A modified Stober method has been developed which permits the controlled growth of spherical hollow spheres with diameters between 197 and 208 nanometers by consecutively cocondensed methyltrimethoxysilane and dimethy...A modified Stober method has been developed which permits the controlled growth of spherical hollow spheres with diameters between 197 and 208 nanometers by consecutively cocondensed methyltrimethoxysilane and dimethyldimethoxysilane monomers onto microemulsion of polydimethylsiloxane and subsequently removing the templated polydimethylsiloxane by exposure to solvents. Ammonia was used as a morphological catalyst. The morphology of the polymer spheres was demonstrated by transmission electron micrographs (TEM) and atomic force microscopy (AFM).展开更多
Hollow polysiloxane particles with diameters between 1.40 and 1.60 micrometres were fabricated by consecutive cocondensation of methyltrimethoxysilane and diphenyldimethoxysilane monomers onto polydiphenylsiloxane, su...Hollow polysiloxane particles with diameters between 1.40 and 1.60 micrometres were fabricated by consecutive cocondensation of methyltrimethoxysilane and diphenyldimethoxysilane monomers onto polydiphenylsiloxane, subsequently removing the templated polydiphenylsiloxane by exposure to solvents. TEM and AFM measurement reveal that there are obvious hollow sphere structures for the polysiloxane microsphere particles. The hollow spheres are envisioned to have applications in areas ranging from dye-industry, catalysis, pharmaceutics to materials science.展开更多
Dummy molecularly imprinted polymers (DMIPs) for 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) were produced using three structural analogues as dummy template molecules. The chosen analogues were 4-(a...Dummy molecularly imprinted polymers (DMIPs) for 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) were produced using three structural analogues as dummy template molecules. The chosen analogues were 4-(acetymethylamino)-1-(3-pyridyl)-butanol, 4- (methylamino)-1-(3-pyridyl)-1-butanol, and 1-(3-pyridyl)-1,4,-butanediol. The molecular recognition characteristics of the produced polymers were evaluated by X-ray photoelec- tron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). Interactions between NNAL and methacrylic acid should be cooperative hydrogen bonds while the ni- trogen atom of the pyridine ring and the oxygen atom of the nitroso group in NNAL are two of the hydrogen-bond acceptors. It was further demonstrated that DMIP synthesized by 4-(acetymethylamino)-1-(3-pyridyl)-butanol had the best binding performance by XPS and FT-IR. Then dummy molecularly imprinted solid phase extraction (DMISPE) was developed for the determination of the analyte using the hit polymer as the sorbing material. Under optimal conditions, the recovery of NNAL dissolved in standard solution reached 93%. And the investigated polymer exhibited much higher binding of NNAL when nicotine was acted as the competitive molecule. Also the proposed method was applied to the measurement of NNAL spiked in blank urine samples with recoveries ranging from 87.2% to 101.2%.展开更多
A highly ordered m-phenylenediimino-bridged ladder polyhydrosiloxane (abbr. OLPHS) with Mn = 1.24 × 10^4 was synthesized stoichiometric hydrolysis and dehydrochlorination condensation reaction between Si-Cl and...A highly ordered m-phenylenediimino-bridged ladder polyhydrosiloxane (abbr. OLPHS) with Mn = 1.24 × 10^4 was synthesized stoichiometric hydrolysis and dehydrochlorination condensation reaction between Si-Cl and Si-OH bonds. The complete ladder structure of OLPHS has been confirmed by the following three data. Two characteristic Bragg's peaks representing the ladder width (w = 0.94 nm) and ladder thickness (t = 0.42 nm) were observed in XRD analysis, which are consistent with those calculated by molecular simulation. The very sharp absorption with a small half-peak width (w1/2 = 0.5 ppm) for [(-HN)HSiO2/2]n moiety of OLPHS in ^29Si NMR spectrum indicated presence of the complete ladder structure. As collateral evidence, a higher glass transition temperature (Tg = 105 ℃) is also recorded in the DSC measurement, implying the high stiffness of ladder chain of OLPHS.展开更多
In this paper, the surface imprinted cross-linked polystyrene beads were prepared via suspension polymerization with styrene (St), divinylbezene (DVB), polyvinyl alcohol (PVA1788), the mixture of Span 85 and xylene or...In this paper, the surface imprinted cross-linked polystyrene beads were prepared via suspension polymerization with styrene (St), divinylbezene (DVB), polyvinyl alcohol (PVA1788), the mixture of Span 85 and xylene or the mixture of Span 85 and paraffin as monomer, cross-linking agent, dispersion stabilizer and templates, respectively. The results indicate that there are dense cavities on the surface of beads, and the diameter and density of cavity are related with the composition and amount of emulsion template. The forming mechanism of cavity from thermodynamics and dynamics was proposed.展开更多
Mesoporous polymers combine the advantages of polymer materials(abundant polar functional groups,lightweight,flexibility,and processability)and mesoporous structures(high specific surface area,adjustable pore structur...Mesoporous polymers combine the advantages of polymer materials(abundant polar functional groups,lightweight,flexibility,and processability)and mesoporous structures(high specific surface area,adjustable pore structure,and large pore volume);hence,they have great application potential in sensing,adsorption,catalysis,energy storage,biomedicine,etc.Currently,developing advanced synthetic strategies for mesoporous polymers and investigating their intrinsic applications have become hot research topics.Soft-template-based self-assembly is regarded as a promising approach for synthesizing mesoporous polymers.This work reviews recent progress in the synthetic strategy for producing various mesoporous polymers using soft-template selfassembly,focusing on the synthesis of conductive polymers,phenol-based polymers,and resin-based polymers and their potential applications.Finally,perspectives on future applications of mesoporous polymers,along with a few challenges that need to be resolved,are also discussed in this review.展开更多
基金support of the Key Laboratory of Advanced Textile Materials and Manufacturing Technology(Zhejiang Sci-Tech University),Ministry of Education(No.2005QN04)the National Natural Science Foundation of China(No.20573095)is gratefully acknowledged.
文摘A modified Stober method has been developed which permits the controlled growth of spherical hollow spheres with diameters between 197 and 208 nanometers by consecutively cocondensed methyltrimethoxysilane and dimethyldimethoxysilane monomers onto microemulsion of polydimethylsiloxane and subsequently removing the templated polydimethylsiloxane by exposure to solvents. Ammonia was used as a morphological catalyst. The morphology of the polymer spheres was demonstrated by transmission electron micrographs (TEM) and atomic force microscopy (AFM).
文摘Hollow polysiloxane particles with diameters between 1.40 and 1.60 micrometres were fabricated by consecutive cocondensation of methyltrimethoxysilane and diphenyldimethoxysilane monomers onto polydiphenylsiloxane, subsequently removing the templated polydiphenylsiloxane by exposure to solvents. TEM and AFM measurement reveal that there are obvious hollow sphere structures for the polysiloxane microsphere particles. The hollow spheres are envisioned to have applications in areas ranging from dye-industry, catalysis, pharmaceutics to materials science.
文摘Dummy molecularly imprinted polymers (DMIPs) for 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) were produced using three structural analogues as dummy template molecules. The chosen analogues were 4-(acetymethylamino)-1-(3-pyridyl)-butanol, 4- (methylamino)-1-(3-pyridyl)-1-butanol, and 1-(3-pyridyl)-1,4,-butanediol. The molecular recognition characteristics of the produced polymers were evaluated by X-ray photoelec- tron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). Interactions between NNAL and methacrylic acid should be cooperative hydrogen bonds while the ni- trogen atom of the pyridine ring and the oxygen atom of the nitroso group in NNAL are two of the hydrogen-bond acceptors. It was further demonstrated that DMIP synthesized by 4-(acetymethylamino)-1-(3-pyridyl)-butanol had the best binding performance by XPS and FT-IR. Then dummy molecularly imprinted solid phase extraction (DMISPE) was developed for the determination of the analyte using the hit polymer as the sorbing material. Under optimal conditions, the recovery of NNAL dissolved in standard solution reached 93%. And the investigated polymer exhibited much higher binding of NNAL when nicotine was acted as the competitive molecule. Also the proposed method was applied to the measurement of NNAL spiked in blank urine samples with recoveries ranging from 87.2% to 101.2%.
文摘A highly ordered m-phenylenediimino-bridged ladder polyhydrosiloxane (abbr. OLPHS) with Mn = 1.24 × 10^4 was synthesized stoichiometric hydrolysis and dehydrochlorination condensation reaction between Si-Cl and Si-OH bonds. The complete ladder structure of OLPHS has been confirmed by the following three data. Two characteristic Bragg's peaks representing the ladder width (w = 0.94 nm) and ladder thickness (t = 0.42 nm) were observed in XRD analysis, which are consistent with those calculated by molecular simulation. The very sharp absorption with a small half-peak width (w1/2 = 0.5 ppm) for [(-HN)HSiO2/2]n moiety of OLPHS in ^29Si NMR spectrum indicated presence of the complete ladder structure. As collateral evidence, a higher glass transition temperature (Tg = 105 ℃) is also recorded in the DSC measurement, implying the high stiffness of ladder chain of OLPHS.
文摘In this paper, the surface imprinted cross-linked polystyrene beads were prepared via suspension polymerization with styrene (St), divinylbezene (DVB), polyvinyl alcohol (PVA1788), the mixture of Span 85 and xylene or the mixture of Span 85 and paraffin as monomer, cross-linking agent, dispersion stabilizer and templates, respectively. The results indicate that there are dense cavities on the surface of beads, and the diameter and density of cavity are related with the composition and amount of emulsion template. The forming mechanism of cavity from thermodynamics and dynamics was proposed.
基金supported by the National Natural Science Foundation of China(61831021,51773062)。
文摘Mesoporous polymers combine the advantages of polymer materials(abundant polar functional groups,lightweight,flexibility,and processability)and mesoporous structures(high specific surface area,adjustable pore structure,and large pore volume);hence,they have great application potential in sensing,adsorption,catalysis,energy storage,biomedicine,etc.Currently,developing advanced synthetic strategies for mesoporous polymers and investigating their intrinsic applications have become hot research topics.Soft-template-based self-assembly is regarded as a promising approach for synthesizing mesoporous polymers.This work reviews recent progress in the synthetic strategy for producing various mesoporous polymers using soft-template selfassembly,focusing on the synthesis of conductive polymers,phenol-based polymers,and resin-based polymers and their potential applications.Finally,perspectives on future applications of mesoporous polymers,along with a few challenges that need to be resolved,are also discussed in this review.