With the pollution of heavy metals becoming more and more serious, hu- man health suffers from great harms, making the detoxification in human body admit of no delay. This paper summarized the heavy metals used for de...With the pollution of heavy metals becoming more and more serious, hu- man health suffers from great harms, making the detoxification in human body admit of no delay. This paper summarized the heavy metals used for detoxification in hu- man body in recent years, including metallothionein, polyphenols, dietary fibers from seaweed, GTS, and explored the detoxification mechanism of these heavy metals in human body.展开更多
A comparative research has been developed for acidity and stability constants of M(TTA)1 and M(Asp)2 complexes which have been determined by potentiometric pH titration. Depending on metal ion–binding properties, vit...A comparative research has been developed for acidity and stability constants of M(TTA)1 and M(Asp)2 complexes which have been determined by potentiometric pH titration. Depending on metal ion–binding properties, vital differences in building complex were observed. The present study shows that in M(TTA) complexes, metal ions are coordinated to the carboxyl groups, but in M(Asp) some metal ions are able to build macrochelate over amine group. Hence, the following intermolecular and as a result independent concentration equilibrium between an open–isomer M(Asp)op and a closed–isomer M(Asp)cl, has to be considered cl op. The amounts are reported. The results mentioned above demonstrate that for some M(Asp) complexes the stability constants is also largely determined by the affinity of metal ions for amine group. This leads to a kind of selectivity of metal ions and transfer them via building complexes with the aspartate. The result of this effect is a higher dosage-absorption of minerals in body. Based on the sort of metal ions, the drug-therapy can be different. For heavy metal ions this building complex helps the absorption and filtration of the blood plasma, and consequently the excursion of heavy metal ions takes place. This is an important method in microdialysis. Other metal ions such as the complexes can be considered as mineral carriers. These complexes in certain conditions (PH–range) can release the minerals in body.展开更多
Engineering nano-materials & their impact on human health or environmental security constitute a newly emerging R&D hot spot and a key problem now urgently waiting for its solution in supporting the sustainabi...Engineering nano-materials & their impact on human health or environmental security constitute a newly emerging R&D hot spot and a key problem now urgently waiting for its solution in supporting the sustainability of China's nano-science and related technology development. At present, water bodies in Chinese cities have been seriously polluted by metallic nano-particles (MNPs) while related monitoring data are found woefully lacking throughout the country. Based on the above understanding, this article gives a round-up explanation on distributive characteristics of MNPs in the river mouths or water bodies of Chinese cities, their ecological hazards as well as our research in this regard, providing some inspiring ideas and data for control over this scourge. In addition, our exploration probes the discharge traits of MNPs themselves and the mechanism underlying its impact on water pollution.展开更多
Mechanism of treatment and remediation of synthetic Cu^2+ polluted water body by membrane and electro-winning combination process was investigated.The influences of electrolysis voltage,pH,and electrolysis time on th...Mechanism of treatment and remediation of synthetic Cu^2+ polluted water body by membrane and electro-winning combination process was investigated.The influences of electrolysis voltage,pH,and electrolysis time on the metal recovery effciencies were studied.Relationship between trans-membrane pressure drop(△P),additions ratio,initial Cu^2+ concentration on operating effciency,stability of membrane and the possibility of water reuse were also investigated.The morphology of membrane and electrodes were observed using scanning electron microscopy(SEM),the composition of surface deposits was ascertained using combined energy dispersive X-ray spectroscopy(EDX) and atomic absorption spectrophotometer.The results showed that using low pressure reverse osmosis(LPRO),Cu^2+ concentration could increase from 20 to 100 mg/L or even higher in concentrated solutions and permeate water conductivity could be less than 20 μS/cm.The addition of sodium dodecy/sulfate sodium dodecyl sulfate improved Cu^2+ removal effciency,while EDTA had little side influence.In electro-reduction process,using plante electrode cell,Cu^2+ concentration could be further reduced to 5 mg/L,and the average current effciency ranged from 9% to 40%.Using 3D electrolysis treatment,Cu^2+ concentration could be reduced to 0.5 mg/L with a current effciency range 60%-70%.展开更多
β-agarase AgaB appears to represent a new family of glycoside hydrolase; it is structurally and functionally different from other known agarases. In the present study, AgaB was expressed with a temperature-inducible ...β-agarase AgaB appears to represent a new family of glycoside hydrolase; it is structurally and functionally different from other known agarases. In the present study, AgaB was expressed with a temperature-inducible expression system in E. coli BL21 (DE3) as a fusion protein bearing a C-terminal hexahistidine tag. The protein existed mainly in the form of inclusion body. After being washed and solubilized, AgaB in inclusion body was denatured and purified to electrophoretic purity by immobilized metal affinity chromatography. The purified AgaB was then refolded using a simple pulse dilution method, and the refolded AgaB showed a high specific hydrolysis activity of about 1600 units /mg protein. Forty milligrams of refolded pure protein were obtained from 1L of culture.展开更多
Based on the quantum Sutton-Chen many-body potential,a molecular dynamics simulation was performed to investigate the formation and evolution properties of clusters in liquid Cu with 50 000 atoms.The cluster-type inde...Based on the quantum Sutton-Chen many-body potential,a molecular dynamics simulation was performed to investigate the formation and evolution properties of clusters in liquid Cu with 50 000 atoms.The cluster-type index method(CTIM)was used to describe the complex microstructure transitions.It is demonstrated that the amorphous structures are mainly formed with the three bond-types of 1551,1541 and 1431 in the system,and the icosahedral cluster(12 0 12 0)and other basic polyhedron clusters of(12 2 8 2),(13 1 10 2),(13 3 6 4),(14 1 10 3),(14 2 8 4)and(14 3 6 5)play a critical and leading role in the transition from liquid to glass.The nano-clusters formed in the system consist of some basic clusters and middle cluster configurations by connecting to each other,and distinguish from those obtained by gaseous deposition and ionic spray.From the results of structural parameter pair distribution function g(r),bond-types and basic cluster-types,it is found that the glass transition temperature Tg for liquid metal Cu is about 673 K at the cooling rate of 1.0×1014 K/s.展开更多
Screw metal implants (3S, Israel) with rough or smooth polished surface were introduced in a tibial proximal condyle of not purebred rabbits. The condition of surrounding tissues in 2 and 6 months after implantation w...Screw metal implants (3S, Israel) with rough or smooth polished surface were introduced in a tibial proximal condyle of not purebred rabbits. The condition of surrounding tissues in 2 and 6 months after implantation was compared by light microscopy and X-ray methods. Within 6 months after operation the considerable distinctions of radiological and morphological data were revealed not. 2 months later after introduction of implants with a rough surface the effort enclosed for its twisting is, much more, than for removal of the polished product. However, stability of fixing of implants was practically made even at 6 months. On remote rough implants there is a set of tissue scraps whereas on products with a smooth surface the tissue remains were much less. Surrounding tissues strongly join a rough surface, grow into cavities, and during removal of such products there is a considerable trauma of tissues round an implantation place. Smooth implants have the smaller area of contact with organism tissues, they are fixed due to bicortical implantation, during removal easily get out and don’t break off surrounding tissues. The signs of inflammation and formation of merged multinuclear macrophages were not found at all cases, which give evidence to the inertness of material of the mentioned articles for living organism. In some observations however and by implantation of the rough article and by introduction of polished implants, metal particles were found, but after use of the foreign body with grit-blasted treatment of surface metal was found more frequently, and its fragments had larger volume.展开更多
Neck trauma has the characteristics of diversity,complexity,and danger.Mild injuries generally require debridement and suturing or symptomatic treatment.In severe cases,acute laryngeal obstruction,subcutaneous emphyse...Neck trauma has the characteristics of diversity,complexity,and danger.Mild injuries generally require debridement and suturing or symptomatic treatment.In severe cases,acute laryngeal obstruction,subcutaneous emphysema,severe deformation and collapse of laryngeal and tracheal cartilage,or damage to adjacent organs may occur.If not diagnosed in a timely manner or mishandled,it can endanger the patient’s life or leave sequelae.If foreign body residue is caused by head and neck trauma,a reasonable judgment should be made based on the patient’s condition and corresponding measures should be taken.Accurate localization of foreign bodies before and during surgery,as well as appropriate surgical methods,are key to ensuring successful treatment.This article reports a case of a small foreign body in the neck admitted to Xianning Central Hospital at the end of January 2023.展开更多
Perchlorate and chlorate are present in various extraterrestrial celestial bodies throughout the solar system,such as Mars,the moon,and asteroids.To date,the origin mechanisms of perchlorate and chlorate on the Martia...Perchlorate and chlorate are present in various extraterrestrial celestial bodies throughout the solar system,such as Mars,the moon,and asteroids.To date,the origin mechanisms of perchlorate and chlorate on the Martian surface have been well-established;however,relatively little attention has been cast to airless bodies.Here,we experimentally investigated the potential oxidation mechanisms of chloride to chlorate and perchlorate,such as ultraviolet irradiation under H_(2)O-and O_(2)-free conditions and mechanical pulverization processes.Individual minerals,olivine,pyroxene,ilmenite,magnetite,TiO_(2)and anhydrous ferric sulfate,and lunar regolith simulants(low Ti,CLRS-1;high-Ti,CLRS-2)and their metallic iron(Fe^( 0))bearing counterparts were examined.We found that pulverization of dry matrix material-halite mixtures,even in the presence of O_(2),does not necessarily lead to perchlorate and chlorate formation without involving water.Under photocatalytic and H_(2)O and O_(2)-free conditions,olivine and pyroxene can produce oxychlorine(ClO_(x)^(−))species,although the yields were orders of magnitude lower than those under Martian-relevant conditions.Nanophase-Fe^(0)particles in the lunar regolith and the common photocatalyst TiO_(2)can facilitate the ClO_(x)^(−)formation,but their yields were lower than those with olivine.The oxides ilmenite and magnetite did not efficiently contribute to ClO_(x)^(−)production.Our results highlight the critical role of H_(2)O in the oxidation chloride to chlorate and perchlorate,and provide essential insights into the environmental influence on the formation of oxychlorine species on different celestial bodies.展开更多
基金Supported by the National Key Technology R&D Program(2013BAD10B03)National High-tech R&D Program of China(2011AA100901)the National Natural Science Foundation of China(31201340,31201402)~~
文摘With the pollution of heavy metals becoming more and more serious, hu- man health suffers from great harms, making the detoxification in human body admit of no delay. This paper summarized the heavy metals used for detoxification in hu- man body in recent years, including metallothionein, polyphenols, dietary fibers from seaweed, GTS, and explored the detoxification mechanism of these heavy metals in human body.
文摘A comparative research has been developed for acidity and stability constants of M(TTA)1 and M(Asp)2 complexes which have been determined by potentiometric pH titration. Depending on metal ion–binding properties, vital differences in building complex were observed. The present study shows that in M(TTA) complexes, metal ions are coordinated to the carboxyl groups, but in M(Asp) some metal ions are able to build macrochelate over amine group. Hence, the following intermolecular and as a result independent concentration equilibrium between an open–isomer M(Asp)op and a closed–isomer M(Asp)cl, has to be considered cl op. The amounts are reported. The results mentioned above demonstrate that for some M(Asp) complexes the stability constants is also largely determined by the affinity of metal ions for amine group. This leads to a kind of selectivity of metal ions and transfer them via building complexes with the aspartate. The result of this effect is a higher dosage-absorption of minerals in body. Based on the sort of metal ions, the drug-therapy can be different. For heavy metal ions this building complex helps the absorption and filtration of the blood plasma, and consequently the excursion of heavy metal ions takes place. This is an important method in microdialysis. Other metal ions such as the complexes can be considered as mineral carriers. These complexes in certain conditions (PH–range) can release the minerals in body.
文摘Engineering nano-materials & their impact on human health or environmental security constitute a newly emerging R&D hot spot and a key problem now urgently waiting for its solution in supporting the sustainability of China's nano-science and related technology development. At present, water bodies in Chinese cities have been seriously polluted by metallic nano-particles (MNPs) while related monitoring data are found woefully lacking throughout the country. Based on the above understanding, this article gives a round-up explanation on distributive characteristics of MNPs in the river mouths or water bodies of Chinese cities, their ecological hazards as well as our research in this regard, providing some inspiring ideas and data for control over this scourge. In addition, our exploration probes the discharge traits of MNPs themselves and the mechanism underlying its impact on water pollution.
基金supported by the National Special Program on Water (No. 2008ZX07212-01)the National Natural Science Foundation of China (No. 20877001)the China Postdoctoral Foundation (No. 20070420255)
文摘Mechanism of treatment and remediation of synthetic Cu^2+ polluted water body by membrane and electro-winning combination process was investigated.The influences of electrolysis voltage,pH,and electrolysis time on the metal recovery effciencies were studied.Relationship between trans-membrane pressure drop(△P),additions ratio,initial Cu^2+ concentration on operating effciency,stability of membrane and the possibility of water reuse were also investigated.The morphology of membrane and electrodes were observed using scanning electron microscopy(SEM),the composition of surface deposits was ascertained using combined energy dispersive X-ray spectroscopy(EDX) and atomic absorption spectrophotometer.The results showed that using low pressure reverse osmosis(LPRO),Cu^2+ concentration could increase from 20 to 100 mg/L or even higher in concentrated solutions and permeate water conductivity could be less than 20 μS/cm.The addition of sodium dodecy/sulfate sodium dodecyl sulfate improved Cu^2+ removal effciency,while EDTA had little side influence.In electro-reduction process,using plante electrode cell,Cu^2+ concentration could be further reduced to 5 mg/L,and the average current effciency ranged from 9% to 40%.Using 3D electrolysis treatment,Cu^2+ concentration could be reduced to 0.5 mg/L with a current effciency range 60%-70%.
文摘β-agarase AgaB appears to represent a new family of glycoside hydrolase; it is structurally and functionally different from other known agarases. In the present study, AgaB was expressed with a temperature-inducible expression system in E. coli BL21 (DE3) as a fusion protein bearing a C-terminal hexahistidine tag. The protein existed mainly in the form of inclusion body. After being washed and solubilized, AgaB in inclusion body was denatured and purified to electrophoretic purity by immobilized metal affinity chromatography. The purified AgaB was then refolded using a simple pulse dilution method, and the refolded AgaB showed a high specific hydrolysis activity of about 1600 units /mg protein. Forty milligrams of refolded pure protein were obtained from 1L of culture.
基金Projects(5027102650571037)supported by the National Natural Science Foundation of China
文摘Based on the quantum Sutton-Chen many-body potential,a molecular dynamics simulation was performed to investigate the formation and evolution properties of clusters in liquid Cu with 50 000 atoms.The cluster-type index method(CTIM)was used to describe the complex microstructure transitions.It is demonstrated that the amorphous structures are mainly formed with the three bond-types of 1551,1541 and 1431 in the system,and the icosahedral cluster(12 0 12 0)and other basic polyhedron clusters of(12 2 8 2),(13 1 10 2),(13 3 6 4),(14 1 10 3),(14 2 8 4)and(14 3 6 5)play a critical and leading role in the transition from liquid to glass.The nano-clusters formed in the system consist of some basic clusters and middle cluster configurations by connecting to each other,and distinguish from those obtained by gaseous deposition and ionic spray.From the results of structural parameter pair distribution function g(r),bond-types and basic cluster-types,it is found that the glass transition temperature Tg for liquid metal Cu is about 673 K at the cooling rate of 1.0×1014 K/s.
文摘Screw metal implants (3S, Israel) with rough or smooth polished surface were introduced in a tibial proximal condyle of not purebred rabbits. The condition of surrounding tissues in 2 and 6 months after implantation was compared by light microscopy and X-ray methods. Within 6 months after operation the considerable distinctions of radiological and morphological data were revealed not. 2 months later after introduction of implants with a rough surface the effort enclosed for its twisting is, much more, than for removal of the polished product. However, stability of fixing of implants was practically made even at 6 months. On remote rough implants there is a set of tissue scraps whereas on products with a smooth surface the tissue remains were much less. Surrounding tissues strongly join a rough surface, grow into cavities, and during removal of such products there is a considerable trauma of tissues round an implantation place. Smooth implants have the smaller area of contact with organism tissues, they are fixed due to bicortical implantation, during removal easily get out and don’t break off surrounding tissues. The signs of inflammation and formation of merged multinuclear macrophages were not found at all cases, which give evidence to the inertness of material of the mentioned articles for living organism. In some observations however and by implantation of the rough article and by introduction of polished implants, metal particles were found, but after use of the foreign body with grit-blasted treatment of surface metal was found more frequently, and its fragments had larger volume.
基金This research was supported by Hubei Province Humanities and Social Sciences Key Research Base Rural Education and Cultural Development Center Open Fund Project(22NJYX06)Teaching Research Project of Hubei University of Science and Technolog(2021-XC-011)Teaching Research Project of Hubei University of Science and Technolog(2020-XB-009).
文摘Neck trauma has the characteristics of diversity,complexity,and danger.Mild injuries generally require debridement and suturing or symptomatic treatment.In severe cases,acute laryngeal obstruction,subcutaneous emphysema,severe deformation and collapse of laryngeal and tracheal cartilage,or damage to adjacent organs may occur.If not diagnosed in a timely manner or mishandled,it can endanger the patient’s life or leave sequelae.If foreign body residue is caused by head and neck trauma,a reasonable judgment should be made based on the patient’s condition and corresponding measures should be taken.Accurate localization of foreign bodies before and during surgery,as well as appropriate surgical methods,are key to ensuring successful treatment.This article reports a case of a small foreign body in the neck admitted to Xianning Central Hospital at the end of January 2023.
基金supported by the B-type Strategic Priority Program of the Chinese Academy of Sciences(XDB41000000)the National Natural Science Foundation of China(42373042)+3 种基金the National Key Scientifi c Instrument and Equipment Development Project(2012YQ090229)the Scientifi c Instrument Upgrading Project of Shandong Province(2012SGGZ18)the Key Research Program of the Chinese Academy of Sciences(ZDBS-SSWTLC001)the Program of the Institute of Geology&Geophysics CAS(IGGCAS-201905).
文摘Perchlorate and chlorate are present in various extraterrestrial celestial bodies throughout the solar system,such as Mars,the moon,and asteroids.To date,the origin mechanisms of perchlorate and chlorate on the Martian surface have been well-established;however,relatively little attention has been cast to airless bodies.Here,we experimentally investigated the potential oxidation mechanisms of chloride to chlorate and perchlorate,such as ultraviolet irradiation under H_(2)O-and O_(2)-free conditions and mechanical pulverization processes.Individual minerals,olivine,pyroxene,ilmenite,magnetite,TiO_(2)and anhydrous ferric sulfate,and lunar regolith simulants(low Ti,CLRS-1;high-Ti,CLRS-2)and their metallic iron(Fe^( 0))bearing counterparts were examined.We found that pulverization of dry matrix material-halite mixtures,even in the presence of O_(2),does not necessarily lead to perchlorate and chlorate formation without involving water.Under photocatalytic and H_(2)O and O_(2)-free conditions,olivine and pyroxene can produce oxychlorine(ClO_(x)^(−))species,although the yields were orders of magnitude lower than those under Martian-relevant conditions.Nanophase-Fe^(0)particles in the lunar regolith and the common photocatalyst TiO_(2)can facilitate the ClO_(x)^(−)formation,but their yields were lower than those with olivine.The oxides ilmenite and magnetite did not efficiently contribute to ClO_(x)^(−)production.Our results highlight the critical role of H_(2)O in the oxidation chloride to chlorate and perchlorate,and provide essential insights into the environmental influence on the formation of oxychlorine species on different celestial bodies.