期刊文献+
共找到824篇文章
< 1 2 42 >
每页显示 20 50 100
An Edge-assisted, Object-oriented Random Forest Approach for Refined Extraction of Tea Plantations Using Multi-temporal Sentinel-2 and High-resolution Gaofen-2 Imagery
1
作者 Juanjuan YU Xiufeng HE +4 位作者 Jia XU Zhuang GAO Peng YANG Yuanyuan CHEN Jiacheng XIONG 《Journal of Geodesy and Geoinformation Science》 CSCD 2023年第1期31-46,共16页
As a consumed and influential natural plant beverage,tea is widely planted in subtropical and tropical areas all over the world.Affected by(sub)tropical climate characteristics,the underlying surface of the tea distri... As a consumed and influential natural plant beverage,tea is widely planted in subtropical and tropical areas all over the world.Affected by(sub)tropical climate characteristics,the underlying surface of the tea distribution area is extremely complex,with a variety of vegetation types.In addition,tea distribution is scattered and fragmentized in most of China.Therefore,it is difficult to obtain accurate tea information based on coarse resolution remote sensing data and existing feature extraction methods.This study proposed a boundary-enhanced,object-oriented random forest method on the basis of high-resolution GF-2 and multi-temporal Sentinel-2 data.This method uses multispectral indexes,textures,vegetable indices,and variation characteristics of time-series NDVI from the multi-temporal Sentinel-2 imageries to obtain abundant features related to the growth of tea plantations.To reduce feature redundancy and computation time,the feature elimination algorithm based on Mean Decrease Accuracy(MDA)was used to generate the optimal feature set.Considering the serious boundary inconsistency problem caused by the complex and fragmented land cover types,high resolution GF-2 image was segmented based on the MultiResolution Segmentation(MRS)algorithm to assist the segmentation of Sentinel-2,which contributes to delineating meaningful objects and enhancing the reliability of the boundary for tea plantations.Finally,the object-oriented random forest method was utilized to extract the tea information based on the optimal feature combination in the Jingmai Mountain,Yunnan Province.The resulting tea plantation map had high accuracy,with a 95.38%overall accuracy and 0.91 kappa coefficient.We conclude that the proposed method is effective for mapping tea plantations in high heterogeneity mountainous areas and has the potential for mapping tea plantations in large areas. 展开更多
关键词 tea plantation mapping MULTI-temporal edge-assisted object-oriented random forest sentinel-2 Gaofen-2
下载PDF
基于Sentinel-1/2改进极化指数和纹理特征的土壤含盐量反演模型 被引量:1
2
作者 张智韬 贺玉洁 +3 位作者 殷皓原 项茹 陈俊英 杜瑞麒 《农业机械学报》 EI CAS CSCD 北大核心 2024年第1期175-185,共11页
目前Sentinel-1/2协同反演植被土壤含盐量的研究大多是基于Sentinel-2光谱信息和Sentinel-1后向散射系数,没有考虑Sentinel-2光谱信息容易受土壤亮度等信息影响,Sentinel-1后向散射系数容易受土壤粗糙度和水分影响。为进一步提高Sentine... 目前Sentinel-1/2协同反演植被土壤含盐量的研究大多是基于Sentinel-2光谱信息和Sentinel-1后向散射系数,没有考虑Sentinel-2光谱信息容易受土壤亮度等信息影响,Sentinel-1后向散射系数容易受土壤粗糙度和水分影响。为进一步提高Sentinel-1/2协同反演植被土壤含盐量的精度,用水云模型对雷达卫星后向散射系数进行校正,消除植被影响;然后协同Sentinel-2纹理特征,基于VIP、OOB、PCA 3种变量筛选和RF、ELM、Cubist 3种机器学习回归模型构建植被土壤含盐量反演模型。研究结果表明:经过水云模型去除植被影响后的雷达后向散射系数及其极化组合指数与土壤含盐量的相关性有一定程度的提高。不同变量选择方法与不同机器学习方法耦合模型在反演土壤含盐量中,OOB变量筛选方法与RF、ELM和Cubist 3种机器学习方法的耦合模型精度最佳,建模集和验证集的R2都在0.750以上,且验证集的RMSE和MAE均最小;其中OOB-Cubist耦合模型精度最高,且R_(v)^(2)/R_(c)^(2)为0.955,具有良好的鲁棒性。研究可为机器学习协同物理模型、光学卫星协同雷达卫星在土壤含盐量反演中的进一步应用提供思路。 展开更多
关键词 土壤含盐量 sentinel-1/2 纹理特征 水云模型 机器学习 改进极化指数
下载PDF
The application of ResU-net and OBIA for landslide detection from multi-temporal Sentinel-2 images
3
作者 Omid Ghorbanzadeh Khalil Gholamnia Pedram Ghamisi 《Big Earth Data》 EI CSCD 2023年第4期961-985,共25页
Landslide detection is a hot topic in the remote sensing community,particularly with the current rapid growth in volume(and variety)of Earth observation data and the substantial progress of computer vision.Deep learni... Landslide detection is a hot topic in the remote sensing community,particularly with the current rapid growth in volume(and variety)of Earth observation data and the substantial progress of computer vision.Deep learning algorithms,especially fully convolutional networks(FCNs),and variations like the ResU-Net have been used recently as rapid and automatic landslide detection approaches.Although FCNs have shown cutting-edge results in automatic landslide detection,accuracy can be improved by adding prior knowledge through possible frameworks.This study evaluates a rulebased object-based image analysis(OBIA)approach built on probabilities resulting from the ResU-Net model for landslide detection.We train the ResU-Net model using a landslide dataset comprising landslide inventories from various geographic regions,including our study area and test the testing area not used for training.In the OBIA stage,we frst calculate land cover and image difference indices for pre-and post-landslide multi-temporal images.Next,we use the generated indices and the resulting ResU-Net probabilities for image segmentation;the extracted landslide object candidates are then optimized using rule-based classification.In the result validation section,the landslide detection of the proposed integration of the ResU-Net with a rule-based classification of OBIA is compared with that of the ResU-Net alone.Our proposed approach improves the mean intersection-over-union of the resulting map from the ResU-Net by more than 22%. 展开更多
关键词 Deep learning(DL) Eastern Iburi Japan European Space Agency(ESA) Fully Convolutional Networks(FCNs) object-based image analysis(OBIA) rapid landslide mapping ResUnet sentinel-2
原文传递
基于Sentinel-2的青铜峡灌区水稻和玉米种植分布早期识别 被引量:1
4
作者 朱磊 王科 +2 位作者 丁一民 孙振源 孙伯颜 《干旱区地理》 CSCD 北大核心 2024年第5期850-860,共11页
及时准确地掌握灌区内作物种植分布对于灌溉水资源高效配置、农田精准管理具有重要指导意义。以宁夏青铜峡灌区为研究对象,利用多时相Sentinel-2卫星数据,通过水稻和玉米早期特征分析,提取关键的“水淹”信号和“植被”信号,构建时序归... 及时准确地掌握灌区内作物种植分布对于灌溉水资源高效配置、农田精准管理具有重要指导意义。以宁夏青铜峡灌区为研究对象,利用多时相Sentinel-2卫星数据,通过水稻和玉米早期特征分析,提取关键的“水淹”信号和“植被”信号,构建时序归一化差异水体指数(MNDWI)和归一化植被指数(NDVI)特征值数据集,并通过样本分析关键特征阈值,构建水稻和玉米早期种植分布决策树模型,提取2022年宁夏青铜峡灌区水稻和玉米种植的空间分布。结果表明(:1)玉米和水稻苗期的后半段5月15—31日,水淹信号和植被信号是区分二者关键时期。(2)基于早期作物物候特征的方法,在5月16—31日获取的水稻和玉米图像制图精度高于90%,用户精度超过91%,总体精度超过90%,Kappa系数高于0.88,明显高于同时期随机森林方法的分类精度。(3)本研究提出的方法在早期水稻和玉米种植分布提取方面具有较强的适用性,并且能够在时空尺度上以较少的实地样本进行延展,同时在时间上也更有优势。因此,该方法为青铜峡灌区水稻和玉米种植分布早期调查提供了重要的方法支撑。 展开更多
关键词 青铜峡灌区 sentinel-2 归一化植被指数 归一化差异水体指数 决策树 水稻 玉米
下载PDF
基于时序Sentinel-2影像的引黄灌区作物结构提取和供需水分析
5
作者 孙斌 毕春宁 +4 位作者 薛建春 毕华军 孙力 许建辉 李斌 《人民黄河》 CAS 北大核心 2024年第7期131-137,共7页
在黄河流域用水指标严格控制的背景下,以山东省东营市垦利区引黄灌区为例,利用2022年时序Sentinel-2遥感影像构建作物生育期的NDVI时间序列,采用决策树分类方法提取灌区作物种植结构,基于垦利站气象资料和Penman-Monteith公式,分析了197... 在黄河流域用水指标严格控制的背景下,以山东省东营市垦利区引黄灌区为例,利用2022年时序Sentinel-2遥感影像构建作物生育期的NDVI时间序列,采用决策树分类方法提取灌区作物种植结构,基于垦利站气象资料和Penman-Monteith公式,分析了1973—2022年各作物的需水特性,利用遥感影像解译的各作物种植面积,计算了2022年灌区作物在不同降水保证率(5%、25%、50%、75%、95%)条件下的灌溉总需水量,结合2023年分配给灌区作物的灌溉水指标探究了灌溉水资源供需之间的平衡。结果表明:基于NDVI时间序列构建决策树分类方法可有效提取作物的种植结构,总体分类精度为85.07%,Kappa系数为0.819,能够满足作物灌溉需水量的研究。作物净灌溉需水量年际波动较大,水稻和冬小麦补充灌溉水量在所有作物中位列前两位,均值分别为913 mm和410 mm;处于雨季生长的夏玉米、夏大豆补充灌溉水量较小且灌溉需求均值较小。研究区2023年分配的灌溉水指标在降水保证率为50%时研究区灌溉水亏缺量为235.5万m^(3),在降水保证率为75%和95%时灌溉水亏缺量分别为1 754.5万m^(3)和2 261.5万m^(3)。 展开更多
关键词 sentinel-2影像 种植结构 需水特性 灌溉水供需 引黄灌区
下载PDF
基于Sentinel-2多光谱遥感影像的小浪底水质反演
6
作者 郭荣幸 王超梁 +1 位作者 陈济民 韩红印 《人民黄河》 CAS 北大核心 2024年第1期93-96,102,共5页
多光谱遥感技术可根据遥感波段信息反演水质参数,降低监测成本,提高监测速度和质量,为大范围水环境监测提供了一种新的方法。通过分析小浪底水库的Sentinel-2多光谱影像以及采样点实测水质数据,建立了最佳光谱波段的水质参数反演模型,... 多光谱遥感技术可根据遥感波段信息反演水质参数,降低监测成本,提高监测速度和质量,为大范围水环境监测提供了一种新的方法。通过分析小浪底水库的Sentinel-2多光谱影像以及采样点实测水质数据,建立了最佳光谱波段的水质参数反演模型,对小浪底水库的化学需氧量(COD)、总磷(TP)、总氮(TN)和氨氮(NH_3-N)进行了遥感反演,验证了反演模型的精确度和稳定性,并反演了各水质参数的空间分布规律。结果表明:在4种水质参数反演模型中,COD模型精确度和稳定性最高,其次是TP、TN,最低的是NH_3-N,水库出水口和部分边缘COD质量浓度较高,水库中心TN、TP和NH_3-N质量浓度高于边缘处。 展开更多
关键词 多光谱遥感 水质反演 sentinel-2 反演模型 小浪底水库
下载PDF
基于Sentinel-2影像的巴尔托洛冰川冰面湖研究
7
作者 刘晓 孙永玲 +1 位作者 孙世金 李敏 《测绘通报》 CSCD 北大核心 2024年第3期49-53,80,共6页
冰面湖是冰川的重要组成部分,是冰川消融的指示器,不仅对全球气候变化响应迅速,而且对了解和掌握区域水资源信息意义重大。本文基于Sentinel-2遥感数据,利用随机森林算法,对巴尔托洛冰川冰面湖进行识别提取,并基于提取结果分析研究区冰... 冰面湖是冰川的重要组成部分,是冰川消融的指示器,不仅对全球气候变化响应迅速,而且对了解和掌握区域水资源信息意义重大。本文基于Sentinel-2遥感数据,利用随机森林算法,对巴尔托洛冰川冰面湖进行识别提取,并基于提取结果分析研究区冰面湖的空间分布特征,以及冰面湖面积、数量与冰川高程的关系。本文冰面湖提取的准确率达96.07%,完整率达92.18%,错误率为11.59%;识别出巴尔托洛冰川冰面湖567个,面积为249.46~37134 m^(2);冰面湖多分布在距冰川末端3~26 km处,其中海拔3800~4300 m之间冰面湖数量最多,面积普遍较大,平均面积为1922 m^(2);随着高程的升高,冰面湖的数量和面积逐渐减少,在高程5300 m以上冰面湖数量仅为15个,平均面积为356 m^(2);高程升高导致冰面温度降低,是冰面湖数量和面积骤减的主要原因。 展开更多
关键词 巴尔托洛冰川 冰面湖 sentinel-2影像 随机森林算法
下载PDF
联合多时相GF-6 WFV和Sentinel-2的森林类型识别 被引量:1
8
作者 叶青龙 欧阳勋志 +2 位作者 黄诚 李坚锋 潘萍 《江西农业大学学报》 CAS CSCD 北大核心 2024年第2期389-400,共12页
【目的】我国南方地区多云雨,地型较破碎,森林类型精细识别较为困难,探讨联合多源、多时相的遥感数据对森林类型识别具有重要意义。【方法】以江西省信丰县为研究区,基于2019年森林资源二类调查数据,将森林划分为松林、杉木林、阔叶林... 【目的】我国南方地区多云雨,地型较破碎,森林类型精细识别较为困难,探讨联合多源、多时相的遥感数据对森林类型识别具有重要意义。【方法】以江西省信丰县为研究区,基于2019年森林资源二类调查数据,将森林划分为松林、杉木林、阔叶林、针叶混交林、针阔混交林、竹林、灌木林和其他林地等8种类型,利用随机森林算法比较GF-6 WFV和Sentinel-2最佳时相相同波段(紫/深蓝、蓝、绿、红、近红外、红边)和不同波段(黄边、短波红外)的森林类型识别能力,构建联合光谱特征集。联合多时相GF-6 WFV和Sentinel-2,构建多时相植被指数特征集,结合联合光谱特征集、纹理特征和地形特征,通过随机森林和递归消除法构建特征变量优选数据集进行森林类型识别,利用混淆矩阵和森林类型的实际分布对识别结果进行精度验证。【结果】(1)GF-6 WFV蓝、绿和红波段组合的总体精度为58.31%,分别加入紫、近红外、红边、黄边和Sentinel-2短波红外波段后,其总体精度分别提高1.99%、8.90%、10.71%、1.50%和14.10%;Sentinel-2蓝、绿和红波段组合的总体精度为54.68%,分别加入深蓝、近红外、红边、短波红外和GF-6 WFV黄边波段后,其总体精度分别提高3.30%、10.82%、12.92%、17.31%和3.97%。(2)特征变量优选数据集的总体精度和Kappa系数为80.80%和75.56%,贡献程度大小依次为GF-6 WFV多时相植被指数、Sentinel-2多时相植被指数、GF-6 WFV光谱特征、Sentinel-2光谱特征、地形特征和纹理特征,贡献率分别为40.44%、23.23%、18.12%、10.21%、4.61%和3.39%。(3)松林、杉木林、阔叶林、针叶混交林、针阔混交林、竹林、灌木林和其他林地的制图精度分别为86.97%、85.60%、88.61%、9.43%、19.01%、53.60%、86.90%和82.56%,用户精度分别为81.42%、79.79%、77.57%、71.43%、81.82%、67.00%、87.74%和82.88%,识别结果与研究区实际森林类型分布较吻合。【结论】联合多时相GF-6 WFV和Sentinel-2可以综合多时相、多源影像的优点,能够有效提高森林类型的识别精度。 展开更多
关键词 GF-6 WFV sentinel-2 森林类型识别 随机森林
下载PDF
基于GEE的Landsat-8与Sentinel-2影像在棉花种植提取中差异性分析及提取方法对比研究 被引量:1
9
作者 洪国军 周保平 +5 位作者 李明哲 李森威 刘成成 张灵 付仙兵 李旭 《江苏农业科学》 北大核心 2024年第4期223-230,共8页
棉花作为南疆地区重要的经济作物之一,在经济工作中起着至关重要的作用。及时、准确地获取棉花种植面积,对农业政策和经济发展具有重要意义。为了实现这一目标,需要综合分析不同方法和遥感数据对最终棉花种植面积制图精度的影响。本研... 棉花作为南疆地区重要的经济作物之一,在经济工作中起着至关重要的作用。及时、准确地获取棉花种植面积,对农业政策和经济发展具有重要意义。为了实现这一目标,需要综合分析不同方法和遥感数据对最终棉花种植面积制图精度的影响。本研究以新疆阿克苏地区棉花种植区为例,借助Google Earth Engine云平台,采用随机森林法(RF)、支持向量机法(SVM)、最小距离分类法(MDC)等3种机器学习方法,利用2类中分辨率影像提取棉花种植信息,充分评估使用的档案数据和官方统计数字。结果表明,采用Sentinel-2方法和RF获得了最优棉花图,随机森林法分类器的总体精度、Kappa系数和用户精度分别高达97.4%、96.7%和91.1%,分别比Landsat-8图像和RF模型的结果高出7.3百分点、0.081、2.8百分点。与官方统计数据相比,采用RF、SVM、MDC对Sentinel-2和Landsat-8图像的棉花种植面积估算图的精度分别为98.4%、95.8%、79.6%和90.3%、83.7%、72.5%。很明显,Sentinel-2和RF模型的组合与官方数据的一致性最高。对比分析结果表明,Landsat-8和Sentinel-2数据可用于大范围复杂种植结构的棉花高精度测绘。本研究结果有望为棉花大面积鉴别提供一定的理论指导和实践指导。 展开更多
关键词 棉花分类 sentinel-2 Landsat-8 随机森林 支持向量机 最小距离分类 Google Earth Engine
下载PDF
基于ICESat-2和Sentinel-2A数据的森林蓄积量反演 被引量:3
10
作者 刘美艳 聂胜 +3 位作者 王成 习晓环 程峰 冯宝坤 《自然资源遥感》 CSCD 北大核心 2024年第1期210-216,共7页
森林蓄积量是林业调查的重要指标,在衡量森林健康状况和评价森林固碳能力等方面发挥重要作用,协同主被动遥感是当前反演大区域森林蓄积量的主要手段。以云南香格里拉森林为研究区,分别提取ICESat-2/ATLAS和Sentinel-2A影像的特征变量,... 森林蓄积量是林业调查的重要指标,在衡量森林健康状况和评价森林固碳能力等方面发挥重要作用,协同主被动遥感是当前反演大区域森林蓄积量的主要手段。以云南香格里拉森林为研究区,分别提取ICESat-2/ATLAS和Sentinel-2A影像的特征变量,并通过相关性分析和共线性诊断方法筛选特征变量,构建Sentinel-2A变量集和ICESat-2/ATLAS变量集,以及二者联合的变量集,然后结合样地实测数据与3个特征变量集,采用逐步线性回归和随机森林方法分别建立线性和非线性回归模型,反演森林蓄积量,并对结果进行精度验证及对比分析。研究结果表明:对3个变量集,随机森林方法精度均优于逐步线性回归;ICESat-2/ATLAS变量集在2种回归方法下的反演精度均高于Sentinel-2A变量集;联合Sentinel-2A和ICESat-2/ATLAS变量集,随机森林方法的反演精度最高,其R 2,RMSE和rRMSE分别为0.7034,84.78 m^(3)/hm^(2)和36.46%。整体来说,与Sentinel-2A数据相比,基于ICESat-2/ATLAS数据及其与多源数据联合的反演模型均可以提高森林蓄积量反演精度和模型稳定性。 展开更多
关键词 森林蓄积量 特征变量 随机森林 多元回归 ICESat-2/ATLAS sentinel-2A
下载PDF
基于Sentinel-2数据的苏州消夏湾生态安全缓冲区植被生长状况遥感监测评估 被引量:1
11
作者 单阳 钱晓瑾 +8 位作者 姜晟 王甜甜 张悦 余悠然 纪轩禹 郭金金 魏玉强 王茹 李旭文 《环境监控与预警》 2024年第1期24-30,共7页
利用2021—2022年Sentinel-2卫星搭载的多光谱成像仪(MSI)遥感数据,通过SNAP遥感软件提供的植被生物物理参数处理模块(Biophysical Processor),反演了苏州消夏湾生态安全缓冲区的5种植被生物物理参数,包括植被吸收光合有效辐射比例(FAP... 利用2021—2022年Sentinel-2卫星搭载的多光谱成像仪(MSI)遥感数据,通过SNAP遥感软件提供的植被生物物理参数处理模块(Biophysical Processor),反演了苏州消夏湾生态安全缓冲区的5种植被生物物理参数,包括植被吸收光合有效辐射比例(FAPAR)、植被覆盖度(FVC)、叶面积指数(LAI)、冠层叶绿素含量(CCC)和冠层含水量(CWC),开展植被生态环境监测评估研究。结果表明,该生态安全缓冲区2021年建成并投入运行后,植被覆盖度和生物量有所增加,区域植被冠层结构有所改善,植被生物物理参数从一定的角度反映了消夏湾生态安全缓冲区发挥了生态涵养成效。该研究方法能在大尺度上快捷、高效地反演植被生物物理参数,可为通过植被遥感动态监测评估生态安全缓冲区的生态功能提供有益的借鉴。 展开更多
关键词 生态安全缓冲区 sentinel-2 植被生物物理量 遥感反演 苏州消夏湾
下载PDF
基于Sentinel-2时序数据的新疆焉耆盆地农作物遥感识别与评估 被引量:2
12
作者 张旭辉 玉素甫江·如素力 +2 位作者 仇忠丽 亚夏尔·艾斯克尔 阿卜杜热合曼·吾斯曼 《干旱区地理》 CSCD 北大核心 2024年第4期672-683,共12页
为及时准确地获取干旱区农作物种植信息,研究借助PIE-Engine Studio平台,以新疆焉耆盆地为研究区,基于2022年Sentinel-2影像和1948个野外定位采样数据提取农作物生育期内14种植被指数,使用See5.0决策树、随机森林(Randomforest,RF)和多... 为及时准确地获取干旱区农作物种植信息,研究借助PIE-Engine Studio平台,以新疆焉耆盆地为研究区,基于2022年Sentinel-2影像和1948个野外定位采样数据提取农作物生育期内14种植被指数,使用See5.0决策树、随机森林(Randomforest,RF)和多元回归(Multiple regression,MR)模型优选特征参数,结合支持向量机(Support vector machine,SVM)算法构建5种分类模型和5种样方分割方案进行农作物种植信息提取,通过目视解译和混淆矩阵对比分析分类结果,确定最佳分类方案。结果表明:(1)所有分类模型的总体精度(OA)和Kappa系数均在92.20%和0.9037以上,说明在PIE平台中使用SVM算法提取农作物信息是可行的。(2)SVM-有红边的OA和Kappa系数均值为93.77%和0.9236,比SVM-无红边方法提高了0.96%和0.0120。(3)相比于SVM-有红边方法,植被指数的引入提高了SVM-RF、SVM-MR和SVM-See5.0的OA和Kappa系数。(4)5种分类模型的OA和Kappa系数均值的大小关系为:SVM-RF>SVM-MR>SVM-See5.0>SVM-有红边>SVM-无红边,表明红边波段和植被指数的加入显著提高了农作物识别的精度,其中SVM-RF(8:2)为最佳分类模型,OA和Kappa系数分别为98.72%和0.9866。研究结果可为准确快速获取大尺度干旱区农作物信息提供新的思路和参考依据。 展开更多
关键词 农作物 sentinel-2 支持向量机 PIE-Engine Studio 焉耆盆地
下载PDF
基于Sentinel-2时序数据的广东省英德市茶园分类研究
13
作者 陈盼盼 任艳敏 +2 位作者 赵春江 李存军 刘玉 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第4期1136-1143,共8页
茶叶是一种高附加值的经济作物,是我国南方山区乡村振兴的主要抓手。由于毁林种茶等破坏行为,导致森林资源破坏并引发水土流失等生态环境问题。快速准确获取茶园的空间分布对于政府监管和茶叶产业的规划发展至关重要。由于研究区天气多... 茶叶是一种高附加值的经济作物,是我国南方山区乡村振兴的主要抓手。由于毁林种茶等破坏行为,导致森林资源破坏并引发水土流失等生态环境问题。快速准确获取茶园的空间分布对于政府监管和茶叶产业的规划发展至关重要。由于研究区天气多阴雨,茶园分布较为分散,与森林等植被光谱较为接近等原因,导致基于卫星影像提取茶园挑战性较大。为了摸清英德市的茶园空间分布,系统分析了中高分辨率的多光谱Sentinel-2影像数据,结合多时序多特征信息在茶园提取中的应用潜力。以英德市全境为研究区,选用2019年—2021年的9期Sentinel-2影像数据,详细分析了茶树生长的物候特征,进一步探究了茶园和其他地类在多时序中的特征变化,采用Relief算法对所有特征进行重要性排序。根据特征排序结果,选取特征权重值加权90%的特征因子,即7个植被指数特征和2个纹理特征,通过不同的组合排序构建了9种茶园分类场景,采用RF算法对所有分类场景进行精度评价,选取最佳分类场景,进一步探讨了RF分类算法和SVM分类算法对茶园提取的可行性。结果表明:(1)在进行英德市茶园提取时,2月和10月是采用多时相构造茶园多特征的最佳组合,可能因2月茶树处于萌芽期长出部分嫩绿的新叶易于和森林植被区分且在10月前后由于茶园进行了修剪其特征也较明显,因此两时相特征融合易于区分茶园。(2)RF分类方法与SVM分类方法相比,后者的精度较高,其总体精度达到91.56%,Kappa系数为0.89,生产者精度和用户精度分别为80.22%和84.56%。该研究为快速高效获取英德市茶园空间分布信息提供了一种高效的方法,同时为政府在进行茶叶产业规划、管理提供了数据支持。 展开更多
关键词 茶园 sentinel-2 时序特征 机器学习 分类
下载PDF
基于多时相Sentinel-2卫星影像的冬小麦面积提取
14
作者 陈雨琪 席瑞 +6 位作者 陈佳麒 章健 高国军 刘海威 盛莉 王福民 刘占宇 《杭州师范大学学报(自然科学版)》 CAS 2024年第2期209-216,共8页
及时准确地提取冬小麦种植信息,对开展冬小麦农情遥感监测具有重要的意义.以杭州市余杭区冬小麦越冬期(2021-12-04)、扬花期(2022-04-08)和乳熟期(2022-05-03)Sentinel-2遥感影像为数据源,分别采用最大似然法、支持向量机、归一化差值... 及时准确地提取冬小麦种植信息,对开展冬小麦农情遥感监测具有重要的意义.以杭州市余杭区冬小麦越冬期(2021-12-04)、扬花期(2022-04-08)和乳熟期(2022-05-03)Sentinel-2遥感影像为数据源,分别采用最大似然法、支持向量机、归一化差值植被指数(normalized difference vegetation index,NDVI)相加和相减合成运算提取冬小麦种植面积.结合冬小麦地面调查数据与实测种植面积,对不同方法的提取结果进行精度评价.结果显示,利用越冬期影像NDVI阈值将常绿植被区(茶园、林地)掩膜处理,对非常绿植被区(建筑、水体、冬小麦)扬花期与乳熟期影像NDVI值进行和值运算,是提取余杭区冬小麦种植面积的最佳方法,面积精度为91.96%,说明基于多时相遥感影像结合植被物候特征与典型地物类型,能够实现冬小麦种植面积的高精度提取. 展开更多
关键词 冬小麦 sentinel-2卫星 多时相遥感影像 植被分类 种植面积提取
下载PDF
基于Sentinel-2影像东北秋季典型湖泊大气校正方法适用性评价
15
作者 李勇 李思佳 +2 位作者 宋开山 徐茂林 刘阁 《地理科学》 CSCD 北大核心 2024年第1期149-158,共10页
本文利用6S(Second Simulation of a Satellite Signal in the Solar Spectrum)、Acolite DSF(Dark spectrum fitting)、C2RCC(Case 2 Regional Coast Color)、SeaDas(SeaWiFS Data Analysis System)、Sen2Cor(Sentinel 2 Correction)、... 本文利用6S(Second Simulation of a Satellite Signal in the Solar Spectrum)、Acolite DSF(Dark spectrum fitting)、C2RCC(Case 2 Regional Coast Color)、SeaDas(SeaWiFS Data Analysis System)、Sen2Cor(Sentinel 2 Correction)、Polymer(Polynomial based algorithm applied to MERIS)和iCOR(Image correction for atmospheric effects)7种大气校正算法,结合松花湖、月亮泡、小兴凯湖实测遥感反射率数据对“哨兵-2号”(Sentinel-2)数据进行大气校正研究,验证算法性能。整体校正结果显示,相较于实测遥感反射率,上述7种大气校正算法均在可见光波段(400~800 nm)呈现不同程度的低估。除C2RCC算法外,其余6种算法校正后的遥感反射率与实测光谱曲线变化趋势基本吻合,其中Sen2Cor算法与iCOR算法性能最佳,Polymer算法性能最差;在单波段校正精度对比中,Sen2Cor和iCOR算法几乎所有波段的均方根误差和平均绝对百分比误差都低于其余5种算法。Sen2Cor算法在560 nm、665 nm和705 nm处校正精度优于其余6种算法,iCOR算法在443 nm和740 nm处有良好的表现,在490 nm处6S算法校正精度最高,拥有最低的均方根误差(0.0059 sr^(−1))和平均绝对百分比误差(21.40%)。结果表明,这7种大气校正算法均可以在一定程度上去除大气影响,增加影像的可用性,Sen2Cor算法和iCOR算法更适用于本文所研究水体或相似水体。 展开更多
关键词 大气校正 sentinel-2卫星 内陆湖泊水体 遥感反射率
下载PDF
基于Sentinel-1/2数据的洪水淹没范围提取模型
16
作者 邓启睿 张英 +2 位作者 刘佳 乔庆华 翟亮 《人民长江》 北大核心 2024年第9期71-77,共7页
遥感是监测洪水淹没范围、掌握洪涝灾情演变的重要手段,而光学影像在洪水发生时往往有较多缺失,全天候的SAR影像在提取水体时精度略低。为快速、精准提取洪水淹没范围,构建了一种综合利用Sentinel-2光学影像和Sentinel-1雷达影像数据的... 遥感是监测洪水淹没范围、掌握洪涝灾情演变的重要手段,而光学影像在洪水发生时往往有较多缺失,全天候的SAR影像在提取水体时精度略低。为快速、精准提取洪水淹没范围,构建了一种综合利用Sentinel-2光学影像和Sentinel-1雷达影像数据的洪水淹没范围提取模型,采用一种自适应阈值分割算法即大津算法(OTSU)分别对两种数据以及该模型进行了水体范围提取试验,并以河北省保定市为例进行了应用分析。结果显示:云量较少的Sentinel-2影像水体提取效果最好,总体精度(OA)达到95.6%;所构建的模型在引入部分可用Sentinel-2数据后,OA达到95%,相比单独使用Sentinel-1数据OA和Kappa系数分别提升1.2%和2.4%。该模型搭载于Google Earth Engine平台,能实现快速、准确、低成本的地表水体空间范围连续输出,不受限于云雾且比单独使用Sentinel-1影像的提取精度更高,在云覆盖严重导致Sentinel-2数据缺少的情况下,该模型可作为洪水淹没范围提取方法的一种选择。 展开更多
关键词 洪水淹没范围 sentinel-1 sentinel-2 自适应阈值分割算法 Google Earth Engine 保定市
下载PDF
基于Sentinel-2卫星影像的海南西岛珊瑚礁识别和变化分析
17
作者 周雅君 何明郡 +5 位作者 刘聪 贺双颜 姜庆岩 韩玉 陈栋 李培良 《海洋与湖沼》 CAS CSCD 北大核心 2024年第1期65-76,共12页
珊瑚礁是海洋中最重要的生态系统之一,近年来在全球气候变化和人为干扰加剧的影响下,我国南海珊瑚礁总体处于快速退化状态。以海南西岛珊瑚礁为例,基于Sentinel-2系列卫星10 m空间分辨率影像,利用面向对象分类法(object-based image ana... 珊瑚礁是海洋中最重要的生态系统之一,近年来在全球气候变化和人为干扰加剧的影响下,我国南海珊瑚礁总体处于快速退化状态。以海南西岛珊瑚礁为例,基于Sentinel-2系列卫星10 m空间分辨率影像,利用面向对象分类法(object-based image analysis,OBIA)对2017年12月~2018年3月和2021年12月两个时期的海南西岛珊瑚礁底质进行了识别分类,并进行珊瑚礁面积变化分析。将2021年12月的分类结果与现场调查数据进行对比验证,总分类精度和Kappa系数分别为83.3%和0.71。对比两个时期珊瑚礁底质分类结果表明,西岛西侧珊瑚礁覆盖面积未出现明显变化,东侧珊瑚礁显示恢复趋势。本文研究表明,10 m地面分辨率卫星系列影像和面向对象的阈值分类方法可以对海南西岛珊瑚礁进行较为准确的识别和变化分析,监测结果可为海南岛沿岸西岛等小型岛礁珊瑚保护及修复提供参考。 展开更多
关键词 珊瑚礁 sentinel-2影像 西岛 底质识别 遥感监测
下载PDF
基于Sentinel-2影像的黄河南岸典型改良示范区土壤含盐量反演模型
18
作者 王宇璇 屈忠义 +3 位作者 白燕英 刘霞 刘全明 刘琦 《农业机械学报》 EI CAS CSCD 北大核心 2024年第4期290-299,439,共11页
土壤盐渍化严重制约农田土壤环境的循环发展,高效准确地监测土壤盐分动态变化对盐碱地改良利用具有重要意义。为及时、有效地监测盐渍化土壤含盐量,以内蒙古黄河南岸灌区的4个典型盐碱化耕地改良示范区为例,利用Sentinel-2多光谱遥感影... 土壤盐渍化严重制约农田土壤环境的循环发展,高效准确地监测土壤盐分动态变化对盐碱地改良利用具有重要意义。为及时、有效地监测盐渍化土壤含盐量,以内蒙古黄河南岸灌区的4个典型盐碱化耕地改良示范区为例,利用Sentinel-2多光谱遥感影像,同步采集示范区内表层土壤的含盐量数据,通过相关性分析筛选敏感光谱指标,基于偏最小二乘回归(PLSR)、逐步回归(SR)、岭回归(RR)3种简单机器学习模型和深度学习Transformer模型建模,最后进行精度评价并优选出最佳含盐量反演模型。结果表明:示范区土壤反射率的可见光、红边、近红外波段反射率均与土壤含盐量呈正相关,短波红外波段反射率与土壤含盐量呈负相关,引入光谱指数能够有效提升Sentinel-2遥感影像与示范区表层土壤含盐量的相关性(相关系数绝对值不小于0.32);对比不同模型发现深度学习Transformer模型优于简单机器学习模型,验证集决定系数R~2和均方根误差(RMSE)分别为0.546和2.687 g/kg;含盐量反演结果与实地结果相吻合,为更精准反演内蒙古黄河南岸灌区盐渍化程度提供了参考。 展开更多
关键词 土壤盐渍化 含盐量反演 遥感 sentinel-2 光谱指数 Transformer
下载PDF
基于Sentinel-2数据提取江汉平原虾稻田分布方法
19
作者 王静 万君 邓环环 《湖北农业科学》 2024年第8期194-200,208,共8页
以江汉平原为研究区,基于AI Earth阿里云平台提供的Sentinel-2 MSI L2数据,在实地采样样本和目视解译样本的基础上,通过分析遥感影像中虾稻田的时序变化规律,总结出区分虾稻田与其他地物类型的关键时间以及指数阈值,从而构建虾稻田提取... 以江汉平原为研究区,基于AI Earth阿里云平台提供的Sentinel-2 MSI L2数据,在实地采样样本和目视解译样本的基础上,通过分析遥感影像中虾稻田的时序变化规律,总结出区分虾稻田与其他地物类型的关键时间以及指数阈值,从而构建虾稻田提取的决策树模型,最终提取出江汉平原2022—2023年虾稻田的空间分布。最后,基于样本数据评估了该方法的精度,总体精度达93.25%,Kappa系数为0.8429,结果表明该方法具有较好的提取结果。 展开更多
关键词 多时相遥感影像 sentinel-2 虾稻田 决策树 江汉平原
下载PDF
基于Sentinel-1和Sentinel-2影像的河南扶沟县洪涝灾害遥感监测评估研究 被引量:1
20
作者 姜晗兵 邓文彬 《中国防汛抗旱》 2024年第2期50-55,共6页
洪涝灾害是我国最主要的自然灾害类型之一,发生频率高、影响范围广,对社会经济发展和人民生命财产安全构成严重威胁。选取河南郑州“7·20”特大暴雨事件中受灾较为严重的河南扶沟县为研究区,基于洪涝灾害发生前后的Sentinel-1和Sen... 洪涝灾害是我国最主要的自然灾害类型之一,发生频率高、影响范围广,对社会经济发展和人民生命财产安全构成严重威胁。选取河南郑州“7·20”特大暴雨事件中受灾较为严重的河南扶沟县为研究区,基于洪涝灾害发生前后的Sentinel-1和Sen-tinel-2影像,利用支持向量机对灾前的Sentinel-2影像进行土地利用分类,基于Sentinel-1影像利用水体指数SDWI对灾中、灾后的水体范围进行提取,并结合GIS对研究区的灾情进行评估。结果表明:①基于支持向量机提取的土地利用分类图,总体精度达95.85%;②利用SDWI水体指数法提取的水体范围结果显示灾中、灾后的水体面积分别为36.468 km^(2)、18.770 km^(2),总体精度分别为97.6%和95.4%;③由灾情评估结果可得,曹里乡的受灾情况最为严重,最大水体变化面积达到12.63 km^(2)。 展开更多
关键词 sentinel-1 sentinel-2 洪涝灾害 水体指数SDWI 灾情评估 河南郑州“7·20”特大暴雨
下载PDF
上一页 1 2 42 下一页 到第
使用帮助 返回顶部