期刊文献+
共找到2,138篇文章
< 1 2 107 >
每页显示 20 50 100
Effect of pouring and mold temperatures on hot tearing susceptibility of AZ91D and Mg-3Nd-0.2Zn-Zr Mg alloys 被引量:8
1
作者 黄皓 付彭怀 +2 位作者 王迎新 彭立明 蒋海燕 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第4期922-929,共8页
Pouring and mold temperatures are two important parameters during casting magnesium components. The present study examined their influence on hot tearing susceptibility (HTS) of commercial AZ91D and newly developed ... Pouring and mold temperatures are two important parameters during casting magnesium components. The present study examined their influence on hot tearing susceptibility (HTS) of commercial AZ91D and newly developed Mg-3Nd-0.2Zn-Zr (mass fraction, %; NZ30K) magnesium alloys in gravity permanent mold casting condition. The results indicate that mold temperature shows much more significant influence on the HTS of both alloys than pouring temperature whose influence only can be distinguished at low mold temperature (341 K for AZ91D alloy and 423 K for NZ30K alloy). Hot tearing susceptibility prediction model concerning feeding parameters, grain size and solidification range, is more suitable to estimate the HTS of different magnesium alloys than the model only concerning feeding parameters. In order to achieve better hot tearing resistance, the ranges of pouring and mold temperatures are suggested to be 961-991 K and≥641 K for AZ91D alloy, 1003-1033 K and≥623 K for NZ30K alloy, respectively. 展开更多
关键词 AZ91D alloy Mg-3Nd-0.2Zn-Zr hot tearing susceptibility pouring temperature mold temperature
下载PDF
Effects of the Water-Cement Ratio and the Molding Temperature on the Hydration Heat of Cement
2
作者 代金鹏 HE Jie +1 位作者 WANG Qicai LOU Xuyu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期990-998,共9页
The effects of the water-cement ratio and the molding temperature on the hydration heat of cement were investigated with semi-adiabatic calorimetry.The specimens were prepared with water-cement ratios of 0.31,0.38,and... The effects of the water-cement ratio and the molding temperature on the hydration heat of cement were investigated with semi-adiabatic calorimetry.The specimens were prepared with water-cement ratios of 0.31,0.38,and 0.45,and the molding temperature was specified at 10 and 20℃.The experimental results show that,as the water-binder ratio increases,the value of the second temperature peak on the temperature curve of the cement paste decreases,and the age at which the peak appears is delayed.The higher the water-cement ratio,the higher the hydration heat release in the early period of cement hydration,but this trend reverses in the late period.There are intersection points of the total hydration heat curve of the cement pastes under the influence of the water-cement ratio,and this law can be observed at both molding temperatures.With the increase in the molding temperature,the age of the second temperature peak on the temperature curve of the cement paste will advance,but the temperature peak will decrease.The higher the molding temperature,the earlier the acceleration period of the cement hydration began,and the larger the hydration heat of the cement in the early stage,but the smaller the total heat in the late period.A subsection function calculation model of the hydration heat,which was based on the existing models,was proposed in order to predict the heat of the hydration of the concrete. 展开更多
关键词 semi-adiabatic calorimetry hydration heat water-cement ratio molding temperature MODELING
下载PDF
Dependence of Lower Molding Temperature Limit and Molding Time on Molding Mechanism in Dental Thermoforming
3
作者 Mutsumi Takahashi Masatoshi Takeuchi 《Materials Sciences and Applications》 2024年第9期350-357,共8页
Effectiveness and safety of a sports mouthguard depend on its thickness and material, and the thermoforming process affects these. The purpose of this study was to clarify the effects of differences in molding mechani... Effectiveness and safety of a sports mouthguard depend on its thickness and material, and the thermoforming process affects these. The purpose of this study was to clarify the effects of differences in molding mechanisms on the lower molding temperature limit and molding time in dental thermoforming. Ethylene vinyl acetate resin mouthguard sheet and two thermoforming machines;vacuum blower molding machine and vacuum ejector/pressure molding machine were used. The molding pressures for suction molding were −0.018 MPa for vacuum blower molding and −0.090 MPa for vacuum ejector molding, and for pressure molding was set to 0.090 MPa or 0.450 MPa. Based on the manufacturer’s standard molding temperature of 95˚C, the molding temperature was lowered in 2.5˚C increments to determine the lower molding temperature limit at which no molding defects occurred. In order to investigate the difference in molding time depending on the molding mechanism, the duration of molding pressure was adjusted in each molding machine, and the molding time required to obtain a sample without molding defects was measured. The molding time of each molding machine were compared using one-way analysis of variance. The lower molding temperature limit was 90.0˚C for the vacuum blower machine, 77.5˚C for the vacuum ejector machine, 77.5˚C for the pressure molding machine at 0.090 MPa, and 67.5˚C for the pressure molding machine at 0.45 MPa. The lower molding temperature limit was higher for lower absolute values of molding pressure. The molding time was shorter for pressure molding than for suction molding. Significant differences were observed between all conditions except between the pressure molding machine at 0.090 MPa and 0.45 MPa (P < 0.01). A comparison of the differences in lower molding temperature limit and molding time due to molding mechanisms in dental thermoforming revealed that the lower molding temperature limit depends on the molding pressure and that the molding time is longer for suction molding than for pressure molding. 展开更多
关键词 THERMOFORMING Suction molding Pressure molding Lower molding Temperature Limit molding Time
下载PDF
Crystallization Temperature and Crystallization Ratio of Mold Flux 被引量:8
4
作者 ZHU Chuan-yun HAN Wen-dian +1 位作者 LIU Cheng-jun JIANG Mao-fa 《Journal of Iron and Steel Research International》 SCIE CAS CSCD 2005年第6期23-26,共4页
The factors influencing the crystallization ratio of mold flux were researched by rapid cooling technolo gy, and the factors affecting crystallization temperature were studied by single thermocouple technique. The res... The factors influencing the crystallization ratio of mold flux were researched by rapid cooling technolo gy, and the factors affecting crystallization temperature were studied by single thermocouple technique. The results showed that the crystallization ratio of mold flux increases with the basicity and the content of Na2O, CaF2, Li2O and NaF, and decreases with the increase of the content of Al2O3, MgO, BaO, MnO and B2O3. However, the crystallization temperature of mold flux rises with the basicity and the content of NaF, Na2O and CaF2, and reduces with the increase of the content of Al2O3, MgO, BaO, MnO and B2O3. But for Li2O, crystallization temperature decreases firstly to a minimum value at 2%, and then increases gradually with the increase of Li2O. 展开更多
关键词 mold flux crystallization temperature crystallization ratio VISCOSITY solidification temperature
下载PDF
EXPERIMENTAL RESEARCH AND NUMERICAL SIMULATION OF MOLD TEMPERATURE FIELD IN CONTINUOUS CASTING OF STEEL 被引量:6
5
作者 X.S. Zheng M.H. Sha J.Z. Jin 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2006年第3期176-182,共7页
Mold is the heart of the continuous casting machine. Heat transfer and solidification in a water- cooled mold are the most important factors during the continuous casting of steel. For studying the temperature distrib... Mold is the heart of the continuous casting machine. Heat transfer and solidification in a water- cooled mold are the most important factors during the continuous casting of steel. For studying the temperature distribution of a mold wall, a simulated apparatus of mold was designed and experiments were performed by it. The measured results indicated that the mold wall temperature approaches the temperature of cooling-water. An equivalent thermal-conductivity coefficient was proposed and deduced on the basis of the conclusion of the experiments. This coefficient was applied to solve the heat transfer between the melt and cooling water, and to characterize the heat transfer capacity of the mold. By this equivalent thermal-conductivity coefficient, it is very easy and convenient to numerically simulate the solidification process of continuous casting. And the calculation results are in agreement with the experiments. The effects of custing speed and water flow rate on the mold temperature field were also discussed. 展开更多
关键词 continuous casting mold temperature field numerical simulation
下载PDF
Effect of yttrium on microstructure and mold filling capacity of a near-α high temperature titanium alloy 被引量:2
6
作者 Zhao Ertuan Chen Yuyong +2 位作者 Kong Fantao Zhang Changjiang Xiao Shulong 《China Foundry》 SCIE CAS 2012年第4期344-348,共5页
The addition of rare earth yttrium(Y) can improve the performances of high temperature titanium alloys,such as the tensile ductility,thermal stability and creep property,etc.However,few studies on the effect of Y on t... The addition of rare earth yttrium(Y) can improve the performances of high temperature titanium alloys,such as the tensile ductility,thermal stability and creep property,etc.However,few studies on the effect of Y on the castability of titanium alloys have been carried out,which is significant to fabrication of thin-walled complex titanium castings by investment casting.In this study,the microstructure and mold filling capacity of a Ti-1100 alloy with different Y additions(0,0.1wt.%,0.3wt.%,0.5wt.% and 1.0wt.%) were investigated systematically through investment casting experiments,and the casting experiments were carried out in a centrifugal titanium casting machine.The microstructures of the alloy were observed via the optical microscopy,scanning electron microscopy and transmission electron microscopy.The mold filling capacity was tested by using of a grid pattern and was evaluated by the number of segments completely filled by the cast alloy.The results indicate that the grain size is decreased and the mold filling capacity is improved significantly with increasing the addition of Y from 0 to 1.0wt.%.The average primary grain size of Ti-1100 alloy is reduced from 250 μm to 50 μm and the mold filling capacity is increased from 61.5% to 100%.Considering the potential harmful effect on tensile properties of titanium alloys due to high concentrations of Y,it is suggested that Y addition should be about 0.3wt.%. 展开更多
关键词 high temperature titanium alloy YTTRIUM mold filling capacity investment casting
下载PDF
Simulation of casting deformation based on mold surface element method 被引量:2
7
作者 Tao Chen Yu-long Tang +4 位作者 Dun-ming Liao Liu Cao Fei Sun Zi-hao Teng Di Wu 《China Foundry》 SCIE 2017年第1期28-33,共6页
Deformation of casting during the solidification process has puzzled many engineers and scientists for years. In order to attain the goal of near-net forming by casting, numerical simulation is a powerful tool. Tradit... Deformation of casting during the solidification process has puzzled many engineers and scientists for years. In order to attain the goal of near-net forming by casting, numerical simulation is a powerful tool. Traditional methods compute the thermal stress of both the casting and the mold. This method suffers the problem of massive calculation and failure of convergence. This paper proposes an improved Mold Surface Element Method, the main idea of which is to use the surface elements instead of body elements to express the interactions between the casting and the mold. The proposed method shows a high computation efficiency and provides satisfactory precision for engineering. Two practical casting products were used to verify the proposed method. The simulated results agree well with those observed in practical products. The proposed method is believed to benefit production practice and to provide theoretical guidance. 展开更多
关键词 mold surface element method thermal stress simulation of casting casting deformation
下载PDF
Flow and Temperature Fields in Slab Continuous Casting Molds 被引量:1
8
作者 Yin Zhang Liguo Cao +2 位作者 Youduo He Shiqi Li Yishen Shen(Institute of Metallurgical Engineering, Baotou University of Iron & Steel Technology Baotou 014010, China)(Metallurgy School, University of Science and Technology Beijing, Beijing 100083, China) 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2000年第2期103-106,共4页
In order to develop super-board and super-thick slabs, the flow and temperatur fields were studied in slab continuous casting molds under different practical conditions, such as slab dimensions, with-drawing slab spee... In order to develop super-board and super-thick slabs, the flow and temperatur fields were studied in slab continuous casting molds under different practical conditions, such as slab dimensions, with-drawing slab speed, design of nozzles, and superheat tempera-ture. The results showed that it is preferred to incline nozzle bores downwards and the submerged depth of the nozzles is best kept be-tween 250-300 mm. In addition, the solidified shell is thicker at the wide face than that at the narrow face, while the thin points alongthe wide face ekist both in the center and in the some area toward each respective end. 展开更多
关键词 slab continuous casting mold flow field temperature field mathematical model
下载PDF
Numerical Simulation of Injection Molding Cooling Process Based on 3D Surface Model 被引量:8
9
作者 CUIShu-biao ZHOUHua-min LIDe-qun 《Computer Aided Drafting,Design and Manufacturing》 2004年第2期64-70,共7页
The design of the cooling system of injection molds directly affects both productivity and the quality of the final part. Using the cooling process CAE system to instruct the mold design, the efficiency and quality ... The design of the cooling system of injection molds directly affects both productivity and the quality of the final part. Using the cooling process CAE system to instruct the mold design, the efficiency and quality of design can be improved greatly. At the same time, it is helpful to confirm the cooling system structure and optimize the process conditions. In this paper, the 3D surface model of mold cavity is used to replace the middle-plane model in the simulation by Boundary Element Method, which break the bottleneck of the application of the injection molding simulation softwares base on the middle-plane model. With the improvements of this paper, a practical and commercial simulation software of injection molding cooling process named as HsCAE3D6.0 is developed. 展开更多
关键词 injection molding cooling system numerical simulation 3D surface model Boundary Element Method
下载PDF
DESIGN TECHNOLOGY FOR INJECTION MOLD PARTING SURFACE BASED ON CASES AND KNOWLEDGE 被引量:1
10
作者 Yu Tongmin Li Guanhua Li Youmin Lan Jian 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第4期609-612,共4页
On the basis of the comprehensive analysis about the automatic generation of the injection mold parting surface, the parting surface design method which introduces knowledge and case-based reasoning (CBR) into the c... On the basis of the comprehensive analysis about the automatic generation of the injection mold parting surface, the parting surface design method which introduces knowledge and case-based reasoning (CBR) into the computer-aided design is described by combining with the actual characteristic in injection mold design, and the design process of case-based reasoning method is also given. A case library including the information of parting surface is built with the index of main shape features, The automatic design of the mold parting surface is realized combined with the forward-reasoning method and the similarity solution procedure. The rule knowledge library is also founded including the knowledge, principles and experiences for parting surface design. An example is used to show the validity of the method, and the quality and the efficiency of the mold design are improved. 展开更多
关键词 Injection mold Parting surface design Case-based reasoning (CBR)Similarity solution
下载PDF
An improved mathematical model to simulate mold filling process in high pressure die casting using CLSVOF method and CSF model
11
作者 Cheng Bi Zhi-peng Guo Shou-mei Xiong 《China Foundry》 SCIE CAS 2015年第3期180-188,共9页
A 3D mathematical model was proposed to simulate the mold filling process in high-pressure die casting(HPDC) to improve accuracy considering the surface tension. Piecewise liner interface calculation(PLIC) and volume ... A 3D mathematical model was proposed to simulate the mold filling process in high-pressure die casting(HPDC) to improve accuracy considering the surface tension. Piecewise liner interface calculation(PLIC) and volume of fluid(VOF) methods were used to construct the pattern of the liquid interface. A coupled levelset and VOF method(CLSVOF) was proposed to capture the interface pattern and obtain its normal vector. A continuum surface force(CSF) model was used to consider the surface tension. Two water analogy experiments were carried out using the proposed model. Simulation and experimental results were analyzed and compared; and the effects of surface tension were also discussed. The simulation results agreed well with the experiments and the simulation accuracy was an improvement on interface geometries, liquid flows, and gas entrapments. 展开更多
关键词 mold filling HPDC CLSVOF CSF surface tension force
下载PDF
Numerical simulation of temperature and strength distributions of mold(core) on heating
12
作者 魏尊杰 王长文 安阁英 《中国有色金属学会会刊:英文版》 CSCD 2001年第3期361-364,共4页
By using Visual C++, a model with post processing was carried out to simulate the temperature and strength distributions of the mold(core). The results are shown in 256 color graphic mode. With this model, the tempera... By using Visual C++, a model with post processing was carried out to simulate the temperature and strength distributions of the mold(core). The results are shown in 256 color graphic mode. With this model, the temperature and strength distributions of the mold(core) both in case of heating process for core in the furnace and solidification process for a thin wall aluminum alloy casting in the mold(core) are numerically simulated. The results show that the temperature and strength distributions of the mold(core) were uneven because the thermal conductivity of the resin sand was much small. This study laid a basis for the optimum design of the mold(core) properties. [ 展开更多
关键词 mold(core) numerical simulation temperature distribution strength distribution
下载PDF
Simulation and prediction of flow patterns in mold filling
13
作者 薛祥 张跃冰 《中国有色金属学会会刊:英文版》 CSCD 2001年第5期743-747,共5页
The potential of a 3D FDM (Finite Difference Method) computer code was presented, in prediction of flow patterns by modeling the mold filling phenomena through different gating systems. In this code, improvements and ... The potential of a 3D FDM (Finite Difference Method) computer code was presented, in prediction of flow patterns by modeling the mold filling phenomena through different gating systems. In this code, improvements and modifications were made on the original SOLA VOF and Donor Acceptor algorithms. A more accurate solution procedure for handling free surfaces is developed in order to describe the flows through complicated gating designs. A block casting of 200?mm×200?mm×50?mm with two different gating designs was chosen as the verifying problem. Water analog studies are carried out on these two gating designs. The comparison indicates that computer simulation could be a powerful tool in shaping gating systems. 展开更多
关键词 mold filling free surface gating design
下载PDF
A Qualitative Study of the Influence of Grooved Mold Surface Topography on the Formation of Surface Marks on As-Cast Ingots of Aluminum Alloy 3003
14
作者 Prince N. Anyalebechi 《Materials Sciences and Applications》 2020年第4期263-284,共22页
The effects of the wavelength and orientation of machined grooves on a mold surface, casting speed, and melt superheat on the formation of surface marks on as-cast ingots were studied with an immersion casting tester ... The effects of the wavelength and orientation of machined grooves on a mold surface, casting speed, and melt superheat on the formation of surface marks on as-cast ingots were studied with an immersion casting tester and copper mold chill blocks. The mold surface topographies included a polished smooth surface, and those with machined unidirectional parallel contoured grooves oriented either parallel (vertical) or perpendicular (horizontal) to the casting direction. The unidirectional grooves were 0.232 mm deep with wavelength or spacing between 1 and 15 mm. The casting speed and melt superheat were between 1 and 200 mm/s, and 10 and 50 K, respectively. Two primary types of surface marks were observed on ingots cast with the copper mold with smooth surface topography, namely the finer and closely spaced ripples (Type I), and the widely spaced but coarser laps (Type II). The latter were more prevalent at the higher casting speeds and melt superheats. Qualitatively, formation of both types of surface marks on the as-cast ingots of the aluminum alloy 3003 appeared to be alleviated by increase in casting speed and melt superheat, and by the use of molds with grooved surface topography. In fact, casting with a mold surface with 1 mm spaced grooves that are perpendicular to the casting direction eliminated the formation of surface marks at casting speeds greater than 1 mm/s. It also improved the uniformity of the ingot subsurface microstructure and eliminated the associated subsurface segregation. 展开更多
关键词 RIPPLES LAPS Grooved mold surface TOPOGRAPHY Casting Aluminum Alloy Lap Formation
下载PDF
Improvement of machining quality of copper-plated roll mold by controlling temperature variation 被引量:4
15
作者 Tae-Jin JE Eun-Chae JEON +3 位作者 Sang-Cheon PARK Doo-Sun CHOI Kyung-Hyun WHANG Myung-Chang KANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第A01期37-41,共5页
Micro prism film used in LCD industry can be manufactured by roll to roll method with copper-plated roll mold. As copper-plated roll mold is getting larger, pitch error is getting severer. The pitch error drops the qu... Micro prism film used in LCD industry can be manufactured by roll to roll method with copper-plated roll mold. As copper-plated roll mold is getting larger, pitch error is getting severer. The pitch error drops the quality of micro prism film. The main cause of the pitch error was investigated during machining large roll mold whose machined length was 1 200 mm. The temperature of machining system was elevated during machining roll mold, and this elevation induced thermal expansion of the system. The temperature variation around the roll mold also made thermal expansion of the roll mold. The amount of thermal expansion had strong relationship to the amount of pitch error. Therefore, the roll mold was machined after warming-up of machining system and precise temperature controller around copper-plated roll mold was installed, which minimized the temperature variation. Finally, precise micro prism patterns without pitch error were machined on the large roll mold. 展开更多
关键词 copper-plated roll mold MACHINING prism pattern temperature variation
下载PDF
Theoretical modeling of cutting temperature in high-speed end milling process for die/mold machining 被引量:4
16
作者 YingTang 《Journal of University of Science and Technology Beijing》 CSCD 2005年第1期90-95,共6页
A parametric model of cutting temperature generated in end milling process is developed according to the thermal mechanism of end milling as an intermittent operation, which periodically repeats the cycle of heating u... A parametric model of cutting temperature generated in end milling process is developed according to the thermal mechanism of end milling as an intermittent operation, which periodically repeats the cycle of heating under cutting and cooling under non-cutting. It shows that cutting speed and the tool-workpiece engagement condition are determinative for tool temperature in the operation. The suggested model was investigated by tests of AlTiN coated endmill machining hardened die steel JIS SKD61, where cutting temperature on the flank face of tool was measured with an optical fiber type radiation thermometer. Experimental results show that the tendency of cutting temperature to increase with cutting speed and engagement angle is intensified with the progressing tool wear. 展开更多
关键词 end milling cutting temperature intermittent cutting die/mold machining
下载PDF
Neural Network Approach to Predict Melt Temperature in Injection Molding Processes 被引量:3
17
作者 王保国 高福荣 余宝乐 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2000年第4期326-331,共6页
Among the processing conditions of injection molding, temperature of the melt entering the mold plays a significant role in determining the quality of molded parts. In our previous research, a neural network was deve... Among the processing conditions of injection molding, temperature of the melt entering the mold plays a significant role in determining the quality of molded parts. In our previous research, a neural network was developed to predict the melt temperature in the barrel during the plastication phase. In this paper, a neural network is proposed to predict the melt temperature at the nozzle exit during the injection phase. A typical two-layer neural network with back propagation learning rules is used to model the relationship between input and output in the injection phase. The preliminary results show that the network works well and may be used for on-line optimization and control of injection molding processes. 展开更多
关键词 injection molding neural network melt temperature
下载PDF
Injection molding of micro patterned PMMA plate 被引量:2
18
作者 Yeong-Eun YOO Tae-Hoon KIM +3 位作者 Tae-Jin JE Doo-Sun CHOI Chang-Wan KIM Sun-Kyung KIM 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第A01期148-152,共5页
A plastic plate with surface micro features was injection molded to investigate the effect of pressure rise of melt on the replication of the micro structures. Prism pattern, which is used in many optical applications... A plastic plate with surface micro features was injection molded to investigate the effect of pressure rise of melt on the replication of the micro structures. Prism pattern, which is used in many optical applications, was selected as a model pattern. The prism pattern is 50 μm in pitch and 108° in the vertical angle. The overall size of the plate was 335 minx213 mm and the thickness of the plate varied linearly from 2.6 mm to 0.7 ram. The prism pattern was firstly machined on the nickel plated core block using micro diamond tool and this machined pattern core was installed in a mold for injection molding of prism patterned plate. Polymethyl methacrylate (PMMA) was used as a molding material. The pressure and temperature of the melt in the cavity were measured at different positions in the cavity and the replication of the pattern was also measured at the same positions. The results show that the pressure or temperature profile through the process depends on the shape and the size of the plate. The replication is affected by the temperature and pressure profiles at the early stage of filling, which is right after the melt reaches the position to be measured. 展开更多
关键词 micro prism pattern injection molding REPLICatION pressure profile temperature profile
下载PDF
Numerical simulation of mold-temperature-control solidification 被引量:2
19
作者 游东东 邵明 +1 位作者 李元元 周照耀 《中国有色金属学会会刊:英文版》 EI CSCD 2007年第3期443-448,共6页
A finite element method(FEM) for the numerical simulation of the columnar part of the mould-temperature-control solidification(MTCS) process was presented. The latent heat was taken into account and 3D transient heat ... A finite element method(FEM) for the numerical simulation of the columnar part of the mould-temperature-control solidification(MTCS) process was presented. The latent heat was taken into account and 3D transient heat transfer analysis was carried out by using the developed FEM software. The relative errors between the numerical and experimental data are less than 6%. Three MTCS cases were computed with this method. The first case only opens the cooling channels in the bottom of the mold. The second case individually controls the separate 7 groups of cooling channels by giving 7 control points. When the temperature of a control point reaches the preset value of 400℃, the corresponding channel will be opened. The third case opens all the cooling channels at the same time. The results indicate that in the second case, the solid-liquid interface keeps near-planar. The growth velocity of the solid-liquid interface is 0.3-0.4 mm/s, which is greater than 0.1-0.3 mm/s of the first case, performing better than the others. Thus the forming quality and efficiency part interior can be improved by mold-temperature-control and the numerical model is validated. The numerical simulation of MTCS can provide an available tool for the advanced investigation on the defect improvement and the crystal’s quality. 展开更多
关键词 数值模拟 温度控制 凝固 固液界面
下载PDF
A Novel Statistical Analysis for Residual Stress in Injection Molding 被引量:1
20
作者 Faisal Alkaabneh Mahmoud Barghash Yousef Abdullat 《American Journal of Operations Research》 2016年第1期90-103,共14页
Residual stresses can reduce the reliability of plastic injection molding parts. This work is an attempt to model the residual stresses as a function of injection molding parameters. More stress is placed on reducing ... Residual stresses can reduce the reliability of plastic injection molding parts. This work is an attempt to model the residual stresses as a function of injection molding parameters. More stress is placed on reducing the number of input factors and to include all possible interactions. For this purpose, two-stage experimentation is suggested: a factor screening stage and Response Surface optimization stage. In screening stage Taguchi 3 level experimental design is used to classify the input parameters as significant and non-significant factors. Eight input variables were classified into 3 non-significant and 5 significant factors using this screening stage. Thus for the Response Surface optimization stage: instead of doing 160 experiments in Central Composite, 56 are only needed after the screening stage in half Central Composite Design. The best subset and regression model fitting tools in addition to model verification using randomly selected input setting were used to select a model for predicting residual stresses with a verified Root Mean Square Error (RSME) of nearly 0.93 MPa. 展开更多
关键词 Injection molding Multi-Stage Experimental Design Taguchi Experimental Design Response surface Methodology Regression Analysis
下载PDF
上一页 1 2 107 下一页 到第
使用帮助 返回顶部