In order to reduce the physical impairment caused by signal distortion,in this paper,we investigate symbol detection with Deep Learning(DL)methods to improve bit-error performance in the optical communication system.M...In order to reduce the physical impairment caused by signal distortion,in this paper,we investigate symbol detection with Deep Learning(DL)methods to improve bit-error performance in the optical communication system.Many DL-based methods have been applied to such systems to improve bit-error performance.Referring to the speech-to-text method of automatic speech recognition,this paper proposes a signal-to-symbol method based on DL and designs a receiver for symbol detection on single-polarized optical communications modes.To realize this detection method,we propose a non-causal temporal convolutional network-assisted receiver to detect symbols directly from the baseband signal,which specifically integrates most modules of the receiver.Meanwhile,we adopt three training approaches for different signal-to-noise ratios.We also apply a parametric rectified linear unit to enhance the noise robustness of the proposed network.According to the simulation experiments,the biterror-rate performance of the proposed method is close to or even superior to that of the conventional receiver and better than the recurrent neural network-based receiver.展开更多
In the field of speech bandwidth exten-sion,it is difficult to achieve high speech quality based on the shallow statistical model method.Although the application of deep learning has greatly improved the extended spee...In the field of speech bandwidth exten-sion,it is difficult to achieve high speech quality based on the shallow statistical model method.Although the application of deep learning has greatly improved the extended speech quality,the high model complex-ity makes it infeasible to run on the client.In order to tackle these issues,this paper proposes an end-to-end speech bandwidth extension method based on a temporal convolutional neural network,which greatly reduces the complexity of the model.In addition,a new time-frequency loss function is designed to en-able narrowband speech to acquire a more accurate wideband mapping in the time domain and the fre-quency domain.The experimental results show that the reconstructed wideband speech generated by the proposed method is superior to the traditional heuris-tic rule based approaches and the conventional neu-ral network methods for both subjective and objective evaluation.展开更多
In this paper,we investigate a spectrumsensing system in the presence of a satellite,where the satellite works as a sensing node.Considering the conventional energy detection method is sensitive to the noise uncertain...In this paper,we investigate a spectrumsensing system in the presence of a satellite,where the satellite works as a sensing node.Considering the conventional energy detection method is sensitive to the noise uncertainty,thus,a temporal convolutional network(TCN)based spectrum-sensing method is designed to eliminate the effect of the noise uncertainty and improve the performance of spectrum sensing,relying on the offline training and the online detection stages.Specifically,in the offline training stage,spectrum data captured by the satellite is sent to the TCN deployed on the gateway for training purpose.Moreover,in the online detection stage,the well trained TCN is utilized to perform real-time spectrum sensing,which can upgrade spectrum-sensing performance by exploiting the temporal features.Additionally,simulation results demonstrate that the proposed method achieves a higher probability of detection than that of the conventional energy detection(ED),the convolutional neural network(CNN),and deep neural network(DNN).Furthermore,the proposed method outperforms the CNN and the DNN in terms of a lower computational complexity.展开更多
Since the oil production of single well in water flooding reservoir varies greatly and is hard to predict, an oil production prediction method of single well based on temporal convolutional network(TCN) is proposed an...Since the oil production of single well in water flooding reservoir varies greatly and is hard to predict, an oil production prediction method of single well based on temporal convolutional network(TCN) is proposed and verified. This method is started from data processing, the correspondence between water injectors and oil producers is determined according to the influence radius of the water injectors, the influence degree of a water injector on an oil producer in the month concerned is added as a model feature, and a Random Forest(RF) model is built to fill the dynamic data of water flooding. The single well history is divided into 4 stages according to its water cut, that is, low water cut, middle water cut, high water cut and extra-high water cut stages. In each stage, a TCN based prediction model is established, hyperparameters of the model are optimized by the Sparrow Search Algorithm(SSA). Finally, the models of the 4 stages are integrated into one whole-life model of the well for production prediction. The application of this method in Daqing Oilfield, NE China shows that:(1) Compared with conventional data processing methods, the data obtained by this processing method are more close to the actual production, and the data set obtained is more authentic and complete.(2) The TCN model has higher prediction accuracy than other 11 models such as Long Short Term Memory(LSTM).(3) Compared with the conventional full-life-cycle models, the model of integrated stages can significantly reduce the error of production prediction.展开更多
A lightweight multi-layer residual temporal convolutional network model(RTCN)is proposed to target the highly complex kinematics and temporal correlation of human motion.RTCN uses 1-D convolution to efficiently obtain...A lightweight multi-layer residual temporal convolutional network model(RTCN)is proposed to target the highly complex kinematics and temporal correlation of human motion.RTCN uses 1-D convolution to efficiently obtain the spatial structure information of human motion and extract the correlation in the time series of human motion.The residual structure is applied to the proposed network model to alleviate the problem of gradient disappearance in the deep network.Experiments on the Human 3.6M dataset demonstrate that the proposed method effectively reduces the errors of motion prediction compared with previous methods,especially of long-term prediction.展开更多
Diabetes,as a chronic disease,is caused by the increase of blood glucose concentration due to pancreatic insulin production failure or insulin resistance in the body.Predicting the change trend of blood glucose level ...Diabetes,as a chronic disease,is caused by the increase of blood glucose concentration due to pancreatic insulin production failure or insulin resistance in the body.Predicting the change trend of blood glucose level in advance brings convenience for prompt treatment,so as to maintain blood glucose level within the recommended levels.Based on the flash glucose monitoring data,we propose a method that combines prophet with temporal convolutional networks(TCN)to achieve good experimental results in predicting patient blood glucose.The proposed model achieves high accuracy in the long-term and short-term prediction of blood glucose,and outperforms other models on the adaptability to non-stationary and detection capability of periodic changes.展开更多
Electricity prices have complex features,such as high frequency,multiple seasonality,and nonlinearity.These factors will make the prediction of electricity prices difficult.However,accurate electricity price predictio...Electricity prices have complex features,such as high frequency,multiple seasonality,and nonlinearity.These factors will make the prediction of electricity prices difficult.However,accurate electricity price prediction is important for energy producers and consumers to develop bidding strategies.To improve the accuracy of prediction by using each algorithms’advantages,this paper proposes a hybrid model that uses the Empirical Mode Decomposition(EMD),Autoregressive Integrated Moving Average(ARIMA),and Temporal Convolutional Network(TCN).EMD is used to decompose the electricity prices into low and high frequency components.Low frequency components are forecasted by the ARIMA model and the high frequency series are predicted by the TCN model.Experimental results using the realistic electricity price data from Pennsylvania-New Jersey-Maryland(PJM)electricity markets show that the proposed method has a higher prediction accuracy than other single methods and hybrid methods.展开更多
Thrust estimation is a significant part of aeroengine thrust control systems.The traditional estimation methods are either low in accuracy or large in computation.To further improve the estimation effect,a thrust esti...Thrust estimation is a significant part of aeroengine thrust control systems.The traditional estimation methods are either low in accuracy or large in computation.To further improve the estimation effect,a thrust estimator based on Multi-layer Residual Temporal Convolutional Network(M-RTCN)is proposed.To solve the problem of dead Rectified Linear Unit(ReLU),the proposed method uses the Gaussian Error Linear Unit(GELU)activation function instead of ReLU in residual block.Then the overall architecture of the multi-layer convolutional network is adjusted by using residual connections,so that the network thrust estimation effect and memory consumption are further improved.Moreover,the comparison with seven other methods shows that the proposed method has the advantages of higher estimation accuracy and faster convergence speed.Furthermore,six neural network models are deployed in the embedded controller of the micro-turbojet engine.The Hardware-in-the-Loop(HIL)testing results demonstrate the superiority of M-RTCN in terms of estimation accuracy,memory occupation and running time.Finally,an ignition verification is conducted to confirm the expected thrust estimation and real-time performance.展开更多
Time series forecasting plays an important role in various fields, such as energy, finance, transport, and weather. Temporal convolutional networks (TCNs) based on dilated causal convolution have been widely used in t...Time series forecasting plays an important role in various fields, such as energy, finance, transport, and weather. Temporal convolutional networks (TCNs) based on dilated causal convolution have been widely used in time series forecasting. However, two problems weaken the performance of TCNs. One is that in dilated casual convolution, causal convolution leads to the receptive fields of outputs being concentrated in the earlier part of the input sequence, whereas the recent input information will be severely lost. The other is that the distribution shift problem in time series has not been adequately solved. To address the first problem, we propose a subsequence-based dilated convolution method (SDC). By using multiple convolutional filters to convolve elements of neighboring subsequences, the method extracts temporal features from a growing receptive field via a growing subsequence rather than a single element. Ultimately, the receptive field of each output element can cover the whole input sequence. To address the second problem, we propose a difference and compensation method (DCM). The method reduces the discrepancies between and within the input sequences by difference operations and then compensates the outputs for the information lost due to difference operations. Based on SDC and DCM, we further construct a temporal subsequence-based convolutional network with difference (TSCND) for time series forecasting. The experimental results show that TSCND can reduce prediction mean squared error by 7.3% and save runtime, compared with state-of-the-art models and vanilla TCN.展开更多
Nonlinear wave runup could result in serious wave impact on the local structures of offshore platforms in rough seas.The reliable and efficient wave runup prediction is beneficial to provide essential information for ...Nonlinear wave runup could result in serious wave impact on the local structures of offshore platforms in rough seas.The reliable and efficient wave runup prediction is beneficial to provide essential information for the design and operation of offshore platforms.This work aims to develop a novel data-driven method to achieve the nonlinear mapping underlying the wave-structure interactions.The Temporal Convolution Network(TCN)model was employed to predict the wave runup along the column of a semi-submersible in head seas.The incident wave and vertical motions including heave,roll,and pitch were fed into the TCN model to predict the wave runup.Experimental datasets were provided for training and test.Tak-ing both temporal and spatial dependency into consideration,the input tensor space was optimized from the perspective of physical meaning and practicality.Sensitivity analyses were conducted to obtain the optimum length of time window and evaluate the relative importance of input variables to wave runup prediction.Moreover,the effects of characteristics and size of the training dataset on the model perfor-mance were investigated to provide guidelines for training dataset construction.Finally,upon validation,the generated TCN model showed a strong ability to provide stable and accurate wave runup results un-der various wave conditions,and it is a potential alternative tool to achieve efficient but low-cost wave runup prediction.展开更多
Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurr...Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurrent Temporal Graph Convolution Networks(IndRT-GCNets)framework to efficiently and accurately capture event attribute information.The framework models the knowledge graph sequences to learn the evolutionary represen-tations of entities and relations within each period.Firstly,by utilizing the temporal graph convolution module in the evolutionary representation unit,the framework captures the structural dependency relationships within the knowledge graph in each period.Meanwhile,to achieve better event representation and establish effective correlations,an independent recurrent neural network is employed to implement auto-regressive modeling.Furthermore,static attributes of entities in the entity-relation events are constrained andmerged using a static graph constraint to obtain optimal entity representations.Finally,the evolution of entity and relation representations is utilized to predict events in the next subsequent step.On multiple real-world datasets such as Freebase13(FB13),Freebase 15k(FB15K),WordNet11(WN11),WordNet18(WN18),FB15K-237,WN18RR,YAGO3-10,and Nell-995,the results of multiple evaluation indicators show that our proposed IndRT-GCNets framework outperforms most existing models on knowledge reasoning tasks,which validates the effectiveness and robustness.展开更多
With the rapid development of information technology,information system security and insider threat detection have become important topics for organizational management.In the current network environment,user behavior...With the rapid development of information technology,information system security and insider threat detection have become important topics for organizational management.In the current network environment,user behavioral bio-data presents the characteristics of nonlinearity and temporal sequence.Most of the existing research on authentication based on user behavioral biometrics adopts the method of manual feature extraction.They do not adequately capture the nonlinear and time-sequential dependencies of behavioral bio-data,and also do not adequately reflect the personalized usage characteristics of users,leading to bottlenecks in the performance of the authentication algorithm.In order to solve the above problems,this paper proposes a Temporal Convolutional Network method based on an Efficient Channel Attention mechanism(ECA-TCN)to extract user mouse dynamics features and constructs an one-class Support Vector Machine(OCSVM)for each user for authentication.Experimental results show that compared with four existing deep learning algorithms,the method retains more adequate key information and improves the classification performance of the neural network.In the final authentication,the Area Under the Curve(AUC)can reach 96%.展开更多
The ever-growing available visual data(i.e.,uploaded videos and pictures by internet users)has attracted the research community’s attention in the computer vision field.Therefore,finding efficient solutions to extrac...The ever-growing available visual data(i.e.,uploaded videos and pictures by internet users)has attracted the research community’s attention in the computer vision field.Therefore,finding efficient solutions to extract knowledge from these sources is imperative.Recently,the BlazePose system has been released for skeleton extraction from images oriented to mobile devices.With this skeleton graph representation in place,a Spatial-Temporal Graph Convolutional Network can be implemented to predict the action.We hypothesize that just by changing the skeleton input data for a different set of joints that offers more information about the action of interest,it is possible to increase the performance of the Spatial-Temporal Graph Convolutional Network for HAR tasks.Hence,in this study,we present the first implementation of the BlazePose skeleton topology upon this architecture for action recognition.Moreover,we propose the Enhanced-BlazePose topology that can achieve better results than its predecessor.Additionally,we propose different skeleton detection thresholds that can improve the accuracy performance even further.We reached a top-1 accuracy performance of 40.1%on the Kinetics dataset.For the NTU-RGB+D dataset,we achieved 87.59%and 92.1%accuracy for Cross-Subject and Cross-View evaluation criteria,respectively.展开更多
With the growing popularity of somatosensory interaction devices,human action recognition is becoming attractive in many application scenarios.Skeleton-based action recognition is effective because the skeleton can re...With the growing popularity of somatosensory interaction devices,human action recognition is becoming attractive in many application scenarios.Skeleton-based action recognition is effective because the skeleton can represent the position and the structure of key points of the human body.In this paper,we leverage spatiotemporal vectors between skeleton sequences as input feature representation of the network,which is more sensitive to changes of the human skeleton compared with representations based on distance and angle features.In addition,we redesign residual blocks that have different strides in the depth of the network to improve the processing ability of the temporal convolutional networks(TCNs)for long time dependent actions.In this work,we propose the two-stream temporal convolutional networks(TSTCNs)that take full advantage of the inter-frame vector feature and the intra-frame vector feature of skeleton sequences in the spatiotemporal representations.The framework can integrate different feature representations of skeleton sequences so that the two feature representations can make up for each other’s shortcomings.The fusion loss function is used to supervise the training parameters of the two branch networks.Experiments on public datasets show that our network achieves superior performance and attains an improvement of 1.2%over the recent GCN-based(BGC-LSTM)method on the NTU RGB+D dataset.展开更多
Real-time dynamic adjustment of the tunnel bore machine(TBM)advance rate according to the rockmachine interaction parameters is of great significance to the adaptability of TBM and its efficiency in construction.This ...Real-time dynamic adjustment of the tunnel bore machine(TBM)advance rate according to the rockmachine interaction parameters is of great significance to the adaptability of TBM and its efficiency in construction.This paper proposes a real-time predictive model of TBM advance rate using the temporal convolutional network(TCN),based on TBM construction big data.The prediction model was built using an experimental database,containing 235 data sets,established from the construction data from the Jilin Water-Diversion Tunnel Project in China.The TBM operating parameters,including total thrust,cutterhead rotation,cutterhead torque and penetration rate,are selected as the input parameters of the model.The TCN model is found outperforming the recurrent neural network(RNN)and long short-term memory(LSTM)model in predicting the TBM advance rate with much smaller values of mean absolute percentage error than the latter two.The penetration rate and cutterhead torque of the current moment have significant influence on the TBM advance rate of the next moment.On the contrary,the influence of the cutterhead rotation and total thrust is moderate.The work provides a new concept of real-time prediction of the TBM performance for highly efficient tunnel construction.展开更多
Speech signals play an essential role in communication and provide an efficient way to exchange information between humans and machines.Speech Emotion Recognition(SER)is one of the critical sources for human evaluatio...Speech signals play an essential role in communication and provide an efficient way to exchange information between humans and machines.Speech Emotion Recognition(SER)is one of the critical sources for human evaluation,which is applicable in many real-world applications such as healthcare,call centers,robotics,safety,and virtual reality.This work developed a novel TCN-based emotion recognition system using speech signals through a spatial-temporal convolution network to recognize the speaker’s emotional state.The authors designed a Temporal Convolutional Network(TCN)core block to recognize long-term dependencies in speech signals and then feed these temporal cues to a dense network to fuse the spatial features and recognize global information for final classification.The proposed network extracts valid sequential cues automatically from speech signals,which performed better than state-of-the-art(SOTA)and traditional machine learning algorithms.Results of the proposed method show a high recognition rate compared with SOTAmethods.The final unweighted accuracy of 80.84%,and 92.31%,for interactive emotional dyadic motion captures(IEMOCAP)and berlin emotional dataset(EMO-DB),indicate the robustness and efficiency of the designed model.展开更多
Spatio-temporal heterogeneous data is the database for decisionmaking in many fields,and checking its accuracy can provide data support for making decisions.Due to the randomness,complexity,global and local correlatio...Spatio-temporal heterogeneous data is the database for decisionmaking in many fields,and checking its accuracy can provide data support for making decisions.Due to the randomness,complexity,global and local correlation of spatiotemporal heterogeneous data in the temporal and spatial dimensions,traditional detection methods can not guarantee both detection speed and accuracy.Therefore,this article proposes a method for detecting the accuracy of spatiotemporal heterogeneous data by fusing graph convolution and temporal convolution networks.Firstly,the geographic weighting function is introduced and improved to quantify the degree of association between nodes and calculate the weighted adjacency value to simplify the complex topology.Secondly,design spatiotemporal convolutional units based on graph convolutional neural networks and temporal convolutional networks to improve detection speed and accuracy.Finally,the proposed method is compared with three methods,ARIMA,T-GCN,and STGCN,in real scenarios to verify its effectiveness in terms of detection speed,detection accuracy and stability.The experimental results show that the RMSE,MAE,and MAPE of this method are the smallest in the cases of simple connectivity and complex connectivity degree,which are 13.82/12.08,2.77/2.41,and 16.70/14.73,respectively.Also,it detects the shortest time of 672.31/887.36,respectively.In addition,the evaluation results are the same under different time periods of processing and complex topology environment,which indicates that the detection accuracy of this method is the highest and has good research value and application prospects.展开更多
When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ...When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ferromagnetic materials,thereby posing challenges in accurately determining the number of layers.To address this issue,this research proposes a layer counting method for penetration fuze that incorporates multi-source information fusion,utilizing both the temporal convolutional network(TCN)and the long short-term memory(LSTM)recurrent network.By leveraging the strengths of these two network structures,the method extracts temporal and high-dimensional features from the multi-source physical field during the penetration process,establishing a relationship between the multi-source physical field and the distance between the fuze and the target plate.A simulation model is developed to simulate the overload and magnetic field of a projectile penetrating multiple layers of target plates,capturing the multi-source physical field signals and their patterns during the penetration process.The analysis reveals that the proposed multi-source fusion layer counting method reduces errors by 60% and 50% compared to single overload layer counting and single magnetic anomaly signal layer counting,respectively.The model's predictive performance is evaluated under various operating conditions,including different ratios of added noise to random sample positions,penetration speeds,and spacing between target plates.The maximum errors in fuze penetration time predicted by the three modes are 0.08 ms,0.12 ms,and 0.16 ms,respectively,confirming the robustness of the proposed model.Moreover,the model's predictions indicate that the fitting degree for large interlayer spacings is superior to that for small interlayer spacings due to the influence of stress waves.展开更多
Accurate wind power forecasting is critical for system integration and stability as renewable energy reliance grows.Traditional approaches frequently struggle with complex data and non-linear connections. This article...Accurate wind power forecasting is critical for system integration and stability as renewable energy reliance grows.Traditional approaches frequently struggle with complex data and non-linear connections. This article presentsa novel approach for hybrid ensemble learning that is based on rigorous requirements engineering concepts.The approach finds significant parameters influencing forecasting accuracy by evaluating real-time Modern-EraRetrospective Analysis for Research and Applications (MERRA2) data from several European Wind farms usingin-depth stakeholder research and requirements elicitation. Ensemble learning is used to develop a robust model,while a temporal convolutional network handles time-series complexities and data gaps. The ensemble-temporalneural network is enhanced by providing different input parameters including training layers, hidden and dropoutlayers along with activation and loss functions. The proposed framework is further analyzed by comparing stateof-the-art forecasting models in terms of Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE),respectively. The energy efficiency performance indicators showed that the proposed model demonstrates errorreduction percentages of approximately 16.67%, 28.57%, and 81.92% for MAE, and 38.46%, 17.65%, and 90.78%for RMSE for MERRAWind farms 1, 2, and 3, respectively, compared to other existingmethods. These quantitativeresults show the effectiveness of our proposed model with MAE values ranging from 0.0010 to 0.0156 and RMSEvalues ranging from 0.0014 to 0.0174. This work highlights the effectiveness of requirements engineering in windpower forecasting, leading to enhanced forecast accuracy and grid stability, ultimately paving the way for moresustainable energy solutions.展开更多
In the fast-evolving landscape of digital networks,the incidence of network intrusions has escalated alarmingly.Simultaneously,the crucial role of time series data in intrusion detection remains largely underappreciat...In the fast-evolving landscape of digital networks,the incidence of network intrusions has escalated alarmingly.Simultaneously,the crucial role of time series data in intrusion detection remains largely underappreciated,with most systems failing to capture the time-bound nuances of network traffic.This leads to compromised detection accuracy and overlooked temporal patterns.Addressing this gap,we introduce a novel SSAE-TCN-BiLSTM(STL)model that integrates time series analysis,significantly enhancing detection capabilities.Our approach reduces feature dimensionalitywith a Stacked Sparse Autoencoder(SSAE)and extracts temporally relevant features through a Temporal Convolutional Network(TCN)and Bidirectional Long Short-term Memory Network(Bi-LSTM).By meticulously adjusting time steps,we underscore the significance of temporal data in bolstering detection accuracy.On the UNSW-NB15 dataset,ourmodel achieved an F1-score of 99.49%,Accuracy of 99.43%,Precision of 99.38%,Recall of 99.60%,and an inference time of 4.24 s.For the CICDS2017 dataset,we recorded an F1-score of 99.53%,Accuracy of 99.62%,Precision of 99.27%,Recall of 99.79%,and an inference time of 5.72 s.These findings not only confirm the STL model’s superior performance but also its operational efficiency,underpinning its significance in real-world cybersecurity scenarios where rapid response is paramount.Our contribution represents a significant advance in cybersecurity,proposing a model that excels in accuracy and adaptability to the dynamic nature of network traffic,setting a new benchmark for intrusion detection systems.展开更多
基金supported by the National Key R&D Program of China under Grant 2018YFB1801500.
文摘In order to reduce the physical impairment caused by signal distortion,in this paper,we investigate symbol detection with Deep Learning(DL)methods to improve bit-error performance in the optical communication system.Many DL-based methods have been applied to such systems to improve bit-error performance.Referring to the speech-to-text method of automatic speech recognition,this paper proposes a signal-to-symbol method based on DL and designs a receiver for symbol detection on single-polarized optical communications modes.To realize this detection method,we propose a non-causal temporal convolutional network-assisted receiver to detect symbols directly from the baseband signal,which specifically integrates most modules of the receiver.Meanwhile,we adopt three training approaches for different signal-to-noise ratios.We also apply a parametric rectified linear unit to enhance the noise robustness of the proposed network.According to the simulation experiments,the biterror-rate performance of the proposed method is close to or even superior to that of the conventional receiver and better than the recurrent neural network-based receiver.
文摘In the field of speech bandwidth exten-sion,it is difficult to achieve high speech quality based on the shallow statistical model method.Although the application of deep learning has greatly improved the extended speech quality,the high model complex-ity makes it infeasible to run on the client.In order to tackle these issues,this paper proposes an end-to-end speech bandwidth extension method based on a temporal convolutional neural network,which greatly reduces the complexity of the model.In addition,a new time-frequency loss function is designed to en-able narrowband speech to acquire a more accurate wideband mapping in the time domain and the fre-quency domain.The experimental results show that the reconstructed wideband speech generated by the proposed method is superior to the traditional heuris-tic rule based approaches and the conventional neu-ral network methods for both subjective and objective evaluation.
基金the National Science Foundation of China (No.91738201, 61971440)the Jiangsu Province Basic Research Project (No.BK20192002)+1 种基金the China Postdoctoral Science Foundation (No.2018M632347)the Natural Science Research of Higher Education Institutions of Jiangsu Province (No.18KJB510030)。
文摘In this paper,we investigate a spectrumsensing system in the presence of a satellite,where the satellite works as a sensing node.Considering the conventional energy detection method is sensitive to the noise uncertainty,thus,a temporal convolutional network(TCN)based spectrum-sensing method is designed to eliminate the effect of the noise uncertainty and improve the performance of spectrum sensing,relying on the offline training and the online detection stages.Specifically,in the offline training stage,spectrum data captured by the satellite is sent to the TCN deployed on the gateway for training purpose.Moreover,in the online detection stage,the well trained TCN is utilized to perform real-time spectrum sensing,which can upgrade spectrum-sensing performance by exploiting the temporal features.Additionally,simulation results demonstrate that the proposed method achieves a higher probability of detection than that of the conventional energy detection(ED),the convolutional neural network(CNN),and deep neural network(DNN).Furthermore,the proposed method outperforms the CNN and the DNN in terms of a lower computational complexity.
基金Major Unified Construction Project of Petro China(2019-40210-000020-02)。
文摘Since the oil production of single well in water flooding reservoir varies greatly and is hard to predict, an oil production prediction method of single well based on temporal convolutional network(TCN) is proposed and verified. This method is started from data processing, the correspondence between water injectors and oil producers is determined according to the influence radius of the water injectors, the influence degree of a water injector on an oil producer in the month concerned is added as a model feature, and a Random Forest(RF) model is built to fill the dynamic data of water flooding. The single well history is divided into 4 stages according to its water cut, that is, low water cut, middle water cut, high water cut and extra-high water cut stages. In each stage, a TCN based prediction model is established, hyperparameters of the model are optimized by the Sparrow Search Algorithm(SSA). Finally, the models of the 4 stages are integrated into one whole-life model of the well for production prediction. The application of this method in Daqing Oilfield, NE China shows that:(1) Compared with conventional data processing methods, the data obtained by this processing method are more close to the actual production, and the data set obtained is more authentic and complete.(2) The TCN model has higher prediction accuracy than other 11 models such as Long Short Term Memory(LSTM).(3) Compared with the conventional full-life-cycle models, the model of integrated stages can significantly reduce the error of production prediction.
文摘A lightweight multi-layer residual temporal convolutional network model(RTCN)is proposed to target the highly complex kinematics and temporal correlation of human motion.RTCN uses 1-D convolution to efficiently obtain the spatial structure information of human motion and extract the correlation in the time series of human motion.The residual structure is applied to the proposed network model to alleviate the problem of gradient disappearance in the deep network.Experiments on the Human 3.6M dataset demonstrate that the proposed method effectively reduces the errors of motion prediction compared with previous methods,especially of long-term prediction.
文摘Diabetes,as a chronic disease,is caused by the increase of blood glucose concentration due to pancreatic insulin production failure or insulin resistance in the body.Predicting the change trend of blood glucose level in advance brings convenience for prompt treatment,so as to maintain blood glucose level within the recommended levels.Based on the flash glucose monitoring data,we propose a method that combines prophet with temporal convolutional networks(TCN)to achieve good experimental results in predicting patient blood glucose.The proposed model achieves high accuracy in the long-term and short-term prediction of blood glucose,and outperforms other models on the adaptability to non-stationary and detection capability of periodic changes.
基金supported by the Sichuan Science and Technology Program under Grant 2020JDJQ0037 and 2020YFG0312.
文摘Electricity prices have complex features,such as high frequency,multiple seasonality,and nonlinearity.These factors will make the prediction of electricity prices difficult.However,accurate electricity price prediction is important for energy producers and consumers to develop bidding strategies.To improve the accuracy of prediction by using each algorithms’advantages,this paper proposes a hybrid model that uses the Empirical Mode Decomposition(EMD),Autoregressive Integrated Moving Average(ARIMA),and Temporal Convolutional Network(TCN).EMD is used to decompose the electricity prices into low and high frequency components.Low frequency components are forecasted by the ARIMA model and the high frequency series are predicted by the TCN model.Experimental results using the realistic electricity price data from Pennsylvania-New Jersey-Maryland(PJM)electricity markets show that the proposed method has a higher prediction accuracy than other single methods and hybrid methods.
基金co-supported by the National Natural Science Foundation of China(Nos.61890920,61890921)。
文摘Thrust estimation is a significant part of aeroengine thrust control systems.The traditional estimation methods are either low in accuracy or large in computation.To further improve the estimation effect,a thrust estimator based on Multi-layer Residual Temporal Convolutional Network(M-RTCN)is proposed.To solve the problem of dead Rectified Linear Unit(ReLU),the proposed method uses the Gaussian Error Linear Unit(GELU)activation function instead of ReLU in residual block.Then the overall architecture of the multi-layer convolutional network is adjusted by using residual connections,so that the network thrust estimation effect and memory consumption are further improved.Moreover,the comparison with seven other methods shows that the proposed method has the advantages of higher estimation accuracy and faster convergence speed.Furthermore,six neural network models are deployed in the embedded controller of the micro-turbojet engine.The Hardware-in-the-Loop(HIL)testing results demonstrate the superiority of M-RTCN in terms of estimation accuracy,memory occupation and running time.Finally,an ignition verification is conducted to confirm the expected thrust estimation and real-time performance.
基金supported by the National Key Research and Development Program of China(No.2018YFB2101300)the National Natural Science Foundation of China(Grant No.61871186)the Dean’s Fund of Engineering Research Center of Software/Hardware Co-Design Technology and Application,Ministry of Education(East China Normal University).
文摘Time series forecasting plays an important role in various fields, such as energy, finance, transport, and weather. Temporal convolutional networks (TCNs) based on dilated causal convolution have been widely used in time series forecasting. However, two problems weaken the performance of TCNs. One is that in dilated casual convolution, causal convolution leads to the receptive fields of outputs being concentrated in the earlier part of the input sequence, whereas the recent input information will be severely lost. The other is that the distribution shift problem in time series has not been adequately solved. To address the first problem, we propose a subsequence-based dilated convolution method (SDC). By using multiple convolutional filters to convolve elements of neighboring subsequences, the method extracts temporal features from a growing receptive field via a growing subsequence rather than a single element. Ultimately, the receptive field of each output element can cover the whole input sequence. To address the second problem, we propose a difference and compensation method (DCM). The method reduces the discrepancies between and within the input sequences by difference operations and then compensates the outputs for the information lost due to difference operations. Based on SDC and DCM, we further construct a temporal subsequence-based convolutional network with difference (TSCND) for time series forecasting. The experimental results show that TSCND can reduce prediction mean squared error by 7.3% and save runtime, compared with state-of-the-art models and vanilla TCN.
基金support of the National Natural Science Foundation of China(Grant Nos.52031006,51879158)Shanghai Sailing Program,China(Grant No.20YF1419800).
文摘Nonlinear wave runup could result in serious wave impact on the local structures of offshore platforms in rough seas.The reliable and efficient wave runup prediction is beneficial to provide essential information for the design and operation of offshore platforms.This work aims to develop a novel data-driven method to achieve the nonlinear mapping underlying the wave-structure interactions.The Temporal Convolution Network(TCN)model was employed to predict the wave runup along the column of a semi-submersible in head seas.The incident wave and vertical motions including heave,roll,and pitch were fed into the TCN model to predict the wave runup.Experimental datasets were provided for training and test.Tak-ing both temporal and spatial dependency into consideration,the input tensor space was optimized from the perspective of physical meaning and practicality.Sensitivity analyses were conducted to obtain the optimum length of time window and evaluate the relative importance of input variables to wave runup prediction.Moreover,the effects of characteristics and size of the training dataset on the model perfor-mance were investigated to provide guidelines for training dataset construction.Finally,upon validation,the generated TCN model showed a strong ability to provide stable and accurate wave runup results un-der various wave conditions,and it is a potential alternative tool to achieve efficient but low-cost wave runup prediction.
基金the National Natural Science Founda-tion of China(62062062)hosted by Gulila Altenbek.
文摘Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurrent Temporal Graph Convolution Networks(IndRT-GCNets)framework to efficiently and accurately capture event attribute information.The framework models the knowledge graph sequences to learn the evolutionary represen-tations of entities and relations within each period.Firstly,by utilizing the temporal graph convolution module in the evolutionary representation unit,the framework captures the structural dependency relationships within the knowledge graph in each period.Meanwhile,to achieve better event representation and establish effective correlations,an independent recurrent neural network is employed to implement auto-regressive modeling.Furthermore,static attributes of entities in the entity-relation events are constrained andmerged using a static graph constraint to obtain optimal entity representations.Finally,the evolution of entity and relation representations is utilized to predict events in the next subsequent step.On multiple real-world datasets such as Freebase13(FB13),Freebase 15k(FB15K),WordNet11(WN11),WordNet18(WN18),FB15K-237,WN18RR,YAGO3-10,and Nell-995,the results of multiple evaluation indicators show that our proposed IndRT-GCNets framework outperforms most existing models on knowledge reasoning tasks,which validates the effectiveness and robustness.
基金supported by the National Natural Science Foundation of China(61962015)the Guangxi Key Laboratory of Cryptography and Information Security Research Project,China(GCIS202127)+2 种基金the Central Guidance on Local Science and Technology Development Fund of Guangxi Province,China(ZY23055008)the Scientific Research and Technological Development Planning Project of Guilin,China(20220124-12)the Innovation Project of Guangxi Graduate Education,China(2023YCXS043).
文摘With the rapid development of information technology,information system security and insider threat detection have become important topics for organizational management.In the current network environment,user behavioral bio-data presents the characteristics of nonlinearity and temporal sequence.Most of the existing research on authentication based on user behavioral biometrics adopts the method of manual feature extraction.They do not adequately capture the nonlinear and time-sequential dependencies of behavioral bio-data,and also do not adequately reflect the personalized usage characteristics of users,leading to bottlenecks in the performance of the authentication algorithm.In order to solve the above problems,this paper proposes a Temporal Convolutional Network method based on an Efficient Channel Attention mechanism(ECA-TCN)to extract user mouse dynamics features and constructs an one-class Support Vector Machine(OCSVM)for each user for authentication.Experimental results show that compared with four existing deep learning algorithms,the method retains more adequate key information and improves the classification performance of the neural network.In the final authentication,the Area Under the Curve(AUC)can reach 96%.
文摘The ever-growing available visual data(i.e.,uploaded videos and pictures by internet users)has attracted the research community’s attention in the computer vision field.Therefore,finding efficient solutions to extract knowledge from these sources is imperative.Recently,the BlazePose system has been released for skeleton extraction from images oriented to mobile devices.With this skeleton graph representation in place,a Spatial-Temporal Graph Convolutional Network can be implemented to predict the action.We hypothesize that just by changing the skeleton input data for a different set of joints that offers more information about the action of interest,it is possible to increase the performance of the Spatial-Temporal Graph Convolutional Network for HAR tasks.Hence,in this study,we present the first implementation of the BlazePose skeleton topology upon this architecture for action recognition.Moreover,we propose the Enhanced-BlazePose topology that can achieve better results than its predecessor.Additionally,we propose different skeleton detection thresholds that can improve the accuracy performance even further.We reached a top-1 accuracy performance of 40.1%on the Kinetics dataset.For the NTU-RGB+D dataset,we achieved 87.59%and 92.1%accuracy for Cross-Subject and Cross-View evaluation criteria,respectively.
基金The work was supported by the National Natural Science Foundation(NSFC)-Zhejiang Joint Fund of the Integration of Informatization and Industrialization of China under Grant Nos.U1909210 and U1609218the National Natural Science Foundation of China under Grant No.61772312the Key Research and Development Project of Shandong Province of China under Grant No.2017GGX10110.
文摘With the growing popularity of somatosensory interaction devices,human action recognition is becoming attractive in many application scenarios.Skeleton-based action recognition is effective because the skeleton can represent the position and the structure of key points of the human body.In this paper,we leverage spatiotemporal vectors between skeleton sequences as input feature representation of the network,which is more sensitive to changes of the human skeleton compared with representations based on distance and angle features.In addition,we redesign residual blocks that have different strides in the depth of the network to improve the processing ability of the temporal convolutional networks(TCNs)for long time dependent actions.In this work,we propose the two-stream temporal convolutional networks(TSTCNs)that take full advantage of the inter-frame vector feature and the intra-frame vector feature of skeleton sequences in the spatiotemporal representations.The framework can integrate different feature representations of skeleton sequences so that the two feature representations can make up for each other’s shortcomings.The fusion loss function is used to supervise the training parameters of the two branch networks.Experiments on public datasets show that our network achieves superior performance and attains an improvement of 1.2%over the recent GCN-based(BGC-LSTM)method on the NTU RGB+D dataset.
基金Supports from National Natural Science Foundation of China(Grant No.11902069)Sichuan University,State Key Lab Hydraul&Mt River Engn(No.SKHL1915)+2 种基金and the Research Project of China Railway First Survey and Design Institute Group Co.,Ltd(No.19-15 and No.20-17-1)are also acknowledgedsupported by the 111 Project(B17009)under the framework of Sino-Franco Joint Research Laboratory on Multiphysics and Multiscale Rock Mechanics.
文摘Real-time dynamic adjustment of the tunnel bore machine(TBM)advance rate according to the rockmachine interaction parameters is of great significance to the adaptability of TBM and its efficiency in construction.This paper proposes a real-time predictive model of TBM advance rate using the temporal convolutional network(TCN),based on TBM construction big data.The prediction model was built using an experimental database,containing 235 data sets,established from the construction data from the Jilin Water-Diversion Tunnel Project in China.The TBM operating parameters,including total thrust,cutterhead rotation,cutterhead torque and penetration rate,are selected as the input parameters of the model.The TCN model is found outperforming the recurrent neural network(RNN)and long short-term memory(LSTM)model in predicting the TBM advance rate with much smaller values of mean absolute percentage error than the latter two.The penetration rate and cutterhead torque of the current moment have significant influence on the TBM advance rate of the next moment.On the contrary,the influence of the cutterhead rotation and total thrust is moderate.The work provides a new concept of real-time prediction of the TBM performance for highly efficient tunnel construction.
文摘Speech signals play an essential role in communication and provide an efficient way to exchange information between humans and machines.Speech Emotion Recognition(SER)is one of the critical sources for human evaluation,which is applicable in many real-world applications such as healthcare,call centers,robotics,safety,and virtual reality.This work developed a novel TCN-based emotion recognition system using speech signals through a spatial-temporal convolution network to recognize the speaker’s emotional state.The authors designed a Temporal Convolutional Network(TCN)core block to recognize long-term dependencies in speech signals and then feed these temporal cues to a dense network to fuse the spatial features and recognize global information for final classification.The proposed network extracts valid sequential cues automatically from speech signals,which performed better than state-of-the-art(SOTA)and traditional machine learning algorithms.Results of the proposed method show a high recognition rate compared with SOTAmethods.The final unweighted accuracy of 80.84%,and 92.31%,for interactive emotional dyadic motion captures(IEMOCAP)and berlin emotional dataset(EMO-DB),indicate the robustness and efficiency of the designed model.
基金supported by the National Natural Science Foundation of China under Grants 42172161by the Heilongjiang Provincial Natural Science Foundation of China under Grant LH2020F003+2 种基金by the Heilongjiang Provincial Department of Education Project of China under Grants UNPYSCT-2020144by the Innovation Guidance Fund of Heilongjiang Province of China under Grants 15071202202by the Science and Technology Bureau Project of Qinhuangdao Province of China under Grants 202101A226.
文摘Spatio-temporal heterogeneous data is the database for decisionmaking in many fields,and checking its accuracy can provide data support for making decisions.Due to the randomness,complexity,global and local correlation of spatiotemporal heterogeneous data in the temporal and spatial dimensions,traditional detection methods can not guarantee both detection speed and accuracy.Therefore,this article proposes a method for detecting the accuracy of spatiotemporal heterogeneous data by fusing graph convolution and temporal convolution networks.Firstly,the geographic weighting function is introduced and improved to quantify the degree of association between nodes and calculate the weighted adjacency value to simplify the complex topology.Secondly,design spatiotemporal convolutional units based on graph convolutional neural networks and temporal convolutional networks to improve detection speed and accuracy.Finally,the proposed method is compared with three methods,ARIMA,T-GCN,and STGCN,in real scenarios to verify its effectiveness in terms of detection speed,detection accuracy and stability.The experimental results show that the RMSE,MAE,and MAPE of this method are the smallest in the cases of simple connectivity and complex connectivity degree,which are 13.82/12.08,2.77/2.41,and 16.70/14.73,respectively.Also,it detects the shortest time of 672.31/887.36,respectively.In addition,the evaluation results are the same under different time periods of processing and complex topology environment,which indicates that the detection accuracy of this method is the highest and has good research value and application prospects.
文摘When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ferromagnetic materials,thereby posing challenges in accurately determining the number of layers.To address this issue,this research proposes a layer counting method for penetration fuze that incorporates multi-source information fusion,utilizing both the temporal convolutional network(TCN)and the long short-term memory(LSTM)recurrent network.By leveraging the strengths of these two network structures,the method extracts temporal and high-dimensional features from the multi-source physical field during the penetration process,establishing a relationship between the multi-source physical field and the distance between the fuze and the target plate.A simulation model is developed to simulate the overload and magnetic field of a projectile penetrating multiple layers of target plates,capturing the multi-source physical field signals and their patterns during the penetration process.The analysis reveals that the proposed multi-source fusion layer counting method reduces errors by 60% and 50% compared to single overload layer counting and single magnetic anomaly signal layer counting,respectively.The model's predictive performance is evaluated under various operating conditions,including different ratios of added noise to random sample positions,penetration speeds,and spacing between target plates.The maximum errors in fuze penetration time predicted by the three modes are 0.08 ms,0.12 ms,and 0.16 ms,respectively,confirming the robustness of the proposed model.Moreover,the model's predictions indicate that the fitting degree for large interlayer spacings is superior to that for small interlayer spacings due to the influence of stress waves.
文摘Accurate wind power forecasting is critical for system integration and stability as renewable energy reliance grows.Traditional approaches frequently struggle with complex data and non-linear connections. This article presentsa novel approach for hybrid ensemble learning that is based on rigorous requirements engineering concepts.The approach finds significant parameters influencing forecasting accuracy by evaluating real-time Modern-EraRetrospective Analysis for Research and Applications (MERRA2) data from several European Wind farms usingin-depth stakeholder research and requirements elicitation. Ensemble learning is used to develop a robust model,while a temporal convolutional network handles time-series complexities and data gaps. The ensemble-temporalneural network is enhanced by providing different input parameters including training layers, hidden and dropoutlayers along with activation and loss functions. The proposed framework is further analyzed by comparing stateof-the-art forecasting models in terms of Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE),respectively. The energy efficiency performance indicators showed that the proposed model demonstrates errorreduction percentages of approximately 16.67%, 28.57%, and 81.92% for MAE, and 38.46%, 17.65%, and 90.78%for RMSE for MERRAWind farms 1, 2, and 3, respectively, compared to other existingmethods. These quantitativeresults show the effectiveness of our proposed model with MAE values ranging from 0.0010 to 0.0156 and RMSEvalues ranging from 0.0014 to 0.0174. This work highlights the effectiveness of requirements engineering in windpower forecasting, leading to enhanced forecast accuracy and grid stability, ultimately paving the way for moresustainable energy solutions.
基金supported in part by the Gansu Province Higher Education Institutions Industrial Support Program:Security Situational Awareness with Artificial Intelligence and Blockchain Technology.Project Number(2020C-29).
文摘In the fast-evolving landscape of digital networks,the incidence of network intrusions has escalated alarmingly.Simultaneously,the crucial role of time series data in intrusion detection remains largely underappreciated,with most systems failing to capture the time-bound nuances of network traffic.This leads to compromised detection accuracy and overlooked temporal patterns.Addressing this gap,we introduce a novel SSAE-TCN-BiLSTM(STL)model that integrates time series analysis,significantly enhancing detection capabilities.Our approach reduces feature dimensionalitywith a Stacked Sparse Autoencoder(SSAE)and extracts temporally relevant features through a Temporal Convolutional Network(TCN)and Bidirectional Long Short-term Memory Network(Bi-LSTM).By meticulously adjusting time steps,we underscore the significance of temporal data in bolstering detection accuracy.On the UNSW-NB15 dataset,ourmodel achieved an F1-score of 99.49%,Accuracy of 99.43%,Precision of 99.38%,Recall of 99.60%,and an inference time of 4.24 s.For the CICDS2017 dataset,we recorded an F1-score of 99.53%,Accuracy of 99.62%,Precision of 99.27%,Recall of 99.79%,and an inference time of 5.72 s.These findings not only confirm the STL model’s superior performance but also its operational efficiency,underpinning its significance in real-world cybersecurity scenarios where rapid response is paramount.Our contribution represents a significant advance in cybersecurity,proposing a model that excels in accuracy and adaptability to the dynamic nature of network traffic,setting a new benchmark for intrusion detection systems.