Evaluation and analysis of water quality variations were performed with integrated consideration of water quality parameters, hydrological-meteorologic and anthropogenic factors in Cao-E River, Zhejiang Province of Ch...Evaluation and analysis of water quality variations were performed with integrated consideration of water quality parameters, hydrological-meteorologic and anthropogenic factors in Cao-E River, Zhejiang Province of China. Cao-E River system has been polluted and the water quality of some reaches are inferior to Grade V according to National Surface Water Quality Standard of China (GB2002). However, mainly polluted indices of each tributary and mainstream are different. Total nitrogen (TN) and total phosphorus (TP) in the water are the main polluted indices for mainstream that varies from 1.52 to 45.85 mg/L and 0.02 to 4.02 mg/L, respectively. TN is the main polluted indices for Sub-watershed Ⅰ, Ⅱ, Ⅳ and Ⅴ(0.76 to 18.27 mg/L). BOD5 (0.36 to 289.5 mg/L), CODMn (0.47 to 78.86 mg/L), TN (0.74 to 31.09 mg/L) and TP (0 to 3.75 mg/L) are the main polluted indices for Sub-watershed Ⅲ. There are tow pollution types along the river including nonpoint source pollution and point source pollution types. Remarkably temporal variations with a few spatial variations occur in nonpoint pollution type reaches (including mainstream, Sub-watershed Ⅰ and Ⅱ) that mainly drained by arable field and/or dispersive rural dwelling district, and the maximum pollutant concentration appears in flooding seasons. It implied that the runoff increases the pollutant concentration of the water in the nonpoint pollution type reaches. On the other hand, remarkably spatial variations occur in the point pollution type reaches (include Sub-watershed Ⅲ, Ⅳ and Ⅴ) and the maximum pollutant concentration appears in urban reaches. The runoff always decreases the pollutant concentration of the river water in the seriously polluted reaches that drained by industrial point sewage. But for the point pollution reaches resulted from centralized town domestic sewage pipeline and from frequent shipping and digging sands, rainfall always increased the concentration of pollutant (TN) in the river water too. Pollution controls were respectively suggested for these tow types according to different pollution causes.展开更多
The long-term temporal and spatial dynamics of marine coastal water quality in Tolo Harbor, Hong Kong were explored. The Harbor is divided into three zones represented as Harbor, Buffer, and Channel Subzones. The time...The long-term temporal and spatial dynamics of marine coastal water quality in Tolo Harbor, Hong Kong were explored. The Harbor is divided into three zones represented as Harbor, Buffer, and Channel Subzones. The time range for the study covers the period from the 1970s to the 1990s. The selected indicators for the comprehensive assessment of water quality consist of physical, chemical and biological aspects, including suspended solids(SS), Secchi disk depth(SD), 5-day biochemical oxygen demand(BOD\-5), total nitrogen(TN), total phosphorus(TP), faecal coliform, chlorophyll-a(Chl-a), and the number of red tide occurrences. The results indicated the presence of obvious temporal and spatial trends with regard to changes in water quality. Spatially, water quality in the Channel Subzone is the best, while that in the Harbor Subzone is the worst. On a temporal basis, the average trend from bad to good was 1980s>1990s>1970s as indicated by most of the selected water quality indicators. Water quality during the late 1980s reached its worst level with the lowest SD, the highest BOD\-5, TN, TP, Chl-a concentrations, and the number of red tide occurrences. These long-term temporal-spatial water quality trends were also found in other studies of the Tolo Harbor. The large quantity of pollutants produced as a result of increasing population, industrial and commercial actives, and urbanization and industrialization trends in both Shatin and Tai Po seem to be primarily responsible for the changes in marine coastal water quality.展开更多
Groundwater utilization and protection are crucial for sustainable urban development. This is especially true for Beijing, where groundwater is an important source for urban water supply. In this study, statistical me...Groundwater utilization and protection are crucial for sustainable urban development. This is especially true for Beijing, where groundwater is an important source for urban water supply. In this study, statistical methods, including descriptive statistics, correlation analysis, principal component analysis, and Piper-Tri-linear diagram, were used in analyzing the temporal and spatial variations of the hydrochemical characteristics of groundwater based on monitored data from the southern plain of Beijing, China. Results indicated consistent changes of groundwater's hydrochemical characteristics in different aquifers in the study area. The percentage of HCO_3^-in total anion increased significantly in the groundwater, and hydrochemical water type evolved gradually from Ca-Mg-Cl-SO_4 based to Ca-Mg-HCO_3 based from period 2005-2007 to period 2013-2015. In shallow groundwater, the concentration of Na^+, Ca^(2+), SO_4^(2-), HCO_3^-, and total dissolved solids(TDS) increased from period 2005-2007 to period 2013-2015, and the greatest change came from HCO_3^-, rising from 428.93 to 528.96 mgL^(-1). The changes of main ionic concentrations in the deep groundwater were consistent with those in the shallow groundwater for both periods. However, the variations in deep groundwater were less than those in shallow groundwater. The temporal and spatial variations of hydrochemical characteristics reflect the groundwater quality in the study area. This study could facilitate decision-making process on the protection of groundwater resources to ensure its sustainable utilization.展开更多
Lake surface water temperature (SWT) is an important indicator of lake state relative to its water chemistry and aquatic ecosystem,in addition to being an important regional climate indicator.However,few literatures...Lake surface water temperature (SWT) is an important indicator of lake state relative to its water chemistry and aquatic ecosystem,in addition to being an important regional climate indicator.However,few literatures involving spatial-temporal changes of lake SWT in the Qinghai-Tibet Plateau,including Qinghai Lake,are available.Our objective is to study the spatial-temporal changes in SWT of Qinghai Lake from 2001 to 2010,using Moderate-resolution Imaging Spectroradiometer (MODIS) data.Based on each pixel,we calculated the temporal SWT variations and long-term trends,compared the spatial patterns of annual average SWT in different years,and mapped and analyzed the seasonal cycles of the spatial patterns of SWT.The results revealed that the differences between the average daily SWT and air temperature during the temperature decreasing phase were relatively larger than those during the temperature increasing phase.The increasing rate of the annual average SWT during the study period was about 0.01℃/a,followed by an increasing rate of about 0.05℃/a in annual average air temperature.The annual average SWT from 2001 to 2010 showed similar spatial patterns,while the SWT spatial changes from January to December demonstrated an interesting seasonal reversion pattern.The high-temperature area transformed stepwise from the south to the north regions and then back to the south region from January to December,whereas the low-temperature area demonstrated a reversed annual cyclical trace.The spatial-temporal patterns of SWTs were shaped by the topography of the lake basin and the distribution of drainages.展开更多
Based on the investigation data of Jiaozhou Bay waters in 1981,current situation and horizontal distribution of Cr content in bottom waters of Jiaozhou Bay mouth were studied. Results showed that in bottom waters of J...Based on the investigation data of Jiaozhou Bay waters in 1981,current situation and horizontal distribution of Cr content in bottom waters of Jiaozhou Bay mouth were studied. Results showed that in bottom waters of Jiaozhou Bay center,Cr content changed from 0. 50 to3. 78 μg/L in April. In August,Cr content changed from 0. 14 to 1. 42 μg/L in bottom waters of Jiaozhou Bay mouth. It showed that Cr content corresponded with national class-one seawater quality standard(50. 00 μg/L) at different times and spaces,and Cr content was far less than5. 00 μg/L. Therefore,under the effect of vertical water body,water quality was clean in bottom waters of Jiaozhou Bay,which was not polluted by Cr. In bottom waters of Jiaozhou Bay center in April and bottom waters of Jiaozhou Bay mouth in August,Cr transported by the river came to the bottom layer from surface layer by passing through water body in temporal-spatial change process. Under the effects of gravity and water flow,Cr continuously and quickly sank to the sea bottom. It verified the sedimentation process of Cr content.展开更多
Based on the characteristics of land use and drainage network of the upper watershed of the Miyun Reservoir, Beijing, 26 monitoring and sampling sites were selected in different sub-catchments. Temporal and spatial va...Based on the characteristics of land use and drainage network of the upper watershed of the Miyun Reservoir, Beijing, 26 monitoring and sampling sites were selected in different sub-catchments. Temporal and spatial variations in nutrient loss were dealt with in this paper in terms of the monitoring data on the water quality of the main tributaries flowing into the Miyun Reservoir. In combination with the monitoring data on water quality, the impacts of watershed characteristics including land-use type, landscape pattern, and drainage density were assessed. The concentrations of nutrients in the rainy season are higher than those in other seasons, and the concentrations of NO3--N are linearly related to those of total N which is the main form of nitrogen present in the river water. The concentrations of nitrogen become higher toward the reservoir along the main rivers. The seasonal variation of nitrogen in the watershed affected by intensive human activities is very obvious; in the watershed with steady or low water flow, the seasonal variation of nitrogen is less obvious. Forest land and grassland can trap and filter nitrogen effectively. Land-use pattern also has important impacts on the loss of nitrogen. The concentrations of nitrogen and phosphorus in the water bodies show great temporal and spatial variations. On a temporal scale, the concentrations of TN and TP in the rainy reason are higher than those in other seasons. On a spatial scale, the concentrations of TN and NO3--N in the Qingshui River and Chaohe River are highest all the time. The spatial variation of TP is distinct, being obvious at sampling sites near villages. The form of nitrogen and phosphorus loss varies in different hydrological seasons. Dissolved nitrogen and phosphorus are the main forms in streams in non-rainy seasons, the dissolved nitrogen and total nitrogen decrease in percentage in the rainy season. Particulate nitrogen and phosphorus are the main forms in some rivers. The concentrations of TN and NO3--N from orchards and villages are high whereas those from forest land are lowest. Land-use pattern has impacts on TN and NO3--N losses, at the sampling sites near the source landscape,the concentrations are higher than those at the sampling sites near the sink landscape. Water quality of the rivers which flow into the Miyuan Reservior is influenced by the composition of adjacent soils.展开更多
The water quality of lakes can be degraded by excessive riverine nutrients.Riverine water quality generally varies depending on region and season because of the spatiotemporal variations in natural factors and anthrop...The water quality of lakes can be degraded by excessive riverine nutrients.Riverine water quality generally varies depending on region and season because of the spatiotemporal variations in natural factors and anthropogenic activities.Monthly water quality measurements of eight water quality variables were analyzed for two years at 16 sites of the Tianmuhu watershed.The variables were examined using hierarchical cluster analysis(HCA) and factor analysis/principal component analysis(FA/PCA) to reveal the spatiotemporal variations in riverine nutrients and to identify their potential sources.HCA revealed three geographical groups and three periods.Two drainages comprising towns and large villages were the most polluted, six drainages comprising widely distributed tea plantations and orchards were moderately polluted, and eight drainages without the factors were the least polluted.The river was most polluted in June when the first heavy rain(daily rainfall > 50 mm) occurs after fertilization and the number of rainy days is most(monthly number of rainy days > 20 days).Moderate pollution was observed from October to May, during which morethan 60% of the total nitrogen fertilizer and all of the phosphorus fertilizer are applied to the cropland, the total manure is applied to tea plantations and orchards, and a monthly rainfall ranging from 0 mm to 164 mm occurs.The remaining months were characterized by frequent raining(i.e., number of rainy days per month ranged from 5 to 24) and little use of fertilizers, and were thus least polluted.FA/PCA identified that the greatest pollution sources were the runoff from tea plantations and orchards,domestic pollution and the surface runoff from towns and villages, and rural sewage, which had extremely high contributions of riverine nitrogen, phosphorus,and chemical oxygen demand, respectively.The tea plantations and orchards promoted by the agricultural comprehensive development(ACD) were not environmentally friendly.Riverine nitrogen is a major water pollution parameter in hilly watersheds affected by ACD, and this parameter would not be reduced unless its loss load through the runoff from tea plantations and orchards is effectively controlled.展开更多
The assessment of the spatiotemporal evolution of habitat quality caused by land use changes can provide a scientifc basis for the ecological protection and green development of mining cities.Taking Yanshan County as ...The assessment of the spatiotemporal evolution of habitat quality caused by land use changes can provide a scientifc basis for the ecological protection and green development of mining cities.Taking Yanshan County as an example of a typical mining city,this article discussed the spatial pattern and evolution characteristics of habitat quality in 2000 and 2018 based on the ArcGIS platform and the InVEST model.The conclusions are as below:from 2000 to 2018,the area of farmland and construction land changed the most in the study area.Among them,the area of farmland decreased by 3.48%,and the area of industrial and mining land and construction land increased by 53.25%.Areas of low,relatively low and high habitat quality expanded,and areas of medium and relatively high habitat quality shrank,which is closely related to the distribution of land use.The areas with high habitat degradation degrees appear around cities,mining areas and watersheds,while the areas with low habitat degradation degrees are mainly distributed in the southern woodland.The distribution of cold and hot spots in the habitat quality distribution of Yanshan County presents a pattern of“hot in the south and cold in the north”.The results are of great signifcance to the precise implementation of ecosystem management decisions in mining cities and the creation of a landscape pattern of“beautiful countrysides,green cities,and green mines”.展开更多
This study evaluated the temporal and spatial variations of water quality data sets for the Xin'anjiang River through the use of multivariate statistical techniques, including cluster analysis (CA), discriminant an...This study evaluated the temporal and spatial variations of water quality data sets for the Xin'anjiang River through the use of multivariate statistical techniques, including cluster analysis (CA), discriminant analysis (DA), correlation analysis, and principal component analysis (PCA). The water samples, measured by ten parameters, were collected every month for three years (2008-2010) from eight sampling stations located along the river. The hierarchical CA classified the 12 months into three periods (First, Second and Third Period) and the eight sampling sites into three groups (Groups 1, 2 and 3) based on seasonal differences and various pollution levels caused by physicochemical properties and anthropogenic activ- ities. DA identified three significant parameters (tempera- ture, pH and E.coli) to distinguish temporal groups with close to 76% correct assignment. The DA also discovered five parameters (temperature, electricity conductivity, total nitrogen, chemical oxygen demand and total phosphorus) for spatial variation analysis, with 80.56% correct assignment. The non-parametric correlation coefficient (Spear- man R) explained the relationship between the water quality parameters and the basin characteristics, and the GIS made the results visual and direct. The PCA identified four PCs for Groups 1 and 2, and three PCs for Group 3. These PCs captured 68.94%, 67.48% and 70.35% of the total variance of Groups 1, 2 and 3, respectively. Although natural pollution affects the Xin'anjiang River, the main sources of pollution included agricultural activities, industrial waste, and domestic wastewater.展开更多
In this study, based on environmental quality monitoring data on 22 pollutants from 490 control sections, we analyzed the spatial distribution and temporal changes of water quality in ten Chinese river basins (waters...In this study, based on environmental quality monitoring data on 22 pollutants from 490 control sections, we analyzed the spatial distribution and temporal changes of water quality in ten Chinese river basins (watersheds) to reveal the trends from 2005 to 2010. We used a comprehensive water pollution index (WPI) and the proportions of this index accounted for by the three major pollutants to analyze how economic development has influenced water quality. Higher values of the index represent more serious pollution. We found that WPI was much higher for the Hai River Basin (1.83 to 5.60 times the averages in other regions). In the Yangtze River Basin, WPI increased from upstream to downstream. The indices of some provinces toward the middle of a basin, such as Hebei Province in the Hal River Basin, Shanxi Province in the Yellow River Basin, and Anhui Province in the Huai River Basin, were higher than those of upstream and downstream provinces. In the Songhua, Liao, and South- east river basins, WPI decreased during the study period: in 2010, it decreased by 33.9%, 44.3%, and 67.2%, respectively, compared with the 2005 value. In the Pearl River, Southwest, and Inland river basins, WPI increased by 23.1%, 47.7%, and 38.5% in 2010, compared with 2005. A comparison of WPI with the GDP of each province showed that the water pollution generated by economic development was lightest in northwestern, southwestern, and northeastern China, and highest in central and eastern China, and that the water environment in some coastal regions were improving. However, some provinces (e.g., Shanxi Province) were seriously polluted.展开更多
The aim of this study is to assess the spatial and temporal water quality variation and to determine the main contamination sources in the Oum Er Rbia River and its main tributary,El Abid River.The water quality data ...The aim of this study is to assess the spatial and temporal water quality variation and to determine the main contamination sources in the Oum Er Rbia River and its main tributary,El Abid River.The water quality data were collected during 2000-2012 from fourteen sampling stations distributed along the river.The water quality indicators used were TEMP,pH,EC,turbidity,TSS,DO,NH_(4)^(+),NH_(3)^(-),TP,BOD5,COD and F.coli.The water quality data was analyzed using multivariate statistical methods including Pearson's correlation,PCA,and CA.The results showed that in some stations the water quality parameters were over Moroccan water standards.PCA applied to compare the compositional patterns among the analyzed water samples,identified and four factors accounting for almost 63% of the total variation in the data.This suggests that the variations in water compounds’concentration are mainly related to point source contamination(domestic and industrial wastewater),non-point source contamination(agriculture activities),as well as natural processes(weathering of soil and rock).CA showed relatively spatial and seasonal changes in surface water quality,which are usually indicators of contamination with rainfalls or other sources.Overall,this study showed that the water was potentially hazardous to health of the consumers and highlighted the need to treat industrial and municipal wastewater and to encourage sustainable agricultural practices to prevent adverse health effects.We therefore suggest wise management of anthropogenic activities in the catchment of Oum Er Bia River and their tributaries.展开更多
文摘Evaluation and analysis of water quality variations were performed with integrated consideration of water quality parameters, hydrological-meteorologic and anthropogenic factors in Cao-E River, Zhejiang Province of China. Cao-E River system has been polluted and the water quality of some reaches are inferior to Grade V according to National Surface Water Quality Standard of China (GB2002). However, mainly polluted indices of each tributary and mainstream are different. Total nitrogen (TN) and total phosphorus (TP) in the water are the main polluted indices for mainstream that varies from 1.52 to 45.85 mg/L and 0.02 to 4.02 mg/L, respectively. TN is the main polluted indices for Sub-watershed Ⅰ, Ⅱ, Ⅳ and Ⅴ(0.76 to 18.27 mg/L). BOD5 (0.36 to 289.5 mg/L), CODMn (0.47 to 78.86 mg/L), TN (0.74 to 31.09 mg/L) and TP (0 to 3.75 mg/L) are the main polluted indices for Sub-watershed Ⅲ. There are tow pollution types along the river including nonpoint source pollution and point source pollution types. Remarkably temporal variations with a few spatial variations occur in nonpoint pollution type reaches (including mainstream, Sub-watershed Ⅰ and Ⅱ) that mainly drained by arable field and/or dispersive rural dwelling district, and the maximum pollutant concentration appears in flooding seasons. It implied that the runoff increases the pollutant concentration of the water in the nonpoint pollution type reaches. On the other hand, remarkably spatial variations occur in the point pollution type reaches (include Sub-watershed Ⅲ, Ⅳ and Ⅴ) and the maximum pollutant concentration appears in urban reaches. The runoff always decreases the pollutant concentration of the river water in the seriously polluted reaches that drained by industrial point sewage. But for the point pollution reaches resulted from centralized town domestic sewage pipeline and from frequent shipping and digging sands, rainfall always increased the concentration of pollutant (TN) in the river water too. Pollution controls were respectively suggested for these tow types according to different pollution causes.
文摘The long-term temporal and spatial dynamics of marine coastal water quality in Tolo Harbor, Hong Kong were explored. The Harbor is divided into three zones represented as Harbor, Buffer, and Channel Subzones. The time range for the study covers the period from the 1970s to the 1990s. The selected indicators for the comprehensive assessment of water quality consist of physical, chemical and biological aspects, including suspended solids(SS), Secchi disk depth(SD), 5-day biochemical oxygen demand(BOD\-5), total nitrogen(TN), total phosphorus(TP), faecal coliform, chlorophyll-a(Chl-a), and the number of red tide occurrences. The results indicated the presence of obvious temporal and spatial trends with regard to changes in water quality. Spatially, water quality in the Channel Subzone is the best, while that in the Harbor Subzone is the worst. On a temporal basis, the average trend from bad to good was 1980s>1990s>1970s as indicated by most of the selected water quality indicators. Water quality during the late 1980s reached its worst level with the lowest SD, the highest BOD\-5, TN, TP, Chl-a concentrations, and the number of red tide occurrences. These long-term temporal-spatial water quality trends were also found in other studies of the Tolo Harbor. The large quantity of pollutants produced as a result of increasing population, industrial and commercial actives, and urbanization and industrialization trends in both Shatin and Tai Po seem to be primarily responsible for the changes in marine coastal water quality.
基金supported by the National Natural Science Foundation of China(41572240)
文摘Groundwater utilization and protection are crucial for sustainable urban development. This is especially true for Beijing, where groundwater is an important source for urban water supply. In this study, statistical methods, including descriptive statistics, correlation analysis, principal component analysis, and Piper-Tri-linear diagram, were used in analyzing the temporal and spatial variations of the hydrochemical characteristics of groundwater based on monitored data from the southern plain of Beijing, China. Results indicated consistent changes of groundwater's hydrochemical characteristics in different aquifers in the study area. The percentage of HCO_3^-in total anion increased significantly in the groundwater, and hydrochemical water type evolved gradually from Ca-Mg-Cl-SO_4 based to Ca-Mg-HCO_3 based from period 2005-2007 to period 2013-2015. In shallow groundwater, the concentration of Na^+, Ca^(2+), SO_4^(2-), HCO_3^-, and total dissolved solids(TDS) increased from period 2005-2007 to period 2013-2015, and the greatest change came from HCO_3^-, rising from 428.93 to 528.96 mgL^(-1). The changes of main ionic concentrations in the deep groundwater were consistent with those in the shallow groundwater for both periods. However, the variations in deep groundwater were less than those in shallow groundwater. The temporal and spatial variations of hydrochemical characteristics reflect the groundwater quality in the study area. This study could facilitate decision-making process on the protection of groundwater resources to ensure its sustainable utilization.
基金supported by the National Basic Research Program of China(2012CB417001)the National Natural Science Foundation of China(41271125)
文摘Lake surface water temperature (SWT) is an important indicator of lake state relative to its water chemistry and aquatic ecosystem,in addition to being an important regional climate indicator.However,few literatures involving spatial-temporal changes of lake SWT in the Qinghai-Tibet Plateau,including Qinghai Lake,are available.Our objective is to study the spatial-temporal changes in SWT of Qinghai Lake from 2001 to 2010,using Moderate-resolution Imaging Spectroradiometer (MODIS) data.Based on each pixel,we calculated the temporal SWT variations and long-term trends,compared the spatial patterns of annual average SWT in different years,and mapped and analyzed the seasonal cycles of the spatial patterns of SWT.The results revealed that the differences between the average daily SWT and air temperature during the temperature decreasing phase were relatively larger than those during the temperature increasing phase.The increasing rate of the annual average SWT during the study period was about 0.01℃/a,followed by an increasing rate of about 0.05℃/a in annual average air temperature.The annual average SWT from 2001 to 2010 showed similar spatial patterns,while the SWT spatial changes from January to December demonstrated an interesting seasonal reversion pattern.The high-temperature area transformed stepwise from the south to the north regions and then back to the south region from January to December,whereas the low-temperature area demonstrated a reversed annual cyclical trace.The spatial-temporal patterns of SWTs were shaped by the topography of the lake basin and the distribution of drainages.
基金Supported by the China National Natural Science Foundation(31560107)Doctoral Degree Construction Library of Guizhou Minzu University,Education Ministry’s New Century Excellent Talents Supporting Plan(NCET-12-0659)+3 种基金Innovation Group Major Program of Guizhou Province(KY[2013]405,KY[2016]029)Research Projects of Guizhou Province Ministry of Science and Technology(LH[2014]7376)Research Projects of Guizhou Minzu University([2014]02)Research Projects of Guizhou Province Ministry of Education(KY[2014]266)
文摘Based on the investigation data of Jiaozhou Bay waters in 1981,current situation and horizontal distribution of Cr content in bottom waters of Jiaozhou Bay mouth were studied. Results showed that in bottom waters of Jiaozhou Bay center,Cr content changed from 0. 50 to3. 78 μg/L in April. In August,Cr content changed from 0. 14 to 1. 42 μg/L in bottom waters of Jiaozhou Bay mouth. It showed that Cr content corresponded with national class-one seawater quality standard(50. 00 μg/L) at different times and spaces,and Cr content was far less than5. 00 μg/L. Therefore,under the effect of vertical water body,water quality was clean in bottom waters of Jiaozhou Bay,which was not polluted by Cr. In bottom waters of Jiaozhou Bay center in April and bottom waters of Jiaozhou Bay mouth in August,Cr transported by the river came to the bottom layer from surface layer by passing through water body in temporal-spatial change process. Under the effects of gravity and water flow,Cr continuously and quickly sank to the sea bottom. It verified the sedimentation process of Cr content.
基金funded by the Development Plan Project on Science and Technology of the Beijing Municipal Education Commission (KM200510028012) and Beijing Municipal Scientific Program
文摘Based on the characteristics of land use and drainage network of the upper watershed of the Miyun Reservoir, Beijing, 26 monitoring and sampling sites were selected in different sub-catchments. Temporal and spatial variations in nutrient loss were dealt with in this paper in terms of the monitoring data on the water quality of the main tributaries flowing into the Miyun Reservoir. In combination with the monitoring data on water quality, the impacts of watershed characteristics including land-use type, landscape pattern, and drainage density were assessed. The concentrations of nutrients in the rainy season are higher than those in other seasons, and the concentrations of NO3--N are linearly related to those of total N which is the main form of nitrogen present in the river water. The concentrations of nitrogen become higher toward the reservoir along the main rivers. The seasonal variation of nitrogen in the watershed affected by intensive human activities is very obvious; in the watershed with steady or low water flow, the seasonal variation of nitrogen is less obvious. Forest land and grassland can trap and filter nitrogen effectively. Land-use pattern also has important impacts on the loss of nitrogen. The concentrations of nitrogen and phosphorus in the water bodies show great temporal and spatial variations. On a temporal scale, the concentrations of TN and TP in the rainy reason are higher than those in other seasons. On a spatial scale, the concentrations of TN and NO3--N in the Qingshui River and Chaohe River are highest all the time. The spatial variation of TP is distinct, being obvious at sampling sites near villages. The form of nitrogen and phosphorus loss varies in different hydrological seasons. Dissolved nitrogen and phosphorus are the main forms in streams in non-rainy seasons, the dissolved nitrogen and total nitrogen decrease in percentage in the rainy season. Particulate nitrogen and phosphorus are the main forms in some rivers. The concentrations of TN and NO3--N from orchards and villages are high whereas those from forest land are lowest. Land-use pattern has impacts on TN and NO3--N losses, at the sampling sites near the source landscape,the concentrations are higher than those at the sampling sites near the sink landscape. Water quality of the rivers which flow into the Miyuan Reservior is influenced by the composition of adjacent soils.
基金jointly sponsored by the National Natural Science Foundation of China(41030745,41271500)Key Project of Chinese Academy of Sciences(KZZDEW-10-4)+1 种基金Key"135"Project of Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences(NIGLAS2012135005)the Scientific Research Foundation of Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences(Y4SL011036)
文摘The water quality of lakes can be degraded by excessive riverine nutrients.Riverine water quality generally varies depending on region and season because of the spatiotemporal variations in natural factors and anthropogenic activities.Monthly water quality measurements of eight water quality variables were analyzed for two years at 16 sites of the Tianmuhu watershed.The variables were examined using hierarchical cluster analysis(HCA) and factor analysis/principal component analysis(FA/PCA) to reveal the spatiotemporal variations in riverine nutrients and to identify their potential sources.HCA revealed three geographical groups and three periods.Two drainages comprising towns and large villages were the most polluted, six drainages comprising widely distributed tea plantations and orchards were moderately polluted, and eight drainages without the factors were the least polluted.The river was most polluted in June when the first heavy rain(daily rainfall > 50 mm) occurs after fertilization and the number of rainy days is most(monthly number of rainy days > 20 days).Moderate pollution was observed from October to May, during which morethan 60% of the total nitrogen fertilizer and all of the phosphorus fertilizer are applied to the cropland, the total manure is applied to tea plantations and orchards, and a monthly rainfall ranging from 0 mm to 164 mm occurs.The remaining months were characterized by frequent raining(i.e., number of rainy days per month ranged from 5 to 24) and little use of fertilizers, and were thus least polluted.FA/PCA identified that the greatest pollution sources were the runoff from tea plantations and orchards,domestic pollution and the surface runoff from towns and villages, and rural sewage, which had extremely high contributions of riverine nitrogen, phosphorus,and chemical oxygen demand, respectively.The tea plantations and orchards promoted by the agricultural comprehensive development(ACD) were not environmentally friendly.Riverine nitrogen is a major water pollution parameter in hilly watersheds affected by ACD, and this parameter would not be reduced unless its loss load through the runoff from tea plantations and orchards is effectively controlled.
基金was funded by the Jiangxi Provincial Social Science Foundation“the 14th Five-Year Plan”(2021)regional project(21DQ44)Science and Technology Research Project of Jiangxi Provincial Department of Education(GJJ210723)+1 种基金the Doctoral Research Initiation fund of East China University of Technology(DHBK2019184)the Graduate Innovation Fund of East China University of Technology(DHYC-202123).
文摘The assessment of the spatiotemporal evolution of habitat quality caused by land use changes can provide a scientifc basis for the ecological protection and green development of mining cities.Taking Yanshan County as an example of a typical mining city,this article discussed the spatial pattern and evolution characteristics of habitat quality in 2000 and 2018 based on the ArcGIS platform and the InVEST model.The conclusions are as below:from 2000 to 2018,the area of farmland and construction land changed the most in the study area.Among them,the area of farmland decreased by 3.48%,and the area of industrial and mining land and construction land increased by 53.25%.Areas of low,relatively low and high habitat quality expanded,and areas of medium and relatively high habitat quality shrank,which is closely related to the distribution of land use.The areas with high habitat degradation degrees appear around cities,mining areas and watersheds,while the areas with low habitat degradation degrees are mainly distributed in the southern woodland.The distribution of cold and hot spots in the habitat quality distribution of Yanshan County presents a pattern of“hot in the south and cold in the north”.The results are of great signifcance to the precise implementation of ecosystem management decisions in mining cities and the creation of a landscape pattern of“beautiful countrysides,green cities,and green mines”.
文摘This study evaluated the temporal and spatial variations of water quality data sets for the Xin'anjiang River through the use of multivariate statistical techniques, including cluster analysis (CA), discriminant analysis (DA), correlation analysis, and principal component analysis (PCA). The water samples, measured by ten parameters, were collected every month for three years (2008-2010) from eight sampling stations located along the river. The hierarchical CA classified the 12 months into three periods (First, Second and Third Period) and the eight sampling sites into three groups (Groups 1, 2 and 3) based on seasonal differences and various pollution levels caused by physicochemical properties and anthropogenic activ- ities. DA identified three significant parameters (tempera- ture, pH and E.coli) to distinguish temporal groups with close to 76% correct assignment. The DA also discovered five parameters (temperature, electricity conductivity, total nitrogen, chemical oxygen demand and total phosphorus) for spatial variation analysis, with 80.56% correct assignment. The non-parametric correlation coefficient (Spear- man R) explained the relationship between the water quality parameters and the basin characteristics, and the GIS made the results visual and direct. The PCA identified four PCs for Groups 1 and 2, and three PCs for Group 3. These PCs captured 68.94%, 67.48% and 70.35% of the total variance of Groups 1, 2 and 3, respectively. Although natural pollution affects the Xin'anjiang River, the main sources of pollution included agricultural activities, industrial waste, and domestic wastewater.
文摘In this study, based on environmental quality monitoring data on 22 pollutants from 490 control sections, we analyzed the spatial distribution and temporal changes of water quality in ten Chinese river basins (watersheds) to reveal the trends from 2005 to 2010. We used a comprehensive water pollution index (WPI) and the proportions of this index accounted for by the three major pollutants to analyze how economic development has influenced water quality. Higher values of the index represent more serious pollution. We found that WPI was much higher for the Hai River Basin (1.83 to 5.60 times the averages in other regions). In the Yangtze River Basin, WPI increased from upstream to downstream. The indices of some provinces toward the middle of a basin, such as Hebei Province in the Hal River Basin, Shanxi Province in the Yellow River Basin, and Anhui Province in the Huai River Basin, were higher than those of upstream and downstream provinces. In the Songhua, Liao, and South- east river basins, WPI decreased during the study period: in 2010, it decreased by 33.9%, 44.3%, and 67.2%, respectively, compared with the 2005 value. In the Pearl River, Southwest, and Inland river basins, WPI increased by 23.1%, 47.7%, and 38.5% in 2010, compared with 2005. A comparison of WPI with the GDP of each province showed that the water pollution generated by economic development was lightest in northwestern, southwestern, and northeastern China, and highest in central and eastern China, and that the water environment in some coastal regions were improving. However, some provinces (e.g., Shanxi Province) were seriously polluted.
文摘The aim of this study is to assess the spatial and temporal water quality variation and to determine the main contamination sources in the Oum Er Rbia River and its main tributary,El Abid River.The water quality data were collected during 2000-2012 from fourteen sampling stations distributed along the river.The water quality indicators used were TEMP,pH,EC,turbidity,TSS,DO,NH_(4)^(+),NH_(3)^(-),TP,BOD5,COD and F.coli.The water quality data was analyzed using multivariate statistical methods including Pearson's correlation,PCA,and CA.The results showed that in some stations the water quality parameters were over Moroccan water standards.PCA applied to compare the compositional patterns among the analyzed water samples,identified and four factors accounting for almost 63% of the total variation in the data.This suggests that the variations in water compounds’concentration are mainly related to point source contamination(domestic and industrial wastewater),non-point source contamination(agriculture activities),as well as natural processes(weathering of soil and rock).CA showed relatively spatial and seasonal changes in surface water quality,which are usually indicators of contamination with rainfalls or other sources.Overall,this study showed that the water was potentially hazardous to health of the consumers and highlighted the need to treat industrial and municipal wastewater and to encourage sustainable agricultural practices to prevent adverse health effects.We therefore suggest wise management of anthropogenic activities in the catchment of Oum Er Bia River and their tributaries.