期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
An internal ballistic model of electromagnetic railgun based on PFN coupled with multi-physical field and experimental validation
1
作者 Benfeng Gu Haiyuan Li Baoming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期254-261,共8页
To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dime... To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dimensional numerical model of the augmented railgun with four parallel unconventional rails is introduced to simulate the internal ballistic process and realize the multi-physics field coupling calculation of the rail gun,and a test experiment of a medium-caliber electromagnetic launcher powered by pulse formation network(PFN)is carried out.Various test methods such as spectrometer,fiber grating and high-speed camera are used to test several parameters such as muzzle initial velocity,transient magnetic field strength and stress-strain of rail.Combining the simulation results and experimental data,the damage condition of the contact surface is analyzed. 展开更多
关键词 Internal ballistic modeling Electromagnetic rail gun multi-physics field coupling Experimental validation PFN
下载PDF
Coupled Numerical Simulation of Electromagnetic and Flow Fields in a Magnetohydrodynamic Induction Pump
2
作者 He Wang Ying He 《Fluid Dynamics & Materials Processing》 EI 2024年第4期889-899,共11页
Magnetohydrodynamic(MHD)induction pumps are contactless pumps able to withstand harsh environments.The rate of fluid flow through the pump directly affects the efficiency and stability of the device.To explore the inf... Magnetohydrodynamic(MHD)induction pumps are contactless pumps able to withstand harsh environments.The rate of fluid flow through the pump directly affects the efficiency and stability of the device.To explore the influence of induction pump settings on the related delivery speed,in this study,a numerical model for coupled electromagnetic and flow field effects is introduced and used to simulate liquid metal lithium flow in the induction pump.The effects of current intensity,frequency,coil turns and coil winding size on the velocity of the working fluid are analyzed.It is shown that the first three parameters have a significant impact,while changes in the coil turns have a negligible influence.The maximum increase in working fluid velocity within the pump for the parameter combination investigated in this paper is approximately 618%.As the frequency is increased from 20 to 60 Hz,the maximum increase in the mean flow rate of the working fluid is approximately 241%.These research findings are intended to support the design and optimization of these devices. 展开更多
关键词 Magnetic fluid multi-physical field coupling induction pump numerical simulation liquid metal conveying
下载PDF
Investigating effect of coke porosity on blast furnace performance based on multi-physical fields
3
作者 Ji Chen Zhao Lei +3 位作者 Zhe Yao Li Wang Qiang Ling Ping Cui 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2024年第2期357-367,共11页
Reducing coke use is an effective measure to reduce carbon emission and energy consumption in the blast furnace(BF)ironmaking.Essentially,BF is a high-temperature moving bed reactor,where complex physical transformati... Reducing coke use is an effective measure to reduce carbon emission and energy consumption in the blast furnace(BF)ironmaking.Essentially,BF is a high-temperature moving bed reactor,where complex physical transformations coupled with complicated reactions occur.This makes it challenging to investigate the factors determining BF performance with the conventional method.A multi-physical field coupling mathematical model of BF was thus developed to describe its mass and heat transfer as well as its intrinsic reactions.Then,the proposed model was validated with the production data.Under coupling conditions,influences of dominating reactions on BF performance(temperature distribution,gas distribution,iron formation reaction,and direct reduction degree)were revealed.The results indicated that coke combustion,indirect reduction,and direct reduction of iron ore mainly took place nearby the shaft tuyere,cohesive zone,and dripping zone,respectively.Besides,the rate of coke solution loss reaction was increased with the rising coke porosity in the cohesive zone.Considering the effect of coke porosity on the efficiency and stability of BF,the coke porosity of 0.42 was regarded as a reasonable value. 展开更多
关键词 Blast furnace Mathematical model multi-physical field Simulation Coke porosity
原文传递
Transient multi-physics behavior of an insert high temperature superconducting no-insulation coil in hybrid superconducting magnets with inductive coupling
4
作者 Xiang KANG Yujin TONG +1 位作者 Wei WU Xingzhe WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第2期255-272,共18页
A transient multi-physics model incorporated with an electromagneto-thermomechanical coupling is developed to capture the multi-field behavior of a single-pancake(SP)insert no-insulation(NI)coil in a hybrid magnet dur... A transient multi-physics model incorporated with an electromagneto-thermomechanical coupling is developed to capture the multi-field behavior of a single-pancake(SP)insert no-insulation(NI)coil in a hybrid magnet during the charging and discharging processes.The coupled problem is resolved by means of the finite element method(FEM)for the magneto-thermo-elastic behaviors and the Runge-Kutta method for the transient responses of the electrical circuits of the hybrid superconducting magnet system.The results reveal that the transient multi-physics responses of the insert NI coil primarily depend on the charging/discharging procedure of the hybrid magnet.Moreover,a reverse azimuthal current and a compressive hoop stress are induced in the insert NI coil during the charging process,while a forward azimuthal current and a tensile hoop stress are observed during the discharging process.The induced voltages in the insert NI coil can drive the currents flowing across the radial turns where the contact resistance exists.Therefore,it brings forth significant Joule heat,causing a temperature rise and a uniform distribution of this heat in the coil turns.Accordingly,a thermally/mechanically unstable or quenching event may be encountered when a high operating current is flowing in the insert NI coil.It is numerically predicted that a quick charging will induce a compressive hoop stress which may bring a risk of buckling instability in the coil,while a discharging will not.The simulations provide an insight of hybrid superconducting magnets under transient start-up or shutdown phases which are inevitably encountered in practical applications. 展开更多
关键词 hybrid superconducting magnet high temperature superconducting(HTS)no-insulation(NI)coil inductive coupling multi-physics field thermal stability
下载PDF
Observation and research of deep underground multi-physical fields—Huainan–848 m deep experiment 被引量:3
5
作者 Yun WANG Yaxin YANG +9 位作者 Heping SUN Chengliang XIE Qisheng ZHANG Xiaoming CUI Chang CHEN Yongsheng HE Qiangqiang MIAO Chaomin MU Lianghui GUO Jiwen TENG 《Science China Earth Sciences》 SCIE EI CAS CSCD 2023年第1期54-70,共17页
Compared with the surface,the deep environment has the advantages of allowing“super-quiet and ultra-clean”-geophysical field observation with low vibration noise and little electromagnetic interference,which are con... Compared with the surface,the deep environment has the advantages of allowing“super-quiet and ultra-clean”-geophysical field observation with low vibration noise and little electromagnetic interference,which are conducive to the realization of long-term and high-precision observation of multi-physical fields,thus enabling the solution of a series of geoscience problems.In the Panyidong Coal Mine,where there are extensive underground tunnels at the depth of 848 m below sea level,we carried out the first deep-underground geophysical observations,including radioactivity,gravity,magnetic,magnetotelluric,background vibration and six-component seismic observations.We concluded from these measurements that(1)the background of deep subsurface gravity noise in the long-period frequency band less than 2 Hz is nearly two orders of magnitude weaker than that in the surface observation environment;(2)the underground electric field is obviously weaker than the surface electric field,and the relatively high frequency of the underground field,greater than 1 Hz,is more than two orders of magnitude weaker than that of the surface electric field;the east-west magnetic field underground is approximately the same as that at the surface;the relatively high-frequency north-south magnetic field underground,below 10 Hz,is at least one order of magnitude lower than that at the surface,showing that the underground has a clean electromagnetic environment;(3)in addition to the highfrequency and single-frequency noises introduced by underground human activities,the deep underground space has a significantly lower background vibration noise than the surface,which is very beneficial to the detection of weak earthquake and gravity signals;and(4)the underground roadway support system built with ferromagnetic material interferes the geomagnetic field.We also found that for deep observation in the“ultra-quiet and ultra-clean”environment,the existing geophysical equipment and observation technology have problems of poor adaptability and insufficient precision as well as data cleaning problems,such as the effective separation of the signal and noise of deep observation data.It is also urgent to interpret and comprehensively utilize these high-precision multi-physics observation data. 展开更多
关键词 multi-physical fields RADIOACTIVITY GRAVITY GEOMAGNETIC Electromagnetic Earthquake Observations deep underground
原文传递
Thermal management by manipulating electromagnetic parameters
6
作者 王云 梁迪飞 +1 位作者 韩天成 邓龙江 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期21-27,共7页
Electromagnetic absorbing materials may convert electromagnetic energy into heat energy and dissipate it.However,in a high-power electromagnetic radiation environment,the temperature of the absorbing material rises si... Electromagnetic absorbing materials may convert electromagnetic energy into heat energy and dissipate it.However,in a high-power electromagnetic radiation environment,the temperature of the absorbing material rises significantly and even burns.It becomes critical to ensure electromagnetic absorption performance while minimizing temperature rise.Here,we systematically study the coupling mechanism between the electromagnetic field and the temperature field when the absorbing material is irradiated by electromagnetic waves.We find out the influence of the constitutive parameters of the absorbing materials(including uniform and non-uniform)on the temperature distribution.Finally,through a smart design,we achieve better absorption and lower temperature simultaneously.The accuracy of the model is affirmed as simulation results aligned with theoretical analysis.This work provides a new avenue to control the temperature distribution of absorbing materials. 展开更多
关键词 multi-physics field electromagnetic-thermal coupling microwave absorption high power application
下载PDF
Effect of melt current on multi-physical field and heat flow distribution during ESR process based on model of dynamic formation of slag skin
7
作者 Fu-bin Liu Xin-hao Yu +3 位作者 Hua-bing Li Zhou-hua Jiang Hong-chun Zhu Xin Geng 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2023年第6期1258-1267,共10页
A numerical model coupled with a multi-physical field based on dynamic formation of slag skin is established.After validation by comparing the experimental and simulation results of depth of metal pool,slag skin thick... A numerical model coupled with a multi-physical field based on dynamic formation of slag skin is established.After validation by comparing the experimental and simulation results of depth of metal pool,slag skin thickness and melt rate,it is utilized to investigate the effect of melt current on the coupled multi-physical field,slag skin thickness,metal pool depth and the heat flow distribution during electroslag remelting(ESR)Inconel 625 solidification process.The results showed that with the increase in the melt current,the velocities of ESR system and the temperature of metal pool increased,whereas the highest temperature of slag bath firstly decreased and then increased.With the increase in the melt current,the slag skin thickness,metal pool depth and melt rate increased.Furthermore,the characteristics of the heat flow distribution and the effect of melt current on the heat flow distribution were analysed. 展开更多
关键词 Electroslag remelting Melt current Slag skin Model multi-physical field
原文传递
Numerical simulation of coupling multi-physical field in electrical arc furnace for smelting titanium slag
8
作者 He-nan Cui Tao Li +2 位作者 Chen-guang Bai Min Tan Yu-lin Zhu 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2023年第11期2194-2209,共16页
The smelting reduction process of the ilmenite in an electric arc furnace(EAF)is a commonly used technology for producing titanium slag in the world.It has particular significance to analyze the velocity-temperature-e... The smelting reduction process of the ilmenite in an electric arc furnace(EAF)is a commonly used technology for producing titanium slag in the world.It has particular significance to analyze the velocity-temperature-electromagnetics multi-physical field in an EAF for improving its productivity and reducing energy consumption.A transient three-dimensional mathematical model was developed to characterize the flow,heat transfer,and electromagnetic behavior in a titanium slag EAF.For describing the electromagnetic field and its effects on velocity and temperature distribution in the furnace,magnetohydrodynamic equations and conservation equations for mass,momentum,and energy were solved simultaneously by compiling the user-defined function program.The numerical model was verified by comparing with the literature data.The results indicate that the Lorentz force is the main driving force of the velocity and temperature distribution.Moreover,the influence of input current and location of electrodes on the multi-physical field distribution was also investigated.It is found that the appropriate range of input current and diameter of pitch circle are about 30,000 A and 3000-3500 mm,respectively.The mathematical model established can characterize the multi-physical field more accu-rately than before,which can provide valuable guidance for the operation improvement and design optimization of the EAF for producing titanium slag. 展开更多
关键词 Electric arc furnace Titanium slag MAGNETOHYDRODYNAMIC multi-physical field User-defined function
原文传递
Effect of an external magnetic field on improved electroslag remelting cladding process 被引量:1
9
作者 Zhiwen Hou Yanwu Dong +3 位作者 Zhouhua Jiang Zhihao Hu Limeng Liu Kunjie Tian 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第8期1511-1521,共11页
Obtaining a uniform interface temperature field plays a crucial role in the interface bonding quality of bimetal compound rolls.Therefore,this study proposes an improved electroslag remelting cladding(ESRC)process usi... Obtaining a uniform interface temperature field plays a crucial role in the interface bonding quality of bimetal compound rolls.Therefore,this study proposes an improved electroslag remelting cladding(ESRC)process using an external magnetic field to improve the uniformity of the interface temperature of compound rolls.The improved ESRC comprises a conventional ESRC circuit and an external coil circuit.A comprehensive 3D model,including multi-physics fields,is proposed to study the effect of external magnetic fields on the multi-phys-ics fields and interface temperature uniformity.The simulated results demonstrate that the nonuniform Joule heat and flow fields cause a non-uniform interface temperature in the conventional ESRC.As for the improved ESRC,the magnetic flux density(B_(coil))along the z-axis is pro-duced by an anticlockwise current of the external coil.The rotating Lorentz force is generated from the interaction between the radial current and axial B_(coil).Therefore,the slag pool flows clockwise,which enhances circumferential effective thermal conductivity.As a result,the uniformity of the temperature field and interface temperature improve.In addition,the magnetic flux density and rotational speed of the simulated results are in good agreement with those of the experimental results,which verifies the accuracy of the improved ESRC model.Therefore,an improved ESRC is efficient for industrial production of the compound roll with a uniform interface bonding quality. 展开更多
关键词 improved ESRC external magnetic field multi-physics fields rotating Lorentz force interface temperature uniformity
下载PDF
CFD–DEM–CVD multi-physical field coupling model for simulating particle coating process in spout bed 被引量:7
10
作者 Malin Liu Meng Chen +5 位作者 Tianjin Li Yaping Tang Rongzheng Liu Youlin Shao Bing Liu Jiaxing Chang 《Particuology》 SCIE EI CAS CSCD 2019年第1期67-78,共12页
Particle coating is a very important step in many industrial production processes as the particle coating layers may fix surfaces with unique advantages. Given the limitation and disadvantages of the existing simulati... Particle coating is a very important step in many industrial production processes as the particle coating layers may fix surfaces with unique advantages. Given the limitation and disadvantages of the existing simulation methods, a coupled CFD–DEM–CVD multi-physical field model for particle-coating simulations has been established taking into account the velocity field, temperature field, concentration field, and deposition model. In this model, gas behavior and chemical reactions are simulated in the CFD frame based on the conservation laws of mass, momentum, and energy. The particle behavior is simulated in the DEM frame based on the gas–solid interphase force model and contact force model. The deposition behavior is simulated in the CVD frame based on the particle movement–adhesion–deposition model. The coupled model can be implemented in Fluent-EDEM software with their user definition function and application programming interface. The particle coating process involving the pyrolysis of acetylene was investigated, and the effect of bed temperature and inlet gas velocity on deposition rate and coating efficiency were investigated based on the proposed model with adjustable deposition coefficients. Both the average deposition layer mass and the average deposition layer thickness were found to be proportional to the elapsed time and increased at the rate of about 1.05 × 10^-2 mg/s and 3.45 × 10^-4 mm/s, respectively, setting the inlet gas velocity to 11 m/s and bed temperature to 1680 K. A higher temperature and larger inlet gas velocity lead to a larger deposition rate, but the coating efficiency decreases because of limits imposed by the chemical reaction. At a bed temperature of 1280 K, the average deposition rate is 7.40 × 10?3 mg/s when the inlet gas velocity is set to 11 m/s, which is about double the deposition rate when the inlet gas velocity is set as 5 m/s. The proposed model can provide some guidance for the operating conditions and parameters design of the spouted bed in actual coating settings and can also be further developed as a basic model of mechanisms to integrate detailed information across multiple scales. 展开更多
关键词 PARTICLE coating process CFD–DEM–CVD multi-physical field Chemical vapor deposition model Multiscale simulation
原文传递
Research on Electromagnetic Loss Characteristics of Submarine Cables
11
作者 Liuhuo Wang Qingcui Liu +3 位作者 Wenwei Zhu Yanru Wang Yi Tian Long Zhao 《Energy Engineering》 EI 2023年第11期2651-2666,共16页
The electromagnetic losses of submarine cables are mainly caused by the metal shielding layer to prevent the water tree effect and the armor layer that strengthens the strength of the submarine cables.While these loss... The electromagnetic losses of submarine cables are mainly caused by the metal shielding layer to prevent the water tree effect and the armor layer that strengthens the strength of the submarine cables.While these losses cause the temperature of submarine cable to rise,and temperature variation will in turn change the conductivity of its metal layer material.In this paper,the electric-magnetic-thermal multi-physical field coupling of the electromagnetic loss variation of the submarine cable is realized by establishing a full coupling system containing Fourier’s law and Maxwell-Ampère’s Law for the photoelectric composite submarine cable.The multi-physical field coupling model is solved and analyzed by using the finite elementmethod.Firstly,the loss of each layer of the optoelectronic composite submarine cable is analyzed,and the lossof eachlayer of the submarine cable and themainfactors leading to the loss of the submarine cable are given.Secondly,the influence of environmental temperature,ampacity and armor layer on the electromagnetic loss of submarine cables is studied,and the main operating factors affecting the electromagnetic loss of submarine cables are summarized.The research shows that the influence of ambient temperature can be ignored,and the loss of shielding layer and armor layer increases with the increase of ampacity,but the impact of shielding layer loss is greater.Finally,this paper studies the electromagnetic loss of each metal layer of the submarine cable and the influence of the laying spacing on the electromagnetic loss.The research results show that the two ways of improving the conductivity of the armor layer and reducing the relative permeability of the armor layer can effectively reduce the loss of each metal layer in the cable structure and increase the current carrying capacity when the tensile strength of the armor layer meets the requirements for single-core and threecore photoelectric composite submarine cables laid horizontally.At the same time,increasing the laying spacing will increase the loss,but it can improve the overall current carrying capacity of the cable.The research in this paper provides a theoretical basis for the design of submarine cable carrying capacity,and also provides a reference for the optimization design of submarine cable structures. 展开更多
关键词 Submarine cable multi-physical field coupling electromagnetic loss
下载PDF
Multi-physical field coupling simulation of TCVI process for preparing carbon/carbon composites 被引量:1
12
作者 JIAO YanQiong LI HeJun LI KeZhi 《Science China(Technological Sciences)》 SCIE EI CAS 2009年第11期3173-3179,共7页
To prepare Carbon/Carbon (C/C) composites with advanced performance, the thermal gradient chemical vapor infiltration (TCVI) process has been optimized by simulation. A 2D axisymmetric unstable model was built, which ... To prepare Carbon/Carbon (C/C) composites with advanced performance, the thermal gradient chemical vapor infiltration (TCVI) process has been optimized by simulation. A 2D axisymmetric unstable model was built, which included convection, conduction, diffusion, densification reactions in the pores and the evolution of the porous medium. The multi-physical field coupling model was solved by finite element method (FEM) and iterative calculation. The time evolution of the fluid, temperature and preform density field were obtained by the calculation. It is indicated that convection strongly affects the temperature field. For the preform of carbon/carbon composites infiltrated for 100 h by TCVI, the radial average densities from simulation agrees well with those from experiment. The model is validated to be reliable and the simulation has capability of forecasting the process. 展开更多
关键词 C/C COMPOSITES TCVI multi-physical field coupling simulation
原文传递
Numerical Study of Trapped Solid Particles Displacement From the Elbow of an Inclined Oil Pipeline 被引量:1
13
作者 Dingqian Ding Yongtu Liang +3 位作者 Yansong Li Jianfei Sun Dong Han Jing Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第10期273-290,共18页
The solid particle impurities generated by pipe wall corrosion might deposit at the elbow of hilly pipelines during the production shutdown of oil pipelines.These solid particle impurities will seriously affect the sa... The solid particle impurities generated by pipe wall corrosion might deposit at the elbow of hilly pipelines during the production shutdown of oil pipelines.These solid particle impurities will seriously affect the safety of the pipeline operation and the quality of the petroleum products.Thus,it is necessary to study the methods of removing these trapped particles from pipelines.At present,the most common way to remove these solid particle impurities is pigging oil pipelines periodically by utilizing the mechanical pigging method,while the frequent pigging operation will increase the cost and risk of pipeline operation.It is very convenient and economical to remove the accumulated particles out from the pipeline by oil stream,which can be named Hydraulic Pigging Method(HPM).However,the behavior mechanism of particle in flowing oil is still unclear.This motivates the present research on the particles flushed out by the flowing oil.A numerical model governing the trapped particles displacement from the elbow of an inclined oil pipeline is established in the Euler-Lagrangian framework.The simulation is achieved via CFD coupling with DEM.The CFD method is employed to solving the continuous phase flow,while the discrete particle phase is tracked by the DEM.The numerical model is first validated by comparison with results taken from the published literature.From the simulation results,it is observed that the oil stream,carrier phase,can only flush out the solid particles in a certain diameter range under the given operation conditions,and the particles whose diameter beyond that diameter range will cannot be removed out from the pipeline.The influence of the pipe inclined angle,the oil bulk velocity and the particle diameter on the particle migration characteristics is examined in detail.Furthermore,in order to enhance the efficiency of HPM,an Enhanced Hydraulic Pigging Method based on Multi-Physical Field Collaboration(EHPM-MPFC)is also proposed in the present work.The EHPM-MPFC is validated for having high pigging efficiency via the comparison of the migration characteristics of particles during the EHPM-MPFC and HPM process.The present results can provide the guidance to the HPM operation of products pipelines. 展开更多
关键词 Particle DISPLACEMENT HYDRAULIC PIGGING method CFD-DEM coupling multi-physical field
下载PDF
An investigation on improving the homogeneity of plasma generated by linear microwave plasma source with a length of 1550 mm
14
作者 周继承 徐伟 陈特超 《Plasma Science and Technology》 SCIE EI CAS CSCD 2021年第2期7-16,共10页
To develop a larger in-line plasma enhanced chemical vapor deposition(PECVD)device,the length of the linear microwave plasma source needs to be increased to 1550 mm.This paper proposes a solution to the problem of pla... To develop a larger in-line plasma enhanced chemical vapor deposition(PECVD)device,the length of the linear microwave plasma source needs to be increased to 1550 mm.This paper proposes a solution to the problem of plasma inhomogeneity caused by increasing device length.Based on the COMSOL Multiphysics,a multi-physics field coupling model for in-line PECVD device is developed and validated.The effects of microwave power,chamber pressure,and magnetic flux density on the plasma distribution are investigated,respectively,and their corresponding optimized values are obtained.This paper also presents a new strategy to optimize the wafer position to achieve the balance between deposition rate and film quality.Numerical results have indicated that increasing microwave power and magnetic flux density or decreasing chamber pressure all play positive roles in improving plasma homogeneity,and among them,the microwave power is the most decisive influencing factor.It is found that the plasma homogeneity is optimal under the condition of microwave power at 2000 W,chamber pressure at 15 Pa,and magnetic field strength at 45 mT.The relative deviation is within−3.7%to 3.9%,which fully satisfies the process requirements of the equipment.The best position for the wafer is 88 mm from the copper antenna.The results are very valuable for improving the quality of the in-line PECVD device. 展开更多
关键词 in-line PECVD linear microwave plasma source multi-physics field COMSOL simulation HOMOGENEITY
下载PDF
Conversion of coalbed methane surrogate into hydrogen and graphene sheets using rotating gliding arc plasma
15
作者 吴昂键 陈航 +8 位作者 郑佳庚 杨健 李晓东 杜长明 陈志良 徐奥妮 邱杰 徐一 严建华 《Plasma Science and Technology》 SCIE EI CAS CSCD 2019年第11期55-67,共13页
The use of atmospheric rotating gliding arc(RGA)plasma is proposed as a facile,scalable and catalyst-free approach to synthesizing hydrogen(H2)and graphene sheets from coalbed methane(CBM).CH4 is used as a CBM surroga... The use of atmospheric rotating gliding arc(RGA)plasma is proposed as a facile,scalable and catalyst-free approach to synthesizing hydrogen(H2)and graphene sheets from coalbed methane(CBM).CH4 is used as a CBM surrogate.Based on a previous investigation of discharge properties,product distribution and energy efficiency,the operating parameters such as CH4 concentration,applied voltage and gas flow rate can effectively affect the CH4 conversion rate,the selectivity of H2 and the properties of solid generated carbon.Nevertheless,the basic properties of RGA plasma and its role in CH4 conversion are scarcely mentioned.In the present work,a 3D RGA model,with a detailed nonequilibrium CH4/Ar plasma chemistry,is developed to validate the previous experiments on CBM conversion,aiming in particular at the distribution of H2 and other gas products.Our results demonstrate that the dynamics of RGA is derived from the joint effects of electron convection,electron migration and electron diffusion,and is prominently determined by the variation of the gas flow rate and applied voltage.Subsequently,a combined experimental and chemical kinetical simulation is performed to analyze the selectivity of gas products in an RGA reaction,taking into consideration the formation and loss pathways of crucial targeted substances(such as CH4,C2H2,H2 and H radicals)and corresponding contribution rates.Additionally,the effects of operating conditions on the properties of solid products are investigated by scanning electron microscopy(SEM)and Raman spectroscopy.The results show that increasing the applied voltage and decreasing CH4 concentration will change the solid carbon from its initial spherical structure into folded multilayer graphene sheets,while the size of the graphene sheets is slightly affected by the change in gas flow rate. 展开更多
关键词 coalbed METHANE HYDROGEN graphene sheets ROTATING GLIDING arc(RGA) multi-physical field coupling plasma CHEMISTRY
下载PDF
High lithiophilic nitrogen-doped carbon nanotube arrays prepared by in-situ catalyze for lithium metal anode 被引量:2
16
作者 Chenyang Zhao Xiaoju Yin +6 位作者 Zhikun Guo Dan Zhao Guiye Yang Aosai Chen Lishuang Fan Yu Zhang Naiqing Zhang 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第7期2254-2258,共5页
Lithium metal has a very outstanding theoretical capacity(3860 mAh/g)and is one of the most superior anode materials for high energy density batteries.However,the uncontrollable dendrite growth and the fo rmation of&q... Lithium metal has a very outstanding theoretical capacity(3860 mAh/g)and is one of the most superior anode materials for high energy density batteries.However,the uncontrollable dendrite growth and the fo rmation of"dead lithium"are the important hidden dangers of short cycle life and low safety.However,the uncontrollable dendrite growth and the fo rmation of dead lithium leads to short cycle life and hidden dange r,which hinder its practical application.Controlling the nucleation and growth process of lithium is an effective strategy to inhibit lithium dendrite.Herein,a simple in situ self-catalytic method is used to construct nitrogen doped carbon nanotube arrays on stainless steel mesh(N-CNT@SS)as a lithium composite anode.The N-doped CNTs provide a great number of N-functional groups,which enhance the lithiophilic of anode and provide a large number of uniform nucleation sites,hence it has excellent structural stability for cycles.The arrays provide neat lithium-ion transport channels to uniform lithiumion flux and inhibits dendrite generation,revealed by the COMSOL multi-physics concentration field simulation.The N-CNT@SS composite anode sustain stable at 98.9%over 300 cycles at 1 mA/cm2.NCNT@SS as the anode is coupled LiFePO_(4)(LFP)as the cathode construct a full battery,demonstrating excellent cycling stability with a capacity of 152.33 mAh/g and capacity retaining ratio of 95.4%after 100 cycles at 0.5 C. 展开更多
关键词 Lithium metal batteries Nitrogen doped carbon nanotubes Stainless steel mesh COMSOL multi-physics concentration field Simulation Lithiophilic anode
原文传递
Effect of Stress-Dependent Thermal Conductivity on Thermo-Mechanical Coupling Behavior in GaN-Based Nanofilm Under Pulse Heat Source 被引量:1
17
作者 Qicong Li Xiaoya Tang +1 位作者 Linli Zhu Haihui Ruan 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2021年第1期27-39,共13页
The thermal properties of a nanostructured semiconductor are affected by multi-physical fields,such as stress and electromagnetic fields,causing changes in temperature and strain distributions.In this work,the influen... The thermal properties of a nanostructured semiconductor are affected by multi-physical fields,such as stress and electromagnetic fields,causing changes in temperature and strain distributions.In this work,the influence of stress-dependent thermal conductivity on the heat transfer behavior of a GaN-based nanofilm is investigated.The finite element method is adopted to simulate the temperature distribution in a prestressed nanofilm under heat pulses.Numerical results demonstrate the effect of stress field on the thermal conductivity of GaN-based nanofilm,namely,the prestress and the thermal stress lead to a change in the heat transfer behavior in the nanofilm.Under the same heat source,the peak temperature of the film with stress-dependent thermal conductivity is significantly lower than that of the film with a constant thermal conductivity and the maximum temperature difference can reach 8.2 K.These results could be useful for designing GaN-based semiconductor devices with higher reliability under multi-physical fields. 展开更多
关键词 multi-physical effect Stress-dependent thermal conductivity Prestress fields Heat transfer behavior GaN-based nanofilm Finite element method
原文传递
Homogenization Function of Microchannel on Heat Absorber with Compound Parabolic Concentrator
18
作者 WANG Xueqing WU Haifeng +2 位作者 MA Yusen WANG Suilin XU Rongji 《Journal of Thermal Science》 SCIE EI CAS CSCD 2022年第6期2022-2031,共10页
Microchannels offer unique advantages on heat transfer performance. In this paper, microchannels are applied to the compound parabolic concentrator(CPC) system. A multi-physical field coupling model based on Finite El... Microchannels offer unique advantages on heat transfer performance. In this paper, microchannels are applied to the compound parabolic concentrator(CPC) system. A multi-physical field coupling model based on Finite Element Method is proposed to investigate the homogenization effect of the microchannel heat absorber on the CPC non-uniform concentration. The energy conversion process from optics to heat is simulated using TracePro software, and the heat transfer processes in the microchannel are computed by Fluent using user defined functions(UDF). It is found that the microchannels behave well on weakening the influence of the nonuniformity solar heat flux on the performance of the CPC. The temperature nonuniformity of the outlet section is less than 10^(-3) in the direction of fluid flow caused by the microchannel, although the maximum surface heat flux inhomogeneity of the microchannel reaches 2.3. The peak value of the heat flux on the surface of the absorber changes from double peak to single peak, and moves to the edge, resulting in more uneven heat flux distribution with the increase of the incident angle within the acceptance semi-angle of the CPC. The result of TracePro clearly shows that when the concentration ratio is less than 5, the heat flux nonuniformity on the surface of the absorber decreases with the increase in concentration ratio. It was interestingly found that the temperature distribution of the heat transfer fluid has weak sensitivity to the changes of truncation ratio. This work provides a way to design a CPC solar collector. 展开更多
关键词 solar energy MICROCHANNEL compound parabolic concentrator multi-physical field
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部