumulation of reactive oxygen species and premature programmed cell death in the tapetum,thereby leading to a much higher CSIT in the tms5-based TGMS lines.Taken together,our findings reveal a regulatory mechanism of CSIT,providing new insights into RQC and potential targets for future two-line hybrid breeding.
基金the National Nature Science Foundations of China(51490682,51677166).
文摘Insulated gate bipolar transistor(IGBT)modules are widely employed in high-power conversion systems.Their junction temperature ranks as one of the most important factors in the reliability of power semiconductor devices.Thermo-sensitive electrical parameter(TSEP)is regarded as the promising solution to extract the junction temperature due to its non-invasion measurement,fast response and high accuracy.However,accurate collector current measurement is required if only the individual TSEP is adopted,which increases the complexity and cost.In this paper,the combined TSEP method is proposed to eliminate the influence of collector current(/c),where the turn-off delay time(tdoff)and maximum decrease rate of/c(max d/c/dt)are adopted and combined.The two TSEPs both have linear relationships withjunction temperature and/c.When they are combined mathematically,the influence of/c is eliminated.Experiments have been implemented to validate the effectiveness of the proposed approach.The comparison between combined TSEP and two individual TSEP methods are illustrated and analyzed.