There are mainly four kinds of models to record and deal with historical information. By taking them as reference, the spatio-temporal model based on event semantics is proposed. In this model, according to the way fo...There are mainly four kinds of models to record and deal with historical information. By taking them as reference, the spatio-temporal model based on event semantics is proposed. In this model, according to the way for describing an event, all the information are divided into five domains. This paper describes the model by using the land parcel change in the cadastral information system, and expounds the model by using five tables corresponding to the five domains. With the aid of this model, seven examples are given on historical query, trace back and recurrence. This model can be implemented either in the extended relational database or in the object-oriented database.展开更多
This paper presents a conceptual data model, the STA-model, for handling spatial, temporal and attribute aspects of objects in GIS. The model is developed on the basis of object-oriented modeling approach. This model ...This paper presents a conceptual data model, the STA-model, for handling spatial, temporal and attribute aspects of objects in GIS. The model is developed on the basis of object-oriented modeling approach. This model includes two major parts: (a) modeling the signal objects by STA-object elements, and (b) modeling relationships between STA-objects. As an example, the STA-model is applied for modeling land cover change data with spatial, temporal and attribute components.展开更多
While the use of three-dimensional (3D) geographical information system (GIS) is becoming in rapid development and being used in various fields such as urban and regional planning, disaster management and planning, mo...While the use of three-dimensional (3D) geographical information system (GIS) is becoming in rapid development and being used in various fields such as urban and regional planning, disaster management and planning, mobile navigation and etc., commercial and open source GIS software packages tend to offer 3D-GIS functionalities for their products. On the basis, GIS analysis functions are to provide information with respect to geographical location and by having 3D spatial data as an input, it will give advantages in providing horizontal position information. However, to analyze moving objects (temporal) in 3D seems not an easy task and not fully supported by current GIS platform packages. Previously in two-dimensional (2D) GIS practice, main issue addressed by researchers in managing temporal spatial objects is GIS packages were designed based on hardware and software constraints whereby it should be based on the temporal spatial objects ontology. Nowadays, the trend of managing temporal 3D data is via 3D spatial simulation or animation. This approach will not in assistance for GIS users in conducting spatial queries. Without having a suitable ontology and valid topological data structure for temporal 3D data, it will cause repetitive of temporal data (redundancy) and complications in executing spatial analysis in 3D environment. Therefore this paper focuses on the ontology for managing moving 3D spatial objects (i.e. air pollution, flood). The characteristics of moving objects were reviewed thoroughly by categorizing it based on its different appearances. Moreover, existing methods in managing temporal database were addressed and discussed for its practicalities. Another important aspect in managing temporal 3D objects is the implementation of topological data structures for 3D spatial objects were reviewed. In the last section of this paper it summarized the issues and further ideas towards implementing and managing temporal 3D spatial objects in GIS based on the Geoinformation Ontology (GeO).展开更多
Cities provide spatial contexts for populations and economic activities. Determining the spatial-temporal patterns of urban expansion is of particular significance for regional sustainable development. To achieve a be...Cities provide spatial contexts for populations and economic activities. Determining the spatial-temporal patterns of urban expansion is of particular significance for regional sustainable development. To achieve a better understanding of the spatial-temporal patterns of urban expansion of Korla City, we explore the urban expansion characteristics of Korla City over the period 1995-2015 by employing Landsat TM/ETM+ images of 1995, 2000, 2005, 2010, and 2015. Urban land use types were classified using the supervised classification method in ENVI 4.5. Urban expansion indices, such as expansion area, expansion proportion, expansion speed, expansion intensity, compactness, and fractal dimension, were calculated. The spatial-temporal patterns and evolution process of the urban expansion (e.g., urban gravity center and its direction of movement) were then quantitatively analyzed. The results indicated that, over the past 25 years, the area and proportion of urban land increased substantially with an average annual growth rate of 15.18%. Farmland and unused land were lost greatly due to the urban expansion. This result might be attributable to the rapid population growth and the dramatic economic development in this area. The city extended to the southeast, and the urban gravity center shifted to the southeast as well by about 2118 m. The degree of urban compactness tended to decrease and the fractal dimension index tended to increase, indicating that the spatial pattern of Korla City was becoming loose, complex, and unstable. This study could provide a scientific reference for the studies on urban expansion of oasis cities in arid land.展开更多
Although water has the central function of the bloodstream in the biosphere especially in arid or semi-arid regions such as Yah'an region in northwestern China, yet the very limited attention is paid to the role of t...Although water has the central function of the bloodstream in the biosphere especially in arid or semi-arid regions such as Yah'an region in northwestern China, yet the very limited attention is paid to the role of the water-related processes in ecosystem. In this research, based on continuous nearly 50-year data including runoff volume, sediment discharge as well as sediment accretion from hydrographic stations, and 10-year information of water quality from pollution monitoring stations, the method for measuring in-stream flow requirement has been put forward supported by experiential models and GIS spatial analysis. Additionally, the changes of in-stream flow requirement for environment and economic development have been addressed from spatial-temporal dimensions. The results show that: (1) According to the central streams in Yan'an region, mean annual in-stream flow requirement reaches 1.0619 billion m^3, and the surface water for economic exploitation is 0.2445 billion m3 (2) Mean annual in-stream flow requirement for sediment transfers in flood period occupies over 80% of the integrated volume in a year. (3) From the 1950s to 1970s, in-stream flow requirement for sediment transfers is comparatively higher, while from the 1980s to 1990s, this requirement presents a decreasing tendency.展开更多
Detecting change on the face of the globe using GIS (Geographic Information System) aided by remotely sensed imagery is now becoming an indispensable tool in managing the resources of our planet. The present study wit...Detecting change on the face of the globe using GIS (Geographic Information System) aided by remotely sensed imagery is now becoming an indispensable tool in managing the resources of our planet. The present study with the help of GIS and remote sensing (RS) is also a similar attempt in recording and quantifying change in land use and land cover in district Pishin both in spatial and temporal extents. Satellite imagery was acquired from the USGS official website from three LANDSAT satellites. Theses satellites are LANDSAT 5, LANDSAT7 and LANDSAT 8. The data were acquired for the years 1992, 2003 and 2013. Satellite imagery was processed in ArcMap 10.1 and maximum likelihood supervised image classification was applied in reaching the goal of detecting change. The result of the analysis revealed that built-up area was increased by 5.84%;vegetation was increased by 3.89%;water bodies were increased by 0.05% and bare surfaces were decreased by 9.78%. The decrease in the barren surfaces was attributed to the increase in vegetation and built-up area which replaced the barren land in the study area. This paper also shows the significance and potential of digital change detection methods in managing the resources of our environment and keeping an eye on the land use and land cover of our Earth.展开更多
文摘There are mainly four kinds of models to record and deal with historical information. By taking them as reference, the spatio-temporal model based on event semantics is proposed. In this model, according to the way for describing an event, all the information are divided into five domains. This paper describes the model by using the land parcel change in the cadastral information system, and expounds the model by using five tables corresponding to the five domains. With the aid of this model, seven examples are given on historical query, trace back and recurrence. This model can be implemented either in the extended relational database or in the object-oriented database.
文摘This paper presents a conceptual data model, the STA-model, for handling spatial, temporal and attribute aspects of objects in GIS. The model is developed on the basis of object-oriented modeling approach. This model includes two major parts: (a) modeling the signal objects by STA-object elements, and (b) modeling relationships between STA-objects. As an example, the STA-model is applied for modeling land cover change data with spatial, temporal and attribute components.
文摘While the use of three-dimensional (3D) geographical information system (GIS) is becoming in rapid development and being used in various fields such as urban and regional planning, disaster management and planning, mobile navigation and etc., commercial and open source GIS software packages tend to offer 3D-GIS functionalities for their products. On the basis, GIS analysis functions are to provide information with respect to geographical location and by having 3D spatial data as an input, it will give advantages in providing horizontal position information. However, to analyze moving objects (temporal) in 3D seems not an easy task and not fully supported by current GIS platform packages. Previously in two-dimensional (2D) GIS practice, main issue addressed by researchers in managing temporal spatial objects is GIS packages were designed based on hardware and software constraints whereby it should be based on the temporal spatial objects ontology. Nowadays, the trend of managing temporal 3D data is via 3D spatial simulation or animation. This approach will not in assistance for GIS users in conducting spatial queries. Without having a suitable ontology and valid topological data structure for temporal 3D data, it will cause repetitive of temporal data (redundancy) and complications in executing spatial analysis in 3D environment. Therefore this paper focuses on the ontology for managing moving 3D spatial objects (i.e. air pollution, flood). The characteristics of moving objects were reviewed thoroughly by categorizing it based on its different appearances. Moreover, existing methods in managing temporal database were addressed and discussed for its practicalities. Another important aspect in managing temporal 3D objects is the implementation of topological data structures for 3D spatial objects were reviewed. In the last section of this paper it summarized the issues and further ideas towards implementing and managing temporal 3D spatial objects in GIS based on the Geoinformation Ontology (GeO).
基金funded by the National Natural Science Foundation of China(41161063,41261090,41361043,41661036)the National Natural Science Foundation of China–Xinjiang Mutual Funds(U1603241)+2 种基金the Xinjiang Uygur Autonomous Region Science and Technology Support Project(201591101)the special fund of the Xinjiang Uygur Autonomous Region Key Laboratory(2014KL005,2016D03001)the Open Project Fund of the Key Laboratory of Oasis Ecology of the Education Ministry,Xinjiang University(040079)
文摘Cities provide spatial contexts for populations and economic activities. Determining the spatial-temporal patterns of urban expansion is of particular significance for regional sustainable development. To achieve a better understanding of the spatial-temporal patterns of urban expansion of Korla City, we explore the urban expansion characteristics of Korla City over the period 1995-2015 by employing Landsat TM/ETM+ images of 1995, 2000, 2005, 2010, and 2015. Urban land use types were classified using the supervised classification method in ENVI 4.5. Urban expansion indices, such as expansion area, expansion proportion, expansion speed, expansion intensity, compactness, and fractal dimension, were calculated. The spatial-temporal patterns and evolution process of the urban expansion (e.g., urban gravity center and its direction of movement) were then quantitatively analyzed. The results indicated that, over the past 25 years, the area and proportion of urban land increased substantially with an average annual growth rate of 15.18%. Farmland and unused land were lost greatly due to the urban expansion. This result might be attributable to the rapid population growth and the dramatic economic development in this area. The city extended to the southeast, and the urban gravity center shifted to the southeast as well by about 2118 m. The degree of urban compactness tended to decrease and the fractal dimension index tended to increase, indicating that the spatial pattern of Korla City was becoming loose, complex, and unstable. This study could provide a scientific reference for the studies on urban expansion of oasis cities in arid land.
基金National Natural Science Foundation of China, No.40771019 Innovation Foundation of Shaanxi Normal University
文摘Although water has the central function of the bloodstream in the biosphere especially in arid or semi-arid regions such as Yah'an region in northwestern China, yet the very limited attention is paid to the role of the water-related processes in ecosystem. In this research, based on continuous nearly 50-year data including runoff volume, sediment discharge as well as sediment accretion from hydrographic stations, and 10-year information of water quality from pollution monitoring stations, the method for measuring in-stream flow requirement has been put forward supported by experiential models and GIS spatial analysis. Additionally, the changes of in-stream flow requirement for environment and economic development have been addressed from spatial-temporal dimensions. The results show that: (1) According to the central streams in Yan'an region, mean annual in-stream flow requirement reaches 1.0619 billion m^3, and the surface water for economic exploitation is 0.2445 billion m3 (2) Mean annual in-stream flow requirement for sediment transfers in flood period occupies over 80% of the integrated volume in a year. (3) From the 1950s to 1970s, in-stream flow requirement for sediment transfers is comparatively higher, while from the 1980s to 1990s, this requirement presents a decreasing tendency.
文摘Detecting change on the face of the globe using GIS (Geographic Information System) aided by remotely sensed imagery is now becoming an indispensable tool in managing the resources of our planet. The present study with the help of GIS and remote sensing (RS) is also a similar attempt in recording and quantifying change in land use and land cover in district Pishin both in spatial and temporal extents. Satellite imagery was acquired from the USGS official website from three LANDSAT satellites. Theses satellites are LANDSAT 5, LANDSAT7 and LANDSAT 8. The data were acquired for the years 1992, 2003 and 2013. Satellite imagery was processed in ArcMap 10.1 and maximum likelihood supervised image classification was applied in reaching the goal of detecting change. The result of the analysis revealed that built-up area was increased by 5.84%;vegetation was increased by 3.89%;water bodies were increased by 0.05% and bare surfaces were decreased by 9.78%. The decrease in the barren surfaces was attributed to the increase in vegetation and built-up area which replaced the barren land in the study area. This paper also shows the significance and potential of digital change detection methods in managing the resources of our environment and keeping an eye on the land use and land cover of our Earth.