期刊文献+
共找到201,197篇文章
< 1 2 250 >
每页显示 20 50 100
Controllable Condensation of Aromatics and Its Mechanisms in Carbonization
1
作者 Fan Xi Wang Chunlu +3 位作者 Luo Yang Ren Qiang Shen Haiping Long Jun 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第1期34-46,共13页
In order to obtain liquefied products with higher yields of aromatic molecules to produce mesophase pitch,a good understanding of the relevant reaction mechanisms is required.Reactive molecular dynamics simulations we... In order to obtain liquefied products with higher yields of aromatic molecules to produce mesophase pitch,a good understanding of the relevant reaction mechanisms is required.Reactive molecular dynamics simulations were used to study the thermal reactions of pyrene,1-methylpyrene,7,8,9,10-tetrahydrobenzopyrene,and mixtures of pyrene with 1-octene,cyclohexene,or styrene.The reactant conversion rates,reaction rates,and product distributions were calculated and compared,and the mechanisms were analyzed and discussed.The results demonstrated that methyl and naphthenic structures in aromatics might improve the conversion rates of reactants in hydrogen transfer processes,but their steric hindrances prohibited the generation of high polymers.The naphthenic structures could generate more free radicals and presented a more obvious inhibition effect on the condensation of polymers compared with the methyl side chains.It was discovered that when different olefins were mixed with pyrene,1-octene primarily underwent pyrolysis reactions,whereas cyclohexene mainly underwent hydrogen transfer reactions with pyrene and styrene,mostly producing superconjugated biradicals through condensation reactions with pyrene.In the mixture systems,the olefins scattered aromatic molecules,hindering the formation of pyrene trimers and higher polymers.According to the reactive molecular dynamics simulations,styrene may enhance the yield of dimer and enable the controlled polycondensation of pyrene. 展开更多
关键词 carbonization controllable condensation AROMATICS MECHANISMS molecular simulation
下载PDF
Cross-upgrading of biomass hydrothermal carbonization and pyrolysis for high quality blast furnace injection fuel production:Physicochemical characteristics and gasification kinetics analysis
2
作者 Han Dang Runsheng Xu +2 位作者 Jianliang Zhang Mingyong Wang Jinhua Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期268-281,共14页
The paper proposes a biomass cross-upgrading process that combines hydrothermal carbonization and pyrolysis to produce high-quality blast furnace injection fuel.The results showed that after upgrading,the volatile con... The paper proposes a biomass cross-upgrading process that combines hydrothermal carbonization and pyrolysis to produce high-quality blast furnace injection fuel.The results showed that after upgrading,the volatile content of biochar ranged from 16.19%to 45.35%,and the alkali metal content,ash content,and specific surface area were significantly reduced.The optimal route for biochar pro-duction is hydrothermal carbonization-pyrolysis(P-HC),resulting in biochar with a higher calorific value,C=C structure,and increased graphitization degree.The apparent activation energy(E)of the sample ranges from 199.1 to 324.8 kJ/mol,with P-HC having an E of 277.8 kJ/mol,lower than that of raw biomass,primary biochar,and anthracite.This makes P-HC more suitable for blast furnace injection fuel.Additionally,the paper proposes a path for P-HC injection in blast furnaces and calculates potential environmental benefits.P-HC of-fers the highest potential for carbon emission reduction,capable of reducing emissions by 96.04 kg/t when replacing 40wt%coal injec-tion. 展开更多
关键词 blast furnace injection BIOMASS cross-upgrading hydrothermal carbonization PYROLYSIS physicochemical properties gasific-ation properties
下载PDF
Study of the Temperature-Programmed Desorption of Carbon Dioxide (CO2) on Zeolites X Modified with Bivalent Cations
3
作者 Charly Mve Mfoumou Francis Ngoye +4 位作者 Pradel Tonda-Mikiela Ferdinand Evoung Evoung Landry Biyoghe Bi-Ndong Thomas Belin Samuel Mignard 《Journal of Environmental Protection》 CAS 2023年第1期66-82,共17页
Study of physisorbed and chemisorbed carbon dioxide (CO<sub>2</sub>) species was carried out on the NaX zeolite modified by cationic exchanges with bivalent cations (Ca<sup>2+</sup> and Ba<s... Study of physisorbed and chemisorbed carbon dioxide (CO<sub>2</sub>) species was carried out on the NaX zeolite modified by cationic exchanges with bivalent cations (Ca<sup>2+</sup> and Ba<sup>2+</sup>) by temperature-programmed desorption of CO<sub>2</sub> (CO<sub>2</sub>-TPD). Others results were obtained by infrared to complete the study. The results of this research showed, in the physisorption region (213 - 473 K), that the cationic exchanges on NaX zeolite with bivalent cations increase slightly the interactions of CO<sub>2</sub> molecule with adsorbents and/or cationic site. Indeed, the desorption energies of physisorbed CO<sub>2</sub> obtained on the reference zeolite NaX (13.5 kJ·mol<sup>-1</sup>) are lower than that of exchanged zeolites E-CaX and E-BaX (15.77 and 15.17 kJ·mol<sup>-1</sup> respectively). In the chemisorbed CO<sub>2</sub> region (573 - 873 K), the desorption energies related to desorbed species (bidentate carbonates: CO<sub>3</sub>2-</sup>) on the exchanged zeolites E-CaX and E-BaX are about 81 kJ·mol<sup>-1</sup>, higher than the desorbed species (bicarbonates: HCO<sub>3</sub>2-</sup>) on the reference R-NaX (62 kJ·mol<sup>-1</sup>). In addition, the exchanged E-BaX zeolite develops the secondary adsorption sites corresponding to bicarbonates species with desorption energies of 35 kJ·mol<sup>-1</sup> lower to desorption energies of bicarbonates noted on the reference zeolite NaX. 展开更多
关键词 Adsorption Faujasite X Chemisorbed and Physisorbed CO2 Exchanged Zeolites Bivalent Cations temperature-programmed Desorption (TPD) Infrared
下载PDF
Breaking the temperature limit of hydrothermal carbonization of lignocellulosic biomass by decoupling temperature and pressure 被引量:3
4
作者 Shijie Yu Xiaoxiao Yang +2 位作者 Qinghai Li Yanguo Zhang Hui Zhou 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第4期1216-1227,共12页
Hydrothermal carbonization(HTC) of lignocellulosic biomass is a promising technology for the production of carbon materials with negative carbon emissions. However, the high reaction temperature and energy consumption... Hydrothermal carbonization(HTC) of lignocellulosic biomass is a promising technology for the production of carbon materials with negative carbon emissions. However, the high reaction temperature and energy consumption have limited the development of HTC technology. In conventional batch reactors, the temperature and pressure are typically coupled at saturated states. In this study, a decoupled temperature and pressure hydrothermal(DTPH) reaction system was developed to decrease the temperature of the HTC reaction of lignocellulosic biomass(rice straw and poplar leaves). The properties of hydrochars were analyzed by scanning electron microscopy(SEM), Fourier transform infrared(FTIR) spectroscopy, X-ray photoelectron spectroscopy(XPS), Raman spectroscopy, X-ray diffraction(XRD), thermogravimetric analyzer(TGA), etc. to propose the reaction mechanism. The results showed that the HTC reaction of lignocellulosic biomass could be realized at a low temperature of 200℃ in the DTPH process, breaking the temperature limit(230℃) in the conventional process. The DTPH method could break the barrier of the crystalline structure of cellulose in the lignocellulosic biomass with high cellulose content, realizing the carbonization of cellulose and hemicellulose with the dehydration, unsaturated bond formation, and aromatization. The produced hydrochar had an appearance of carbon microspheres, with high calorific values, abundant oxygen-containing functional groups, a certain degree of graphitization, and good thermal stability. Cellulose acts not only as a barrier to protect itself and hemicellulose from decomposition, but also as a key precursor for the formation of carbon microspheres. This study shows a promising method for synthesizing carbon materials from lignocellulosic biomass with a carbon-negative effect. 展开更多
关键词 BIOMASS LIGNOCELLULOSE Hydrothermal treatment Hydrochar carbon materials
下载PDF
Influence of carbonization temperature on cobalt-based nitrogendoped carbon nanopolyhedra derived from ZIF-67 for nonoxidative propane dehydrogenation 被引量:1
5
作者 Yu-Ming Li Zi-Ye Liu +5 位作者 Qi-Yang Zhang Ya-Jun Wang Guo-Qing Cui Zhen Zhao Chun-Ming Xu Gui-Yuan Jiang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期559-568,共10页
Propylene is a significant basic material for petrochemicals such as polypropylene,propylene oxide,etc.With abundant propane supply from shale gas,propane dehydrogenation(PDH)becomes extensively attractive as an on-pu... Propylene is a significant basic material for petrochemicals such as polypropylene,propylene oxide,etc.With abundant propane supply from shale gas,propane dehydrogenation(PDH)becomes extensively attractive as an on-purpose propylene production route in recent years.Nitrogen-doped carbon(NC)nanopolyhedra supported cobalt catalysts were synthesized in one-step of ZIF-67 pyrolysis and investigated further in PDH.XPS,TEM and N_(2) adsorption-desorption were used to study the influence of carbonization temperature on as-prepared NC supported cobalt catalysts.The temperature is found to affect the cobalt phase and nitrogen species of the catalysts.And the positive correlation was established between Co0 proportion and space time yield of propylene,indicating that the modulation of carbonization temperature could be important for catalytic performance. 展开更多
关键词 Propane dehydrogenation ZIF-67 Nitrogen-doped carbon COBALT
下载PDF
Recycling Carbon Resources from Waste PET to Reduce Carbon Dioxide Emission:Carbonization Technology Review and Perspective 被引量:1
6
作者 Xing Zhou Qi Wang +6 位作者 Sai Feng Jingrui Deng Keming Zhu Yun Xing Xiaolian Meng Xiaojun Wang Lu Li 《Journal of Renewable Materials》 SCIE EI 2023年第5期2085-2108,共24页
Greenhouse gas emissions from waste plastics have caused global warming all over the world,which has been a central threat to the ecological environment for humans,flora and fauna.Among waste plastics,waste polyethyle... Greenhouse gas emissions from waste plastics have caused global warming all over the world,which has been a central threat to the ecological environment for humans,flora and fauna.Among waste plastics,waste polyethylene terephthalate(PET)is attractive due to its excellent stability and degradation-resistant.Therefore,merging China’s carbon peak and carbon neutrality goals would be beneficial.In this review,we summarize the current state-of-the-art of carbon emission decrease from a multi-scale perspective technologically.We suggest that the carbon peak for waste PET can be achieved by employing the closed-loop supply chain,including recycling,biomass utilization,carbon capture and utilization.Waste PET can be a valuable and renewable resource in the whole life cycle.Undoubtedly,all kinds of PET plastics can be ultimately converted into CO_(2),which can also be feedstock for various kinds of chemical products,including ethyl alcohol,formic acid,soda ash,PU,starch and so on.As a result,the closed-loop supply chain can help the PET plastics industry drastically reduce its carbon footprint. 展开更多
关键词 carbon peak emission PET plastic RECYCLING waste management
下载PDF
Decarbonization options of the iron and steelmaking industry based on a three-dimensional analysis 被引量:1
7
作者 Xin Lu Weijian Tian +3 位作者 Hui Li Xinjian Li Kui Quan Hao Bai 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第2期388-400,共13页
Decarbonization is a critical issue for peaking CO_(2) emissions of energy-intensive industries,such as the iron and steel industry.The decarbonization options of China’s ironmaking and steelmaking sector were discus... Decarbonization is a critical issue for peaking CO_(2) emissions of energy-intensive industries,such as the iron and steel industry.The decarbonization options of China’s ironmaking and steelmaking sector were discussed based on a systematic three-dimensional low-carbon analysis from the aspects of resource utilization(Y),energy utilization(Q),and energy cleanliness which is evaluated by a process general emission factor(PGEF)on all the related processes,including the current blast furnace(BF)-basic oxygen furnace(BOF)integrated process and the specific sub-processes,as well as the electric arc furnace(EAF)process,typical direct reduction(DR)process,and smelting reduction(SR)process.The study indicates that the three-dimensional aspects,particularly the energy structure,should be comprehensively considered to quantitatively evaluate the decarbonization road map based on novel technologies or processes.Promoting scrap utilization(improvement of Y)and the substitution of carbon-based energy(improvement of PGEF)in particular is critical.In terms of process scale,promoting the development of the scrap-based EAF or DR-EAF process is highly encouraged because of their lower PGEF.The three-dimensional method is expected to extend to other processes or industries,such as the cement production and thermal electricity generation industries. 展开更多
关键词 peak CO_(2)emission low carbon management decarbonization option energy-intensity industry ironmaking and steelmaking
下载PDF
Carbon Emission Effects Driven by Evolution of Chinese Dietary Structure from 1987 to 2020 被引量:1
8
作者 ZHU Yuanyuan ZHANG Yan ZHU Xiaohua 《Chinese Geographical Science》 SCIE CSCD 2024年第1期181-194,共14页
Exploring carbon emission effects based on the evolution of residents’ dietary structure to achieve the carbon neutrality goal and mitigate climate change is an important task.This study took China as the research ob... Exploring carbon emission effects based on the evolution of residents’ dietary structure to achieve the carbon neutrality goal and mitigate climate change is an important task.This study took China as the research object(data excluding Hong Kong,Macao and Taiwan) and used the carbon emission coefficient method to quantitatively measure the food carbon emissions from 1987–2020,then analyzed the carbon emission effects under the evolution of dietary structure.The results showed that during the study period,the Chinese dietary structure gradually changed to a high-carbon consumption pattern.The dietary structure of urban residents developed to a balanced one,while that of rural residents developed to a high-quality one.During the study period,the per capita food carbon emissions and total food consumption of Chinese showed an increasing trend.The per capita food carbon emissions of residents in urban and rural showed an overall upward trend.The total food carbon emissions in urban increased significantly,while that in rural increased first and then decreased.The influence of beef and mutton on carbon emissions is the highest in dietary structure.Compared with the balanced dietary pattern,the food carbon emissions of Chinese residents had not yet reached the peak,but were evolving to a high-carbon consumption pattern. 展开更多
关键词 dietary structure structural evolution carbon emission effects carbon neutrality China
下载PDF
Construction and Application of a Regional Kilometer-Scale Carbon Source and Sink Assimilation Inversion System(CCMVS-R) 被引量:1
9
作者 Lifeng Guo Xiaoye Zhang +8 位作者 Junting Zhong Deying Wang Changhong Miao Licheng Zhao Zijiang Zhou Jie Liao Bo Hu Lingyun Zhu Yan Chen 《Engineering》 SCIE EI CAS CSCD 2024年第2期263-275,共13页
CO_(2)is one of the most important greenhouse gases(GHGs)in the earth’s atmosphere.Since the industrial era,anthropogenic activities have emitted excessive quantities of GHGs into the atmosphere,resulting in climate ... CO_(2)is one of the most important greenhouse gases(GHGs)in the earth’s atmosphere.Since the industrial era,anthropogenic activities have emitted excessive quantities of GHGs into the atmosphere,resulting in climate warming since the 1950s and leading to an increased frequency of extreme weather and climate events.In 2020,China committed to striving for carbon neutrality by 2060.This commitment and China’s consequent actions will result in significant changes in global and regional anthropogenic carbon emissions and therefore require timely,comprehensive,and objective monitoring and verification support(MVS)systems.The MVS approach relies on the top-down assimilation and inversion of atmospheric CO_(2)concentrations,as recommended by the Intergovernmental Panel on Climate Change(IPCC)Inventory Guidelines in 2019.However,the regional high-resolution assimilation and inversion method is still in its initial stage of development.Here,we have constructed an inverse system for carbon sources and sinks at the kilometer level by coupling proper orthogonal decomposition(POD)with four-dimensional variational(4DVar)data assimilation based on the weather research and forecasting-greenhouse gas(WRF-GHG)model.Our China Carbon Monito ring and Verification Support at the Regional level(CCMVS-R)system can continuously assimilate information on atmospheric CO_(2)and other related information and realize the inversion of regional and local anthropogenic carbon emissions and natural terrestrial ecosystem carbon exchange.Atmospheric CO_(2)data were collected from six ground-based monito ring sites in Shanxi Province,China to verify the inversion effect of regio nal anthropogenic carbon emissions by setting ideal and real experiments using a two-layer nesting method(at 27 and 9 km).The uncertainty of the simulated atmospheric CO_(2)decreased significantly,with a root-mean-square error of CO_(2)concentration values between the ideal value and the simulated after assimilation was close to 0.The total anthropogenic carbon emissions in Shanxi Province in 2019 from the assimilated inversions were approximately 28.6%(17%-38%)higher than the mean of five emission inventories using the bottomup method,showing that the top-down CCMVS-R system can obtain more comprehensive information on anthropogenic carbon emissions. 展开更多
关键词 CCMVS-R Regional carbon assimilation system Anthropogenic carbon emissions CO_(2) POD 4DVar
下载PDF
Multi-scale analysis of carbon mineralization in lime-treated soils considering soil mineralogy 被引量:1
10
作者 Dhanalakshmi Padmaraj Chinchu Cherian Dali Naidu Arnepalli 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2296-2309,共14页
Mineral carbonation is emerging as a reliable CO_(2) capture technology that can mitigate climate change.In lime-treated clayey soils,mineral carbonation occurs through the carbonation of free lime and cementitious pr... Mineral carbonation is emerging as a reliable CO_(2) capture technology that can mitigate climate change.In lime-treated clayey soils,mineral carbonation occurs through the carbonation of free lime and cementitious products derived from pozzolanic reactions.The kinetics of the reactions in lime-treated clayey soils are variable and depend primarily on soil mineralogy.The present study demonstrates the role of soil mineralogy in CO_(2) capture and the subsequent changes caused by carbon mineralization in terms of the unconfined compressive strength(UCS)of lime-treated soils during their service life.Three clayey soils(kaolin,bentonite,and silty clay)with different mineralogical characteristics were treated with 4%lime content,and the samples were cured in a controlled environment for 7 d,90 d,180 d,and 365 d.After the specified curing periods,the samples were exposed to CO_(2) in a carbonation cell for 7 d.The non-carbonated samples purged with N2 gas were used as a benchmark to compare the mechanical,chemical-mineralogical,and microstructure changes caused by carbonation reactions.Experimental investigations indicated that exposure to CO_(2) resulted in an average increase of 10%in the UCS of limetreated bentonite,whereas the strength of lime-treated kaolin and silty clay was reduced by an average of 35%.The chemical and microstructural analyses revealed that the precipitated carbonates effectively filled the macropores of the treated bentonite,compared to the inadequate cementation caused by pozzolanic reactions,resulting in strength enhancement.In contrast,strength loss in lime-treated kaolin and silty clay was attributed to the carbonation of cementitious phases and partly to the tensile stress induced by carbonate precipitation.In terms of carbon mineralization prospects,lime-treated kaolin exhibited maximum carbonation due to the higher availability of unreacted lime.The results suggest that,in addition to the increase in compressive strength,adequate calcium-bearing phases and macropores determine the efficiency of carbon mineralization in lime-treated clayey soils. 展开更多
关键词 Clays MINERALOGY carbon capture LIME STRENGTH Pore structure
下载PDF
Enabling heterogeneous catalysis to achieve carbon neutrality: Directional catalytic conversion of CO_(2) into carboxylic acids 被引量:3
11
作者 Xiaofei Zhang Wenhuan Huang +4 位作者 Le Yu Max García-Melchor Dingsheng Wang Linjie Zhi Huabin Zhang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第3期1-35,共35页
The increase in anthropogenic carbon dioxide(CO_(2))emissions has exacerbated the deterioration of the global environment,which should be controlled to achieve carbon neutrality.Central to the core goal of achieving c... The increase in anthropogenic carbon dioxide(CO_(2))emissions has exacerbated the deterioration of the global environment,which should be controlled to achieve carbon neutrality.Central to the core goal of achieving carbon neutrality is the utilization of CO_(2) under economic and sustainable conditions.Recently,the strong need for carbon neutrality has led to a proliferation of studies on the direct conversion of CO_(2) into carboxylic acids,which can effectively alleviate CO_(2) emissions and create high-value chemicals.The purpose of this review is to present the application prospects of carboxylic acids and the basic principles of CO_(2) conversion into carboxylic acids through photo-,electric-,and thermal catalysis.Special attention is focused on the regulation strategy of the activity of abundant catalysts at the molecular level,inspiring the preparation of high-performance catalysts.In addition,theoretical calculations,advanced technologies,and numerous typical examples are introduced to elaborate on the corresponding process and influencing factors of catalytic activity.Finally,challenges and prospects are provided for the future development of this field.It is hoped that this review will contribute to a deeper understanding of the conversion of CO_(2) into carboxylic acids and inspire more innovative breakthroughs. 展开更多
关键词 carbon neutrality carboxylic acids CO_(2)conversion heterogeneous catalyst in situ technology
下载PDF
Synergistic effects of carbon cycle metabolism and photosynthesis in Chinese cabbage under salt stress 被引量:1
12
作者 Hao Liang Qiling Shi +8 位作者 Xing Li Peipei Gao Daling Feng Xiaomeng Zhang Yin Lu Jingsen Yan Shuxing Shen Jianjun Zhao Wei Ma 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第2期461-472,共12页
Chinese cabbage(Brassica rapa ssp. pekinensis) has a long cultivation history and is one of the vegetable crops with the largest cultivation area in China. However, salt stress severely damages photosynthesis and horm... Chinese cabbage(Brassica rapa ssp. pekinensis) has a long cultivation history and is one of the vegetable crops with the largest cultivation area in China. However, salt stress severely damages photosynthesis and hormone metabolism, nutritional balances, and results in ion toxicity in plants. To better understand the mechanisms of salt-induced growth inhibition in Chinese cabbage, RNA-seq and physiological index determination were conducted to explore the impacts of salt stress on carbon cycle metabolism and photosynthesis in Chinese cabbage. Here, we found that the number of thylakoids and grana lamellae and the content of starch granules and chlorophyll in the leaves of Chinese cabbage under salt stress showed a time-dependent response, first increasing and then decreasing. Chinese cabbage increased the transcript levels of genes related to the photosynthetic apparatus and carbon metabolism under salt stress, probably in an attempt to alleviate damage to the photosynthetic system and enhance CO_(2) fixation and energy metabolism. The transcription of genes related to starch and sucrose synthesis and degradation were also enhanced;this might have been an attempt to maintain intracellular osmotic pressure by increasing soluble sugar concentrations. Soluble sugars could also be used as potential reactive oxygen species(ROS) scavengers, in concert with peroxidase(POD)enzymes, to eliminate ROS that accumulate during metabolic processes. Our study characterizes the synergistic response network of carbon metabolism and photosynthesis under salt stress. 展开更多
关键词 Chinese cabbage Salt stress carbon metabolism PHOTOSYNTHESIS CHLOROPLAST
下载PDF
Oxygen functionalization-assisted anionic exchange toward unique construction of flower-like transition metal chalcogenide embedded carbon fabric for ultra-long life flexible energy storage and conversion 被引量:1
13
作者 Roshan M.Bhattarai Kisan Chhetri +5 位作者 Nghia Le Debendra Acharya Shirjana Saud Mai Cao Hoang Phuong Lan Nguyen Sang Jae Kim Young Sun Mok 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期72-93,共22页
The metal-organic framework(MOF)derived Ni–Co–C–N composite alloys(NiCCZ)were“embedded”inside the carbon cloth(CC)strands as opposed to the popular idea of growing them upward to realize ultrastable energy storag... The metal-organic framework(MOF)derived Ni–Co–C–N composite alloys(NiCCZ)were“embedded”inside the carbon cloth(CC)strands as opposed to the popular idea of growing them upward to realize ultrastable energy storage and conversion application.The NiCCZ was then oxygen functionalized,facilitating the next step of stoichiometric sulfur anion diffusion during hydrothermal sulfurization,generating a flower-like metal hydroxysulfide structure(NiCCZOS)with strong partial implantation inside CC.Thus obtained NiCCZOS shows an excellent capacity when tested as a supercapacitor electrode in a three-electrode configuration.Moreover,when paired with the biomass-derived nitrogen-rich activated carbon,the asymmetric supercapacitor device shows almost 100%capacity retention even after 45,000 charge–discharge cycles with remarkable energy density(59.4 Wh kg^(-1)/263.8μWh cm^(–2))owing to a uniquely designed cathode.Furthermore,the same electrode performed as an excellent bifunctional water-splitting electrocatalyst with an overpotential of 271 mV for oxygen evolution reaction(OER)and 168.4 mV for hydrogen evolution reaction(HER)at 10 mA cm−2 current density along with 30 h of unhinged chronopotentiometric stability performance for both HER and OER.Hence,a unique metal chalcogenide composite electrode/substrate configuration has been proposed as a highly stable electrode material for flexible energy storage and conversion applications. 展开更多
关键词 carbon cloth energy conversion energy storage FLEXIBLE metal embedding ultra-stable
下载PDF
Hydrochar Pelletization towards Solid Biofuel from Biowaste Hydrothermal Carbonization
14
作者 Ao Li Kai Jin +5 位作者 Jinrui Qin Zhaowei Huang Yu Liu Rui Chen Tengfei Wang Junmin Chen 《Journal of Renewable Materials》 SCIE EI 2023年第1期411-422,共12页
Hydrothermal carbonization is highly applicable to high moisture biomass upgrading due to the fact that moist-ure involved can be directly used as reaction media under the subcritical-water region.With this,value-adde... Hydrothermal carbonization is highly applicable to high moisture biomass upgrading due to the fact that moist-ure involved can be directly used as reaction media under the subcritical-water region.With this,value-added utilization of hydrochar as solid fuel with high carbon and energy density is one of the important pathways for biomass conversion.In this review,the dewatering properties of hydrochar after the hydrothermal carbonization of biowaste,coalification degree with elemental composition and evolution,pelletization of hydrochar to enhance the mechanical properties and density,coupled with the combustion properties of hydrochar biofuel were discussed with various biomass and carbonization parameters.Potential applications for the co-combustion with coal,cleaner properties and energy balance for biowaste hydrothermal carbonization were presented as well as the challenges. 展开更多
关键词 BIOMASS hydrothermal carbonization hydrochar PELLETIZATION
下载PDF
Effect of drying-wetting cycles on pore characteristics and mechanical properties of enzyme-induced carbonate precipitation-reinforced sea sand 被引量:2
15
作者 Ming Huang Kai Xu +2 位作者 Zijian Liu Chaoshui Xu Mingjuan Cui 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期291-302,共12页
Enzyme-induced carbonate precipitation(EICP)is an emanating,eco-friendly and potentially sound technique that has presented promise in various geotechnical applications.However,the durability and microscopic character... Enzyme-induced carbonate precipitation(EICP)is an emanating,eco-friendly and potentially sound technique that has presented promise in various geotechnical applications.However,the durability and microscopic characteristics of EICP-treated specimens against the impact of drying-wetting(D-W)cycles is under-explored yet.This study investigates the evolution of mechanical behavior and pore charac-teristics of EICP-treated sea sand subjected to D-W cycles.The uniaxial compressive strength(UCS)tests,synchrotron radiation micro-computed tomography(micro-CT),and three-dimensional(3D)recon-struction of CT images were performed to study the multiscale evolution characteristics of EICP-reinforced sea sand under the effect of D-W cycles.The potential correlations between microstructure characteristics and macro-mechanical property deterioration were investigated using gray relational analysis(GRA).Results showed that the UCS of EICP-treated specimens decreases by 63.7% after 15 D-W cycles.The proportion of mesopores gradually decreases whereas the proportion of macropores in-creases due to the exfoliated calcium carbonate with increasing number of D-W cycles.The micro-structure in EICP-reinforced sea sand was gradually disintegrated,resulting in increasing pore size and development of pore shape from ellipsoidal to columnar and branched.The gray relational degree suggested that the weight loss rate and UCS deterioration were attributed to the development of branched pores with a size of 100-1000 m m under the action of D-W cycles.Overall,the results in this study provide a useful guidancee for the long-term stability and evolution characteristics of EICP-reinforced sea sand under D-W weathering conditions. 展开更多
关键词 Enzyme-induced carbonate precipitation(EICP) Plant-based urease Drying-wetting(D-W)cycles Microstructure
下载PDF
Structural properties of residual carbon in coal gasification fine slag and their influence on flotation separation and resource utilization:A review 被引量:3
16
作者 Rui Han Anning Zhou +4 位作者 Ningning Zhang Kaiqiang Guo Mengyan Cheng Heng Chen Cuicui Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期217-230,共14页
Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery a... Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery and the high-value utilization of residual carbon(RC)in FS are the keys to realizing the win-win situation of the coal chemical industry in terms of economic and environmental benefits.The structural properties,such as pore,surface functional group,and microcrystalline structures,of RC in FS(FS-RC)not only affect the flotation recovery efficiency of FS-RC but also form the basis for the high-value utilization of FS-RC.In this paper,the characteristics of FS-RC in terms of pore structure,surface functional groups,and microcrystalline structure are sorted out in accordance with gasification type and FS particle size.The reasons for the formation of the special structural properties of FS-RC are analyzed,and their influence on the flotation separation and high-value utilization of FS-RC is summarized.Separation methods based on the pore structural characterist-ics of FS-RC,such as ultrasonic pretreatment-pore-blocking flotation and pore breaking-flocculation flotation,are proposed to be the key development technologies for improving FS-RC recovery in the future.The design of low-cost,low-dose collectors containing polar bonds based on the surface and microcrystalline structures of FS-RC is proposed to be an important breakthrough point for strengthening the flotation efficiency of FS-RC in the future.The high-value utilization of FS should be based on the physicochemical structural proper-ties of FS-RC and should focus on the environmental impact of hazardous elements and the recyclability of chemical waste liquid to es-tablish an environmentally friendly utilization method.This review is of great theoretical importance for the comprehensive understand-ing of the unique structural properties of FS-RC,the breakthrough of the technological bottleneck in the efficient flotation separation of FS,and the expansion of the field of the high value-added utilization of FS-RC. 展开更多
关键词 coal gasification fine slag residual carbon pore structure surface functional groups microcrystalline structure flotation sep-aration resource utilization
下载PDF
Industrial Carbon Emission Distribution and Regional Joint Emission Reduction:A Case Study of Cities in the Pearl River Basin,China 被引量:1
17
作者 JIANG Hongtao YIN Jian +4 位作者 ZHANG Bin WEI Danqi LUO Xinyuan DING Yi XIA Ruici 《Chinese Geographical Science》 SCIE CSCD 2024年第2期210-229,共20页
China’s low-carbon development path will make significant contributions to achieving global sustainable development goals.Due to the diverse natural and economic conditions across different regions in China,there exi... China’s low-carbon development path will make significant contributions to achieving global sustainable development goals.Due to the diverse natural and economic conditions across different regions in China,there exists an imbalance in the distribution of car-bon emissions.Therefore,regional cooperation serves as an effective means to attain low-carbon development.This study examined the pattern of carbon emissions and proposed a potential joint emission reduction strategy by utilizing the industrial carbon emission intens-ity(ICEI)as a crucial factor.We utilized social network analysis and Local Indicators of Spatial Association(LISA)space-time trans-ition matrix to investigate the spatiotemporal connections and discrepancies of ICEI in the cities of the Pearl River Basin(PRB),China from 2010 to 2020.The primary drivers of the ICEI were determined through geographical detectors and multi-scale geographically weighted regression.The results were as follows:1)the overall ICEI in the Pearl River Basin is showing a downward trend,and there is a significant spatial imbalance.2)There are numerous network connections between cities regarding the ICEI,but the network structure is relatively fragile and unstable.3)Economically developed cities such as Guangzhou,Foshan,and Dongguan are in the center of the network while playing an intermediary role.4)Energy consumption,industrialization,per capita GDP,urbanization,science and techno-logy,and productivity are found to be the most influential variables in the spatial differentiation of ICEI,and their combination in-creased the explanatory power of the geographic variation of ICEI.Finally,through the analysis of differences and connections in urban carbon emissions under different economic levels and ICEI,the study suggests joint carbon reduction strategies,which are centered on carbon transfer,financial support,and technological assistance among cities. 展开更多
关键词 industrial carbon emission intensity carbon emission social network analysis Location Indicators of Spatial Association(LISA) geographical detector multi-scale geographically weighted regression Pearl River Basin(PRB) China
下载PDF
Corn Starch Derived Capacitive Carbon Prepared by One-Step K2CO3 Carbonization for Supercapacitors
18
作者 Ruiying Wu Hongyan Pan 《Journal of Materials Science and Chemical Engineering》 2023年第10期1-7,共7页
High-performance carbonaceous electrode materials for supercapacitors were synthesized by subjecting corn starch to a simple molten salt activation process with K<sub>2</sub>CO<sub>3</sub> at a... High-performance carbonaceous electrode materials for supercapacitors were synthesized by subjecting corn starch to a simple molten salt activation process with K<sub>2</sub>CO<sub>3</sub> at a temperature of 850˚C. The resulting carbon material, obtained after activating for 1 hour, displayed excellent capacitive properties due to the synergistic effects of its porous structure. Utilizing these electrodes, the supercapacitor exhibited a high discharge capacitance (248 F g<sup>−1</sup> at 1 A g<sup>−1</sup>), which is 2.4 times higher than that of activated carbon without K<sub>2</sub>CO<sub>3</sub> activation. The enhancement in electrical performance was analyzed through SEM and XRD analysis, revealing that the porous and disordered structure provides a greater number of charge storage sites, resulting in improved capacitive performance. 展开更多
关键词 Activated carbon Porous Structure Corn Starch SUPERCAPACITORS
下载PDF
Heat transfer enhanced inorganic phase change material compositing carbon nanotubes for battery thermal management and thermal runaway propagation mitigation 被引量:1
19
作者 Xinyi Dai Ping Ping +4 位作者 Depeng Kong Xinzeng Gao Yue Zhang Gongquan Wang Rongqi Peng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期226-238,I0006,共14页
Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase chan... Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase change material(PCM)with nonflammability has the potential to achieve this dual function.This study proposed an encapsulated inorganic phase change material(EPCM)with a heat transfer enhancement for battery systems,where Na_(2)HPO_(4)·12H_(2)O was used as the core PCM encapsulated by silica and the additive of carbon nanotube(CNT)was applied to enhance the thermal conductivity.The microstructure and thermal properties of the EPCM/CNT were analyzed by a series of characterization tests.Two different incorporating methods of CNT were compared and the proper CNT adding amount was also studied.After preparation,the battery thermal management performance and TR propagation mitigation effects of EPCM/CNT were further investigated on the battery modules.The experimental results of thermal management tests showed that EPCM/CNT not only slowed down the temperature rising of the module but also improved the temperature uniformity during normal operation.The peak battery temperature decreased from 76℃to 61.2℃at 2 C discharge rate and the temperature difference was controlled below 3℃.Moreover,the results of TR propagation tests demonstrated that nonflammable EPCM/CNT with good heat absorption could work as a TR barrier,which exhibited effective mitigation on TR and TR propagation.The trigger time of three cells was successfully delayed by 129,474 and 551 s,respectively and the propagation intervals were greatly extended as well. 展开更多
关键词 Inorganic phase change material carbon nanotube Battery thermal management Thermal runaway propagation Fire resistance ENCAPSULATION
下载PDF
Preferentially selective extraction of lithium from spent LiCoO_(2)cathodes by medium-temperature carbon reduction roasting 被引量:1
20
作者 Daixiang Wei Wei Wang +6 位作者 Longjin Jiang Zhidong Chang Hualei Zhou Bin Dong Dekun Gao Minghui Zhang Chaofan Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期315-322,共8页
Lithium recovery from spent lithium-ion batteries(LIBs)have attracted extensive attention due to the skyrocketing price of lithium.The medium-temperature carbon reduction roasting was proposed to preferential selectiv... Lithium recovery from spent lithium-ion batteries(LIBs)have attracted extensive attention due to the skyrocketing price of lithium.The medium-temperature carbon reduction roasting was proposed to preferential selective extraction of lithium from spent Li-CoO_(2)(LCO)cathodes to overcome the incomplete recovery and loss of lithium during the recycling process.The LCO layered structure was destroyed and lithium was completely converted into water-soluble Li2CO_(3)under a suitable temperature to control the reduced state of the cobalt oxide.The Co metal agglomerates generated during medium-temperature carbon reduction roasting were broken by wet grinding and ultrasonic crushing to release the entrained lithium.The results showed that 99.10%of the whole lithium could be recovered as Li2CO_(3)with a purity of 99.55%.This work provided a new perspective on the preferentially selective extraction of lithium from spent lithium batteries. 展开更多
关键词 spent LiCoO_(2)cathodes medium-temperature carbon reduction lithium extraction priority crystal transformation macro-scopic transport resistance
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部