Evaluation and analysis of water quality variations were performed with integrated consideration of water quality parameters, hydrological-meteorologic and anthropogenic factors in Cao-E River, Zhejiang Province of Ch...Evaluation and analysis of water quality variations were performed with integrated consideration of water quality parameters, hydrological-meteorologic and anthropogenic factors in Cao-E River, Zhejiang Province of China. Cao-E River system has been polluted and the water quality of some reaches are inferior to Grade V according to National Surface Water Quality Standard of China (GB2002). However, mainly polluted indices of each tributary and mainstream are different. Total nitrogen (TN) and total phosphorus (TP) in the water are the main polluted indices for mainstream that varies from 1.52 to 45.85 mg/L and 0.02 to 4.02 mg/L, respectively. TN is the main polluted indices for Sub-watershed Ⅰ, Ⅱ, Ⅳ and Ⅴ(0.76 to 18.27 mg/L). BOD5 (0.36 to 289.5 mg/L), CODMn (0.47 to 78.86 mg/L), TN (0.74 to 31.09 mg/L) and TP (0 to 3.75 mg/L) are the main polluted indices for Sub-watershed Ⅲ. There are tow pollution types along the river including nonpoint source pollution and point source pollution types. Remarkably temporal variations with a few spatial variations occur in nonpoint pollution type reaches (including mainstream, Sub-watershed Ⅰ and Ⅱ) that mainly drained by arable field and/or dispersive rural dwelling district, and the maximum pollutant concentration appears in flooding seasons. It implied that the runoff increases the pollutant concentration of the water in the nonpoint pollution type reaches. On the other hand, remarkably spatial variations occur in the point pollution type reaches (include Sub-watershed Ⅲ, Ⅳ and Ⅴ) and the maximum pollutant concentration appears in urban reaches. The runoff always decreases the pollutant concentration of the river water in the seriously polluted reaches that drained by industrial point sewage. But for the point pollution reaches resulted from centralized town domestic sewage pipeline and from frequent shipping and digging sands, rainfall always increased the concentration of pollutant (TN) in the river water too. Pollution controls were respectively suggested for these tow types according to different pollution causes.展开更多
Groundwater utilization and protection are crucial for sustainable urban development. This is especially true for Beijing, where groundwater is an important source for urban water supply. In this study, statistical me...Groundwater utilization and protection are crucial for sustainable urban development. This is especially true for Beijing, where groundwater is an important source for urban water supply. In this study, statistical methods, including descriptive statistics, correlation analysis, principal component analysis, and Piper-Tri-linear diagram, were used in analyzing the temporal and spatial variations of the hydrochemical characteristics of groundwater based on monitored data from the southern plain of Beijing, China. Results indicated consistent changes of groundwater's hydrochemical characteristics in different aquifers in the study area. The percentage of HCO_3^-in total anion increased significantly in the groundwater, and hydrochemical water type evolved gradually from Ca-Mg-Cl-SO_4 based to Ca-Mg-HCO_3 based from period 2005-2007 to period 2013-2015. In shallow groundwater, the concentration of Na^+, Ca^(2+), SO_4^(2-), HCO_3^-, and total dissolved solids(TDS) increased from period 2005-2007 to period 2013-2015, and the greatest change came from HCO_3^-, rising from 428.93 to 528.96 mgL^(-1). The changes of main ionic concentrations in the deep groundwater were consistent with those in the shallow groundwater for both periods. However, the variations in deep groundwater were less than those in shallow groundwater. The temporal and spatial variations of hydrochemical characteristics reflect the groundwater quality in the study area. This study could facilitate decision-making process on the protection of groundwater resources to ensure its sustainable utilization.展开更多
The study was designed to investigate temporal and spatial seasonal variations in quality properties of gravity flow water samples collected from Kigata, Kacuro, Kihanga, Kitibya and Kanjobe located in Kyanamira Sub-C...The study was designed to investigate temporal and spatial seasonal variations in quality properties of gravity flow water samples collected from Kigata, Kacuro, Kihanga, Kitibya and Kanjobe located in Kyanamira Sub-County, Kabale District, Uganda. Physical, chemical and biological parameters such as pH, temperature, dissolved oxygen, total dissolved solids, electrical conductivity, turbidity, colour and total suspended solids, total hardness, total alkalinity, chloride, fluoride, nitrates-N, nitrites-N, ammonium-N, sulphates, total phosphate, sodium, calcium, magnesium and some heavy metals were analyzed. Total iron, lead, chromium, copper, zinc, manganese and cadmium were analyzed by atomic absorption spectrometry. Two of the basic biological parameters for drinking water such as faecal coliforms and salmonella were analyzed by incubation followed by counting colony forming units (CFUs). Statistical presentations of data including cluster analysis, dendrograms and principal component analysis were used with the assistance of PAST software. Temperature, pH, TDS dissolved oxygen, cations, anions (chemical parameters) and salmonella, faecal coliforms were the major contributing parameters to gravity flow water’s quality variations during both seasons. Values of pH ranged between 3.78 and 4.84 from March to August in all study sites and they were consistently below the WHO permissible pH range of 6.5 - 8.5. Total suspended solids ranged between 0.66 and 2.17 mg·L-1 and were above the recommended WHO limit of zero value in all study sites. Salmonella and faecal coliforms colonies were present in scaring numbers in the wet season. In March, salmonella counts at Kacuro (14 CFU) and Kanjobe (128 CFU) while faecal coliforms counts at Kacuro (515 CFU) and Kanjobe (228 CFU). The findings of this study call for special attention when using gravity flow water.展开更多
Improving crop water productivity is necessary for ensuring food security. To quantify the water utilization in grain production from multiple perspectives, gross inflow water productivity(WPg), generalized agricultur...Improving crop water productivity is necessary for ensuring food security. To quantify the water utilization in grain production from multiple perspectives, gross inflow water productivity(WPg), generalized agricultural water productivity(WPa), evapotranspiration water productivity(WPET) and irrigation water productivity(WPI) were examined in this study. This paper calculated and analyzed the temporal and spatial variation in these water productivity(WP) indices in the irrigated land of Heilongjiang Province. The results showed that almost all of the municipal WP indices increased from 2007 to 2015. The four indices showed large differences in scientific connotation and numerical performance, and their degrees of spatial variation were ranked as WPI>WPa>WPg>WPET. The spatial patterns of WP indices in different years were similar; the central and southern regions on the Songnen Plain and the eastern region had high WP values, while those of the northern region were low. Each WP index was used to evaluate the relationship between the input of water resources and the output of grain between different regions. Most cities had the potential to improve WP by reducing the input of irrigation water. Furthermore, the results provided recommendations to decision makers to plan for efficient use of water resources in different cities.展开更多
Study was conducted with the aim to understand the temporal and spatial variations of water quality parameters (temperature, salinity, pH, DO, TSS, NO3-, NO2-, NH3-N and PO4-P, and phytoplankton cell density) in Ambon...Study was conducted with the aim to understand the temporal and spatial variations of water quality parameters (temperature, salinity, pH, DO, TSS, NO3-, NO2-, NH3-N and PO4-P, and phytoplankton cell density) in Ambong Bay, Sabah, Malaysia in order to provide reference for future mariculture development in the bay. Samplings were carried out once a month in two stations (coastal and open sea) within the bay for 12 months period from September 2015 to August 2016. Results showed that there were significant differences in pH and NO2- when compared spatially, whereas salinity, DO, TSS, phytoplankton cell density, NO3-, NH3-N, and PO4-P were temporally significant. The fermentation processes by anaerobic bacteria, organic acids from decaying vegetation and acidic clays in the mangrove soils might explain the significant spatial differences in pH and NO2-. The bay was dominated by dinoflagellate, Prorocentrum spp. (mean abundance of 16.23% and 24.44%, respectively) a potentially toxic algae species. Correlation matrix showed that NH3-N was positively correlated with PO4-P (r = 0.475, p < 0.05) but negatively correlated with salinity (r = –0.517, p < 0.01). Besides, salinity was positively correlated with DO (r = 0.505, p < 0.05) and TSS (r = 0.408, p < 0.05). In addition, DO and TSS were also positively correlated (r = 0.451, p < 0.05). Phytoplankton cell density was positively correlated with TSS (r = 0.644, p < 0.01). In general, the water quality in Ambong Bay is within the standard values permitted by the Malaysia Marine Water Quality standard for marine life, fisheries, coral reefs, recreational and mariculture (Class 2), except for NO3-. In conclusion, any mariculture operation to take place in Ambong Bay in the near future should take the temporal variation of the water quality into account. Moreover, effects of toxic phytoplankton to culture fishes should also be taken care and monitored frequently.展开更多
On the basis of the observation data of Kuroshio since 1984 and relative historical data in the East China Sea, spatial and temporal variation of water mass mixing characteristic in the observation area is analysed. T...On the basis of the observation data of Kuroshio since 1984 and relative historical data in the East China Sea, spatial and temporal variation of water mass mixing characteristic in the observation area is analysed. The main results are as follows.展开更多
The rivers draining from the Himalayan range distribute enormous amount of fresh water to the people living in downstream regions.Trace metals flowed with river water can lead to serious impact on ecological system an...The rivers draining from the Himalayan range distribute enormous amount of fresh water to the people living in downstream regions.Trace metals flowed with river water can lead to serious impact on ecological system and human health.Nevertheless,the documentation on trace elements of Himalayan rivers is inadequately documented.The current study deals with the spatial and temporal variability of the major and trace elements of Ganga river water in epirhithron,metarhithron and hyporhithron zone belonging to Himalayan segment.Water samples from nineteen monitoring locations were collected in pre-monsoon(May-June),monsoon(AugustSeptember)and post-monsoon(December)seasons and subjected to be assessed for 20 elements(Ag,Al,Ba,Cd,Ca,Cr,Cu,Fe,Ga,K,Mn,Mg,Na,Ni,Pb,Sr,Th,U,Zn,and Zr)using ICP-OES(Inductively Coupled Plasma-Optical Emission Spectrometer).Different water pollution indexes such as HPI(Heavy Metal Pollution Index),MI(Metal Index)and PI(Pollution Index)were used to describe current water quality status at each monitoring station under particular classified ecological zone.The studied stations in hyporhithron zone had the value of Metal Index(MI>1),indicating threshold of warning.Further,the highest values of HPI in hyporhithron zone correspond to poor water quality status.Sites with poor water quality were also found to be contaminated as per the Pollution Index(PI),exhibiting high concentrations for element(Fe).However,the epirhithron and metarhithron zone in Himalayan segment showed excellent water quality mainly contributed from natural sources.Cluster Analysis(CA)and Principal Component Analysis(PCA)were applied to identify the main influential sources for Ganga river water pollution.The Kriging interpolation method was also applied to prepare spatial distribution map of computed indexes(HPI,MI,and PI).With the help of index of local Moran’s I(LMI),identified spatial clusters and spatial outliers revealed the elevated concentration of most elements in hyporhithron zone.The dataset presented in this study would be convenient for government officials in developing more effective management policies and necessary steps to check and monitor the Ganga river water quality.It was also suggested that further investigations in terms of trace elemental sources and their role in self-purification properties of Ganga water can be addressed in future.展开更多
Climate change and human interference play significant roles on dynamic of water body abundance,and drive related hydrological,biochemical and social/economic processes.Documenting and monitoring surface water area wi...Climate change and human interference play significant roles on dynamic of water body abundance,and drive related hydrological,biochemical and social/economic processes.Documenting and monitoring surface water area with high resolution multi-temporal satellite imagery provide new perspective to evaluate the dynamics of surface water area,especially in continental and global scale.In this study,based on the Landsat images from 1980 s to 2015,we surveyed the spatial and temporal variation of surface water area,including rivers,lakes and reservoirs,in 10-yr temporal slice across China.Furthermore,the driving forces of the variation has been identified to reveal the interaction of water bodies and the changing environment.The results show that,the water surface area expanded over all three decades with strong spatial and temporal difference,despite the drier and warmer climate background;although lakes comprise the largest portion of the surface water area,the highest contributor of surface water expansion was new constructed reservoir located in the densely populated region;climatic parameters alteration,like precipitation and temperature,resulted in the water surface expansion in the northwestern basin by growing water input linked with rain and glacier melting;in the rest part of China,rise of water surface area was predominately attributed to human relocation of water resource,which yielded more new water storage area than the disappeared water body caused by less precipitation and stronger evapotranspiration.The conclusions highlight the integrative water resource management,especially in water conservation and restoration.展开更多
The water quality of lakes can be degraded by excessive riverine nutrients.Riverine water quality generally varies depending on region and season because of the spatiotemporal variations in natural factors and anthrop...The water quality of lakes can be degraded by excessive riverine nutrients.Riverine water quality generally varies depending on region and season because of the spatiotemporal variations in natural factors and anthropogenic activities.Monthly water quality measurements of eight water quality variables were analyzed for two years at 16 sites of the Tianmuhu watershed.The variables were examined using hierarchical cluster analysis(HCA) and factor analysis/principal component analysis(FA/PCA) to reveal the spatiotemporal variations in riverine nutrients and to identify their potential sources.HCA revealed three geographical groups and three periods.Two drainages comprising towns and large villages were the most polluted, six drainages comprising widely distributed tea plantations and orchards were moderately polluted, and eight drainages without the factors were the least polluted.The river was most polluted in June when the first heavy rain(daily rainfall > 50 mm) occurs after fertilization and the number of rainy days is most(monthly number of rainy days > 20 days).Moderate pollution was observed from October to May, during which morethan 60% of the total nitrogen fertilizer and all of the phosphorus fertilizer are applied to the cropland, the total manure is applied to tea plantations and orchards, and a monthly rainfall ranging from 0 mm to 164 mm occurs.The remaining months were characterized by frequent raining(i.e., number of rainy days per month ranged from 5 to 24) and little use of fertilizers, and were thus least polluted.FA/PCA identified that the greatest pollution sources were the runoff from tea plantations and orchards,domestic pollution and the surface runoff from towns and villages, and rural sewage, which had extremely high contributions of riverine nitrogen, phosphorus,and chemical oxygen demand, respectively.The tea plantations and orchards promoted by the agricultural comprehensive development(ACD) were not environmentally friendly.Riverine nitrogen is a major water pollution parameter in hilly watersheds affected by ACD, and this parameter would not be reduced unless its loss load through the runoff from tea plantations and orchards is effectively controlled.展开更多
Based on the characteristics of land use and drainage network of the upper watershed of the Miyun Reservoir, Beijing, 26 monitoring and sampling sites were selected in different sub-catchments. Temporal and spatial va...Based on the characteristics of land use and drainage network of the upper watershed of the Miyun Reservoir, Beijing, 26 monitoring and sampling sites were selected in different sub-catchments. Temporal and spatial variations in nutrient loss were dealt with in this paper in terms of the monitoring data on the water quality of the main tributaries flowing into the Miyun Reservoir. In combination with the monitoring data on water quality, the impacts of watershed characteristics including land-use type, landscape pattern, and drainage density were assessed. The concentrations of nutrients in the rainy season are higher than those in other seasons, and the concentrations of NO3--N are linearly related to those of total N which is the main form of nitrogen present in the river water. The concentrations of nitrogen become higher toward the reservoir along the main rivers. The seasonal variation of nitrogen in the watershed affected by intensive human activities is very obvious; in the watershed with steady or low water flow, the seasonal variation of nitrogen is less obvious. Forest land and grassland can trap and filter nitrogen effectively. Land-use pattern also has important impacts on the loss of nitrogen. The concentrations of nitrogen and phosphorus in the water bodies show great temporal and spatial variations. On a temporal scale, the concentrations of TN and TP in the rainy reason are higher than those in other seasons. On a spatial scale, the concentrations of TN and NO3--N in the Qingshui River and Chaohe River are highest all the time. The spatial variation of TP is distinct, being obvious at sampling sites near villages. The form of nitrogen and phosphorus loss varies in different hydrological seasons. Dissolved nitrogen and phosphorus are the main forms in streams in non-rainy seasons, the dissolved nitrogen and total nitrogen decrease in percentage in the rainy season. Particulate nitrogen and phosphorus are the main forms in some rivers. The concentrations of TN and NO3--N from orchards and villages are high whereas those from forest land are lowest. Land-use pattern has impacts on TN and NO3--N losses, at the sampling sites near the source landscape,the concentrations are higher than those at the sampling sites near the sink landscape. Water quality of the rivers which flow into the Miyuan Reservior is influenced by the composition of adjacent soils.展开更多
Water has become a key restricting factor of the urbanization process in developing arid areas.Based on qualitative and quantitative methods,we constructed an integrated in-dicator system to assess the status of water...Water has become a key restricting factor of the urbanization process in developing arid areas.Based on qualitative and quantitative methods,we constructed an integrated in-dicator system to assess the status of water resources and urbanization system in arid area,and established an AHP model reformed by entropy technology to evaluate the temporal and spatial variations of water resources constraint intensity on urbanization.This model is ap-plied to the Hexi Corridor,a typical arid area in NW China.Results show that,water resources constraint intensity on urbanization in the Hexi Corridor is bigger in the east and smaller in the west.It has changed from the less strong constraint type into the strong constraint type from 1985 to 2005,yet it decreased appreciably in recent years.At present,most areas in the Hexi Corridor belong to the less strong or strong constraint type.Through rational adjustment of water resources and urbanization system,the Hexi Corridor can still promote water resources sustainable utilization and accelerate the urbanization process.This study suggests that the integrated assessment model of water resources constraint intensity on urbanization is an effective method to analyze the conflicts between water resources and urbanization system in arid area.展开更多
This study evaluated the temporal and spatial variations of water quality data sets for the Xin'anjiang River through the use of multivariate statistical techniques, including cluster analysis (CA), discriminant an...This study evaluated the temporal and spatial variations of water quality data sets for the Xin'anjiang River through the use of multivariate statistical techniques, including cluster analysis (CA), discriminant analysis (DA), correlation analysis, and principal component analysis (PCA). The water samples, measured by ten parameters, were collected every month for three years (2008-2010) from eight sampling stations located along the river. The hierarchical CA classified the 12 months into three periods (First, Second and Third Period) and the eight sampling sites into three groups (Groups 1, 2 and 3) based on seasonal differences and various pollution levels caused by physicochemical properties and anthropogenic activ- ities. DA identified three significant parameters (tempera- ture, pH and E.coli) to distinguish temporal groups with close to 76% correct assignment. The DA also discovered five parameters (temperature, electricity conductivity, total nitrogen, chemical oxygen demand and total phosphorus) for spatial variation analysis, with 80.56% correct assignment. The non-parametric correlation coefficient (Spear- man R) explained the relationship between the water quality parameters and the basin characteristics, and the GIS made the results visual and direct. The PCA identified four PCs for Groups 1 and 2, and three PCs for Group 3. These PCs captured 68.94%, 67.48% and 70.35% of the total variance of Groups 1, 2 and 3, respectively. Although natural pollution affects the Xin'anjiang River, the main sources of pollution included agricultural activities, industrial waste, and domestic wastewater.展开更多
In this paper seven of the ten Water Control Zones (WCZs) in Hong Kong's coastal waters with monthly or bi-weekly sampling data of 17 parameters collected at 37 monitoring stations from 1988 to 1999 were selected ...In this paper seven of the ten Water Control Zones (WCZs) in Hong Kong's coastal waters with monthly or bi-weekly sampling data of 17 parameters collected at 37 monitoring stations from 1988 to 1999 were selected to analyze the spatial and temporal variations of chlorophyll-a and its influencing factors. Cluster analysis was employed to group the monitoring stations based on the structure of the data set. Multiple step regression was employed to determine the significant influencing factors of chlorophyll-a level. The results suggest that all the monitoring stations could be grouped into two clusters. Cluster Ⅰ with frequent red tide incidents comprises two WCZs which are semi-enclosed bays. Cluster Ⅱ with less red tide occurrence comprises the other five WCZs in an estuarine environment in the west. For both clusters, the organic contents indicator, BODS, was a common significant influencing factor of the chlorophyll-a level. Nitrogen and light penetration condition related to turbidity, total volatile solids and suspended solids had more influence on the cholophyll-a level in Cluster Ⅰ than in Cluster Ⅱ, while phosphorus and oceanographic conditions associated with salinity, temperature, dissolved oxygen and pH were more important in Cluster Ⅱ than in Cluster Ⅰ. Generally, there was a higher average chlorophyll-a level in winter and autumn in a year. The chlorophyll-a level was much higher in Cluster Ⅰ than in Cluster Ⅱ among all seasons. Although the chlorophyll-a concentration had great variations from place to place in Hong Kong's coastal waters, it seemed to have a common long term fluctuation period of 8-10 years with a high-low-high variation in the period in the whole region, which might be influenced by other factors of global scale.展开更多
本文以分布于枝江关洲岛的濒危物种疏花水柏枝(Myricaria laxiflora(Franch.)P.Y.Zhang et Y.J.Zhang)为研究对象,调查其种群开花和结果性状沿高程的变化,分析该残存种群有性繁殖的时空变化规律;同时结合三峡大坝-葛洲坝水利水电工程修...本文以分布于枝江关洲岛的濒危物种疏花水柏枝(Myricaria laxiflora(Franch.)P.Y.Zhang et Y.J.Zhang)为研究对象,调查其种群开花和结果性状沿高程的变化,分析该残存种群有性繁殖的时空变化规律;同时结合三峡大坝-葛洲坝水利水电工程修建所引起生境地水位消涨节律的变化,分析其对残存种群有性繁殖的影响。结果显示,残存疏花水柏枝种群的有性繁殖在不同高程之间存在显著差异。消涨带上部植株的每株花枝数、每枝花朵数、每株花朵数分别比消涨带中部植株高66.09%、50.14%和98.63%,比消涨带下部植株高79.50%、283.33%和461.05%。消涨带上部植株的每株果枝数、每枝结果数、每株结果数、每果种子数和种子发芽率分别比消涨带中部高60.17%、25.26%、88.05%、6.96%和30.69%,比消涨带下部高97.39%、82.45%、208.31%、19.12%和45.91%。相关性分析结果表明,植株的开花结果特性与高程、出露时期、土壤含水量以及温度变化极显著相关。环境因子对有性繁殖的影响强度依次为出露时间>高程>日均温度>土壤含水量。上游水利水电工程对疏花水柏枝残存种群的有性繁殖具有一定的影响。展开更多
文摘Evaluation and analysis of water quality variations were performed with integrated consideration of water quality parameters, hydrological-meteorologic and anthropogenic factors in Cao-E River, Zhejiang Province of China. Cao-E River system has been polluted and the water quality of some reaches are inferior to Grade V according to National Surface Water Quality Standard of China (GB2002). However, mainly polluted indices of each tributary and mainstream are different. Total nitrogen (TN) and total phosphorus (TP) in the water are the main polluted indices for mainstream that varies from 1.52 to 45.85 mg/L and 0.02 to 4.02 mg/L, respectively. TN is the main polluted indices for Sub-watershed Ⅰ, Ⅱ, Ⅳ and Ⅴ(0.76 to 18.27 mg/L). BOD5 (0.36 to 289.5 mg/L), CODMn (0.47 to 78.86 mg/L), TN (0.74 to 31.09 mg/L) and TP (0 to 3.75 mg/L) are the main polluted indices for Sub-watershed Ⅲ. There are tow pollution types along the river including nonpoint source pollution and point source pollution types. Remarkably temporal variations with a few spatial variations occur in nonpoint pollution type reaches (including mainstream, Sub-watershed Ⅰ and Ⅱ) that mainly drained by arable field and/or dispersive rural dwelling district, and the maximum pollutant concentration appears in flooding seasons. It implied that the runoff increases the pollutant concentration of the water in the nonpoint pollution type reaches. On the other hand, remarkably spatial variations occur in the point pollution type reaches (include Sub-watershed Ⅲ, Ⅳ and Ⅴ) and the maximum pollutant concentration appears in urban reaches. The runoff always decreases the pollutant concentration of the river water in the seriously polluted reaches that drained by industrial point sewage. But for the point pollution reaches resulted from centralized town domestic sewage pipeline and from frequent shipping and digging sands, rainfall always increased the concentration of pollutant (TN) in the river water too. Pollution controls were respectively suggested for these tow types according to different pollution causes.
基金supported by the National Natural Science Foundation of China(41572240)
文摘Groundwater utilization and protection are crucial for sustainable urban development. This is especially true for Beijing, where groundwater is an important source for urban water supply. In this study, statistical methods, including descriptive statistics, correlation analysis, principal component analysis, and Piper-Tri-linear diagram, were used in analyzing the temporal and spatial variations of the hydrochemical characteristics of groundwater based on monitored data from the southern plain of Beijing, China. Results indicated consistent changes of groundwater's hydrochemical characteristics in different aquifers in the study area. The percentage of HCO_3^-in total anion increased significantly in the groundwater, and hydrochemical water type evolved gradually from Ca-Mg-Cl-SO_4 based to Ca-Mg-HCO_3 based from period 2005-2007 to period 2013-2015. In shallow groundwater, the concentration of Na^+, Ca^(2+), SO_4^(2-), HCO_3^-, and total dissolved solids(TDS) increased from period 2005-2007 to period 2013-2015, and the greatest change came from HCO_3^-, rising from 428.93 to 528.96 mgL^(-1). The changes of main ionic concentrations in the deep groundwater were consistent with those in the shallow groundwater for both periods. However, the variations in deep groundwater were less than those in shallow groundwater. The temporal and spatial variations of hydrochemical characteristics reflect the groundwater quality in the study area. This study could facilitate decision-making process on the protection of groundwater resources to ensure its sustainable utilization.
文摘The study was designed to investigate temporal and spatial seasonal variations in quality properties of gravity flow water samples collected from Kigata, Kacuro, Kihanga, Kitibya and Kanjobe located in Kyanamira Sub-County, Kabale District, Uganda. Physical, chemical and biological parameters such as pH, temperature, dissolved oxygen, total dissolved solids, electrical conductivity, turbidity, colour and total suspended solids, total hardness, total alkalinity, chloride, fluoride, nitrates-N, nitrites-N, ammonium-N, sulphates, total phosphate, sodium, calcium, magnesium and some heavy metals were analyzed. Total iron, lead, chromium, copper, zinc, manganese and cadmium were analyzed by atomic absorption spectrometry. Two of the basic biological parameters for drinking water such as faecal coliforms and salmonella were analyzed by incubation followed by counting colony forming units (CFUs). Statistical presentations of data including cluster analysis, dendrograms and principal component analysis were used with the assistance of PAST software. Temperature, pH, TDS dissolved oxygen, cations, anions (chemical parameters) and salmonella, faecal coliforms were the major contributing parameters to gravity flow water’s quality variations during both seasons. Values of pH ranged between 3.78 and 4.84 from March to August in all study sites and they were consistently below the WHO permissible pH range of 6.5 - 8.5. Total suspended solids ranged between 0.66 and 2.17 mg·L-1 and were above the recommended WHO limit of zero value in all study sites. Salmonella and faecal coliforms colonies were present in scaring numbers in the wet season. In March, salmonella counts at Kacuro (14 CFU) and Kanjobe (128 CFU) while faecal coliforms counts at Kacuro (515 CFU) and Kanjobe (228 CFU). The findings of this study call for special attention when using gravity flow water.
基金Supported by National Natural Science Foundation of China(51479032)National Key R&D Plan(2017YFC0406002)
文摘Improving crop water productivity is necessary for ensuring food security. To quantify the water utilization in grain production from multiple perspectives, gross inflow water productivity(WPg), generalized agricultural water productivity(WPa), evapotranspiration water productivity(WPET) and irrigation water productivity(WPI) were examined in this study. This paper calculated and analyzed the temporal and spatial variation in these water productivity(WP) indices in the irrigated land of Heilongjiang Province. The results showed that almost all of the municipal WP indices increased from 2007 to 2015. The four indices showed large differences in scientific connotation and numerical performance, and their degrees of spatial variation were ranked as WPI>WPa>WPg>WPET. The spatial patterns of WP indices in different years were similar; the central and southern regions on the Songnen Plain and the eastern region had high WP values, while those of the northern region were low. Each WP index was used to evaluate the relationship between the input of water resources and the output of grain between different regions. Most cities had the potential to improve WP by reducing the input of irrigation water. Furthermore, the results provided recommendations to decision makers to plan for efficient use of water resources in different cities.
文摘Study was conducted with the aim to understand the temporal and spatial variations of water quality parameters (temperature, salinity, pH, DO, TSS, NO3-, NO2-, NH3-N and PO4-P, and phytoplankton cell density) in Ambong Bay, Sabah, Malaysia in order to provide reference for future mariculture development in the bay. Samplings were carried out once a month in two stations (coastal and open sea) within the bay for 12 months period from September 2015 to August 2016. Results showed that there were significant differences in pH and NO2- when compared spatially, whereas salinity, DO, TSS, phytoplankton cell density, NO3-, NH3-N, and PO4-P were temporally significant. The fermentation processes by anaerobic bacteria, organic acids from decaying vegetation and acidic clays in the mangrove soils might explain the significant spatial differences in pH and NO2-. The bay was dominated by dinoflagellate, Prorocentrum spp. (mean abundance of 16.23% and 24.44%, respectively) a potentially toxic algae species. Correlation matrix showed that NH3-N was positively correlated with PO4-P (r = 0.475, p < 0.05) but negatively correlated with salinity (r = –0.517, p < 0.01). Besides, salinity was positively correlated with DO (r = 0.505, p < 0.05) and TSS (r = 0.408, p < 0.05). In addition, DO and TSS were also positively correlated (r = 0.451, p < 0.05). Phytoplankton cell density was positively correlated with TSS (r = 0.644, p < 0.01). In general, the water quality in Ambong Bay is within the standard values permitted by the Malaysia Marine Water Quality standard for marine life, fisheries, coral reefs, recreational and mariculture (Class 2), except for NO3-. In conclusion, any mariculture operation to take place in Ambong Bay in the near future should take the temporal variation of the water quality into account. Moreover, effects of toxic phytoplankton to culture fishes should also be taken care and monitored frequently.
文摘On the basis of the observation data of Kuroshio since 1984 and relative historical data in the East China Sea, spatial and temporal variation of water mass mixing characteristic in the observation area is analysed. The main results are as follows.
基金the Doon University,Dehradun,India,for the financial support to carry out the research work。
文摘The rivers draining from the Himalayan range distribute enormous amount of fresh water to the people living in downstream regions.Trace metals flowed with river water can lead to serious impact on ecological system and human health.Nevertheless,the documentation on trace elements of Himalayan rivers is inadequately documented.The current study deals with the spatial and temporal variability of the major and trace elements of Ganga river water in epirhithron,metarhithron and hyporhithron zone belonging to Himalayan segment.Water samples from nineteen monitoring locations were collected in pre-monsoon(May-June),monsoon(AugustSeptember)and post-monsoon(December)seasons and subjected to be assessed for 20 elements(Ag,Al,Ba,Cd,Ca,Cr,Cu,Fe,Ga,K,Mn,Mg,Na,Ni,Pb,Sr,Th,U,Zn,and Zr)using ICP-OES(Inductively Coupled Plasma-Optical Emission Spectrometer).Different water pollution indexes such as HPI(Heavy Metal Pollution Index),MI(Metal Index)and PI(Pollution Index)were used to describe current water quality status at each monitoring station under particular classified ecological zone.The studied stations in hyporhithron zone had the value of Metal Index(MI>1),indicating threshold of warning.Further,the highest values of HPI in hyporhithron zone correspond to poor water quality status.Sites with poor water quality were also found to be contaminated as per the Pollution Index(PI),exhibiting high concentrations for element(Fe).However,the epirhithron and metarhithron zone in Himalayan segment showed excellent water quality mainly contributed from natural sources.Cluster Analysis(CA)and Principal Component Analysis(PCA)were applied to identify the main influential sources for Ganga river water pollution.The Kriging interpolation method was also applied to prepare spatial distribution map of computed indexes(HPI,MI,and PI).With the help of index of local Moran’s I(LMI),identified spatial clusters and spatial outliers revealed the elevated concentration of most elements in hyporhithron zone.The dataset presented in this study would be convenient for government officials in developing more effective management policies and necessary steps to check and monitor the Ganga river water quality.It was also suggested that further investigations in terms of trace elemental sources and their role in self-purification properties of Ganga water can be addressed in future.
基金Under the auspices of Natural Science Foundation of Guangdong Province(No.2020A1515011065)Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2019)+1 种基金the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0301)the NSFC(National Natural Science Foundation of China)-Guangdong Joint Fund Key Project(No.U1901219)。
文摘Climate change and human interference play significant roles on dynamic of water body abundance,and drive related hydrological,biochemical and social/economic processes.Documenting and monitoring surface water area with high resolution multi-temporal satellite imagery provide new perspective to evaluate the dynamics of surface water area,especially in continental and global scale.In this study,based on the Landsat images from 1980 s to 2015,we surveyed the spatial and temporal variation of surface water area,including rivers,lakes and reservoirs,in 10-yr temporal slice across China.Furthermore,the driving forces of the variation has been identified to reveal the interaction of water bodies and the changing environment.The results show that,the water surface area expanded over all three decades with strong spatial and temporal difference,despite the drier and warmer climate background;although lakes comprise the largest portion of the surface water area,the highest contributor of surface water expansion was new constructed reservoir located in the densely populated region;climatic parameters alteration,like precipitation and temperature,resulted in the water surface expansion in the northwestern basin by growing water input linked with rain and glacier melting;in the rest part of China,rise of water surface area was predominately attributed to human relocation of water resource,which yielded more new water storage area than the disappeared water body caused by less precipitation and stronger evapotranspiration.The conclusions highlight the integrative water resource management,especially in water conservation and restoration.
基金jointly sponsored by the National Natural Science Foundation of China(41030745,41271500)Key Project of Chinese Academy of Sciences(KZZDEW-10-4)+1 种基金Key"135"Project of Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences(NIGLAS2012135005)the Scientific Research Foundation of Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences(Y4SL011036)
文摘The water quality of lakes can be degraded by excessive riverine nutrients.Riverine water quality generally varies depending on region and season because of the spatiotemporal variations in natural factors and anthropogenic activities.Monthly water quality measurements of eight water quality variables were analyzed for two years at 16 sites of the Tianmuhu watershed.The variables were examined using hierarchical cluster analysis(HCA) and factor analysis/principal component analysis(FA/PCA) to reveal the spatiotemporal variations in riverine nutrients and to identify their potential sources.HCA revealed three geographical groups and three periods.Two drainages comprising towns and large villages were the most polluted, six drainages comprising widely distributed tea plantations and orchards were moderately polluted, and eight drainages without the factors were the least polluted.The river was most polluted in June when the first heavy rain(daily rainfall > 50 mm) occurs after fertilization and the number of rainy days is most(monthly number of rainy days > 20 days).Moderate pollution was observed from October to May, during which morethan 60% of the total nitrogen fertilizer and all of the phosphorus fertilizer are applied to the cropland, the total manure is applied to tea plantations and orchards, and a monthly rainfall ranging from 0 mm to 164 mm occurs.The remaining months were characterized by frequent raining(i.e., number of rainy days per month ranged from 5 to 24) and little use of fertilizers, and were thus least polluted.FA/PCA identified that the greatest pollution sources were the runoff from tea plantations and orchards,domestic pollution and the surface runoff from towns and villages, and rural sewage, which had extremely high contributions of riverine nitrogen, phosphorus,and chemical oxygen demand, respectively.The tea plantations and orchards promoted by the agricultural comprehensive development(ACD) were not environmentally friendly.Riverine nitrogen is a major water pollution parameter in hilly watersheds affected by ACD, and this parameter would not be reduced unless its loss load through the runoff from tea plantations and orchards is effectively controlled.
基金funded by the Development Plan Project on Science and Technology of the Beijing Municipal Education Commission (KM200510028012) and Beijing Municipal Scientific Program
文摘Based on the characteristics of land use and drainage network of the upper watershed of the Miyun Reservoir, Beijing, 26 monitoring and sampling sites were selected in different sub-catchments. Temporal and spatial variations in nutrient loss were dealt with in this paper in terms of the monitoring data on the water quality of the main tributaries flowing into the Miyun Reservoir. In combination with the monitoring data on water quality, the impacts of watershed characteristics including land-use type, landscape pattern, and drainage density were assessed. The concentrations of nutrients in the rainy season are higher than those in other seasons, and the concentrations of NO3--N are linearly related to those of total N which is the main form of nitrogen present in the river water. The concentrations of nitrogen become higher toward the reservoir along the main rivers. The seasonal variation of nitrogen in the watershed affected by intensive human activities is very obvious; in the watershed with steady or low water flow, the seasonal variation of nitrogen is less obvious. Forest land and grassland can trap and filter nitrogen effectively. Land-use pattern also has important impacts on the loss of nitrogen. The concentrations of nitrogen and phosphorus in the water bodies show great temporal and spatial variations. On a temporal scale, the concentrations of TN and TP in the rainy reason are higher than those in other seasons. On a spatial scale, the concentrations of TN and NO3--N in the Qingshui River and Chaohe River are highest all the time. The spatial variation of TP is distinct, being obvious at sampling sites near villages. The form of nitrogen and phosphorus loss varies in different hydrological seasons. Dissolved nitrogen and phosphorus are the main forms in streams in non-rainy seasons, the dissolved nitrogen and total nitrogen decrease in percentage in the rainy season. Particulate nitrogen and phosphorus are the main forms in some rivers. The concentrations of TN and NO3--N from orchards and villages are high whereas those from forest land are lowest. Land-use pattern has impacts on TN and NO3--N losses, at the sampling sites near the source landscape,the concentrations are higher than those at the sampling sites near the sink landscape. Water quality of the rivers which flow into the Miyuan Reservior is influenced by the composition of adjacent soils.
基金Knowledge Innovation Project of the Chinese Academy of Sciences,No.KZCX2-YW-307-02China Post-doctoral Science FoundationK.C.Wong Education Foundation,Hong Kong
文摘Water has become a key restricting factor of the urbanization process in developing arid areas.Based on qualitative and quantitative methods,we constructed an integrated in-dicator system to assess the status of water resources and urbanization system in arid area,and established an AHP model reformed by entropy technology to evaluate the temporal and spatial variations of water resources constraint intensity on urbanization.This model is ap-plied to the Hexi Corridor,a typical arid area in NW China.Results show that,water resources constraint intensity on urbanization in the Hexi Corridor is bigger in the east and smaller in the west.It has changed from the less strong constraint type into the strong constraint type from 1985 to 2005,yet it decreased appreciably in recent years.At present,most areas in the Hexi Corridor belong to the less strong or strong constraint type.Through rational adjustment of water resources and urbanization system,the Hexi Corridor can still promote water resources sustainable utilization and accelerate the urbanization process.This study suggests that the integrated assessment model of water resources constraint intensity on urbanization is an effective method to analyze the conflicts between water resources and urbanization system in arid area.
文摘This study evaluated the temporal and spatial variations of water quality data sets for the Xin'anjiang River through the use of multivariate statistical techniques, including cluster analysis (CA), discriminant analysis (DA), correlation analysis, and principal component analysis (PCA). The water samples, measured by ten parameters, were collected every month for three years (2008-2010) from eight sampling stations located along the river. The hierarchical CA classified the 12 months into three periods (First, Second and Third Period) and the eight sampling sites into three groups (Groups 1, 2 and 3) based on seasonal differences and various pollution levels caused by physicochemical properties and anthropogenic activ- ities. DA identified three significant parameters (tempera- ture, pH and E.coli) to distinguish temporal groups with close to 76% correct assignment. The DA also discovered five parameters (temperature, electricity conductivity, total nitrogen, chemical oxygen demand and total phosphorus) for spatial variation analysis, with 80.56% correct assignment. The non-parametric correlation coefficient (Spear- man R) explained the relationship between the water quality parameters and the basin characteristics, and the GIS made the results visual and direct. The PCA identified four PCs for Groups 1 and 2, and three PCs for Group 3. These PCs captured 68.94%, 67.48% and 70.35% of the total variance of Groups 1, 2 and 3, respectively. Although natural pollution affects the Xin'anjiang River, the main sources of pollution included agricultural activities, industrial waste, and domestic wastewater.
基金National Natural Science Foundation of China, No.47176032
文摘In this paper seven of the ten Water Control Zones (WCZs) in Hong Kong's coastal waters with monthly or bi-weekly sampling data of 17 parameters collected at 37 monitoring stations from 1988 to 1999 were selected to analyze the spatial and temporal variations of chlorophyll-a and its influencing factors. Cluster analysis was employed to group the monitoring stations based on the structure of the data set. Multiple step regression was employed to determine the significant influencing factors of chlorophyll-a level. The results suggest that all the monitoring stations could be grouped into two clusters. Cluster Ⅰ with frequent red tide incidents comprises two WCZs which are semi-enclosed bays. Cluster Ⅱ with less red tide occurrence comprises the other five WCZs in an estuarine environment in the west. For both clusters, the organic contents indicator, BODS, was a common significant influencing factor of the chlorophyll-a level. Nitrogen and light penetration condition related to turbidity, total volatile solids and suspended solids had more influence on the cholophyll-a level in Cluster Ⅰ than in Cluster Ⅱ, while phosphorus and oceanographic conditions associated with salinity, temperature, dissolved oxygen and pH were more important in Cluster Ⅱ than in Cluster Ⅰ. Generally, there was a higher average chlorophyll-a level in winter and autumn in a year. The chlorophyll-a level was much higher in Cluster Ⅰ than in Cluster Ⅱ among all seasons. Although the chlorophyll-a concentration had great variations from place to place in Hong Kong's coastal waters, it seemed to have a common long term fluctuation period of 8-10 years with a high-low-high variation in the period in the whole region, which might be influenced by other factors of global scale.
文摘本文以分布于枝江关洲岛的濒危物种疏花水柏枝(Myricaria laxiflora(Franch.)P.Y.Zhang et Y.J.Zhang)为研究对象,调查其种群开花和结果性状沿高程的变化,分析该残存种群有性繁殖的时空变化规律;同时结合三峡大坝-葛洲坝水利水电工程修建所引起生境地水位消涨节律的变化,分析其对残存种群有性繁殖的影响。结果显示,残存疏花水柏枝种群的有性繁殖在不同高程之间存在显著差异。消涨带上部植株的每株花枝数、每枝花朵数、每株花朵数分别比消涨带中部植株高66.09%、50.14%和98.63%,比消涨带下部植株高79.50%、283.33%和461.05%。消涨带上部植株的每株果枝数、每枝结果数、每株结果数、每果种子数和种子发芽率分别比消涨带中部高60.17%、25.26%、88.05%、6.96%和30.69%,比消涨带下部高97.39%、82.45%、208.31%、19.12%和45.91%。相关性分析结果表明,植株的开花结果特性与高程、出露时期、土壤含水量以及温度变化极显著相关。环境因子对有性繁殖的影响强度依次为出露时间>高程>日均温度>土壤含水量。上游水利水电工程对疏花水柏枝残存种群的有性繁殖具有一定的影响。