As a consumed and influential natural plant beverage,tea is widely planted in subtropical and tropical areas all over the world.Affected by(sub)tropical climate characteristics,the underlying surface of the tea distri...As a consumed and influential natural plant beverage,tea is widely planted in subtropical and tropical areas all over the world.Affected by(sub)tropical climate characteristics,the underlying surface of the tea distribution area is extremely complex,with a variety of vegetation types.In addition,tea distribution is scattered and fragmentized in most of China.Therefore,it is difficult to obtain accurate tea information based on coarse resolution remote sensing data and existing feature extraction methods.This study proposed a boundary-enhanced,object-oriented random forest method on the basis of high-resolution GF-2 and multi-temporal Sentinel-2 data.This method uses multispectral indexes,textures,vegetable indices,and variation characteristics of time-series NDVI from the multi-temporal Sentinel-2 imageries to obtain abundant features related to the growth of tea plantations.To reduce feature redundancy and computation time,the feature elimination algorithm based on Mean Decrease Accuracy(MDA)was used to generate the optimal feature set.Considering the serious boundary inconsistency problem caused by the complex and fragmented land cover types,high resolution GF-2 image was segmented based on the MultiResolution Segmentation(MRS)algorithm to assist the segmentation of Sentinel-2,which contributes to delineating meaningful objects and enhancing the reliability of the boundary for tea plantations.Finally,the object-oriented random forest method was utilized to extract the tea information based on the optimal feature combination in the Jingmai Mountain,Yunnan Province.The resulting tea plantation map had high accuracy,with a 95.38%overall accuracy and 0.91 kappa coefficient.We conclude that the proposed method is effective for mapping tea plantations in high heterogeneity mountainous areas and has the potential for mapping tea plantations in large areas.展开更多
Landslide detection is a hot topic in the remote sensing community,particularly with the current rapid growth in volume(and variety)of Earth observation data and the substantial progress of computer vision.Deep learni...Landslide detection is a hot topic in the remote sensing community,particularly with the current rapid growth in volume(and variety)of Earth observation data and the substantial progress of computer vision.Deep learning algorithms,especially fully convolutional networks(FCNs),and variations like the ResU-Net have been used recently as rapid and automatic landslide detection approaches.Although FCNs have shown cutting-edge results in automatic landslide detection,accuracy can be improved by adding prior knowledge through possible frameworks.This study evaluates a rulebased object-based image analysis(OBIA)approach built on probabilities resulting from the ResU-Net model for landslide detection.We train the ResU-Net model using a landslide dataset comprising landslide inventories from various geographic regions,including our study area and test the testing area not used for training.In the OBIA stage,we frst calculate land cover and image difference indices for pre-and post-landslide multi-temporal images.Next,we use the generated indices and the resulting ResU-Net probabilities for image segmentation;the extracted landslide object candidates are then optimized using rule-based classification.In the result validation section,the landslide detection of the proposed integration of the ResU-Net with a rule-based classification of OBIA is compared with that of the ResU-Net alone.Our proposed approach improves the mean intersection-over-union of the resulting map from the ResU-Net by more than 22%.展开更多
本文利用6S(Second Simulation of a Satellite Signal in the Solar Spectrum)、Acolite DSF(Dark spectrum fitting)、C2RCC(Case 2 Regional Coast Color)、SeaDas(SeaWiFS Data Analysis System)、Sen2Cor(Sentinel 2 Correction)、...本文利用6S(Second Simulation of a Satellite Signal in the Solar Spectrum)、Acolite DSF(Dark spectrum fitting)、C2RCC(Case 2 Regional Coast Color)、SeaDas(SeaWiFS Data Analysis System)、Sen2Cor(Sentinel 2 Correction)、Polymer(Polynomial based algorithm applied to MERIS)和iCOR(Image correction for atmospheric effects)7种大气校正算法,结合松花湖、月亮泡、小兴凯湖实测遥感反射率数据对“哨兵-2号”(Sentinel-2)数据进行大气校正研究,验证算法性能。整体校正结果显示,相较于实测遥感反射率,上述7种大气校正算法均在可见光波段(400~800 nm)呈现不同程度的低估。除C2RCC算法外,其余6种算法校正后的遥感反射率与实测光谱曲线变化趋势基本吻合,其中Sen2Cor算法与iCOR算法性能最佳,Polymer算法性能最差;在单波段校正精度对比中,Sen2Cor和iCOR算法几乎所有波段的均方根误差和平均绝对百分比误差都低于其余5种算法。Sen2Cor算法在560 nm、665 nm和705 nm处校正精度优于其余6种算法,iCOR算法在443 nm和740 nm处有良好的表现,在490 nm处6S算法校正精度最高,拥有最低的均方根误差(0.0059 sr^(−1))和平均绝对百分比误差(21.40%)。结果表明,这7种大气校正算法均可以在一定程度上去除大气影响,增加影像的可用性,Sen2Cor算法和iCOR算法更适用于本文所研究水体或相似水体。展开更多
基金National Natural Science Foundation of China(No.41830110)National Key Research Development Program of China(No.2018YFC1503603)+2 种基金Key Laboratory of Land Satellite Remote Sensing Application,Ministry of Natural Resources of the People’s Republic of China(No.KLSMNR-202106)Water Conservancy Science and Technology Project of Jiangsu Province,China(No.2020061)Natural Science Foundation of Jiangsu Province,China(No.20180779)。
文摘As a consumed and influential natural plant beverage,tea is widely planted in subtropical and tropical areas all over the world.Affected by(sub)tropical climate characteristics,the underlying surface of the tea distribution area is extremely complex,with a variety of vegetation types.In addition,tea distribution is scattered and fragmentized in most of China.Therefore,it is difficult to obtain accurate tea information based on coarse resolution remote sensing data and existing feature extraction methods.This study proposed a boundary-enhanced,object-oriented random forest method on the basis of high-resolution GF-2 and multi-temporal Sentinel-2 data.This method uses multispectral indexes,textures,vegetable indices,and variation characteristics of time-series NDVI from the multi-temporal Sentinel-2 imageries to obtain abundant features related to the growth of tea plantations.To reduce feature redundancy and computation time,the feature elimination algorithm based on Mean Decrease Accuracy(MDA)was used to generate the optimal feature set.Considering the serious boundary inconsistency problem caused by the complex and fragmented land cover types,high resolution GF-2 image was segmented based on the MultiResolution Segmentation(MRS)algorithm to assist the segmentation of Sentinel-2,which contributes to delineating meaningful objects and enhancing the reliability of the boundary for tea plantations.Finally,the object-oriented random forest method was utilized to extract the tea information based on the optimal feature combination in the Jingmai Mountain,Yunnan Province.The resulting tea plantation map had high accuracy,with a 95.38%overall accuracy and 0.91 kappa coefficient.We conclude that the proposed method is effective for mapping tea plantations in high heterogeneity mountainous areas and has the potential for mapping tea plantations in large areas.
基金funded by the Institute of Advanced Research in Artificial Intelligence(IARAl)GmbHInstitute of Advanced Research in Artificial Intelligence(IARAl)GmbH Address:LandstraBer HauptstraBe 5,1030 Vienna,Austria[VAT number(UID):ATU74131236].
文摘Landslide detection is a hot topic in the remote sensing community,particularly with the current rapid growth in volume(and variety)of Earth observation data and the substantial progress of computer vision.Deep learning algorithms,especially fully convolutional networks(FCNs),and variations like the ResU-Net have been used recently as rapid and automatic landslide detection approaches.Although FCNs have shown cutting-edge results in automatic landslide detection,accuracy can be improved by adding prior knowledge through possible frameworks.This study evaluates a rulebased object-based image analysis(OBIA)approach built on probabilities resulting from the ResU-Net model for landslide detection.We train the ResU-Net model using a landslide dataset comprising landslide inventories from various geographic regions,including our study area and test the testing area not used for training.In the OBIA stage,we frst calculate land cover and image difference indices for pre-and post-landslide multi-temporal images.Next,we use the generated indices and the resulting ResU-Net probabilities for image segmentation;the extracted landslide object candidates are then optimized using rule-based classification.In the result validation section,the landslide detection of the proposed integration of the ResU-Net with a rule-based classification of OBIA is compared with that of the ResU-Net alone.Our proposed approach improves the mean intersection-over-union of the resulting map from the ResU-Net by more than 22%.
文摘本文利用6S(Second Simulation of a Satellite Signal in the Solar Spectrum)、Acolite DSF(Dark spectrum fitting)、C2RCC(Case 2 Regional Coast Color)、SeaDas(SeaWiFS Data Analysis System)、Sen2Cor(Sentinel 2 Correction)、Polymer(Polynomial based algorithm applied to MERIS)和iCOR(Image correction for atmospheric effects)7种大气校正算法,结合松花湖、月亮泡、小兴凯湖实测遥感反射率数据对“哨兵-2号”(Sentinel-2)数据进行大气校正研究,验证算法性能。整体校正结果显示,相较于实测遥感反射率,上述7种大气校正算法均在可见光波段(400~800 nm)呈现不同程度的低估。除C2RCC算法外,其余6种算法校正后的遥感反射率与实测光谱曲线变化趋势基本吻合,其中Sen2Cor算法与iCOR算法性能最佳,Polymer算法性能最差;在单波段校正精度对比中,Sen2Cor和iCOR算法几乎所有波段的均方根误差和平均绝对百分比误差都低于其余5种算法。Sen2Cor算法在560 nm、665 nm和705 nm处校正精度优于其余6种算法,iCOR算法在443 nm和740 nm处有良好的表现,在490 nm处6S算法校正精度最高,拥有最低的均方根误差(0.0059 sr^(−1))和平均绝对百分比误差(21.40%)。结果表明,这7种大气校正算法均可以在一定程度上去除大气影响,增加影像的可用性,Sen2Cor算法和iCOR算法更适用于本文所研究水体或相似水体。