Spatio-temporal models are valuable tools for disease mapping and understanding the geographical distribution of diseases and temporal dynamics. Spatio-temporal models have been proven empirically to be very complex a...Spatio-temporal models are valuable tools for disease mapping and understanding the geographical distribution of diseases and temporal dynamics. Spatio-temporal models have been proven empirically to be very complex and this complexity has led many to oversimply and model the spatial and temporal dependencies independently. Unlike common practice, this study formulated a new spatio-temporal model in a Bayesian hierarchical framework that accounts for spatial and temporal dependencies jointly. The spatial and temporal dependencies were dynamically modelled via the matern exponential covariance function. The temporal aspect was captured by the parameters of the exponential with a first-order autoregressive structure. Inferences about the parameters were obtained via Markov Chain Monte Carlo (MCMC) techniques and the spatio-temporal maps were obtained by mapping stable posterior means from the specific location and time from the best model that includes the significant risk factors. The model formulated was fitted to both simulation data and Kenya meningitis incidence data from 2013 to 2019 along with two covariates;Gross County Product (GCP) and average rainfall. The study found that both average rainfall and GCP had a significant positive association with meningitis occurrence. Also, regarding geographical distribution, the spatio-temporal maps showed that meningitis is not evenly distributed across the country as some counties reported a high number of cases compared with other counties.展开更多
Effort estimation plays a crucial role in software development projects,aiding in resource allocation,project planning,and risk management.Traditional estimation techniques often struggle to provide accurate estimates...Effort estimation plays a crucial role in software development projects,aiding in resource allocation,project planning,and risk management.Traditional estimation techniques often struggle to provide accurate estimates due to the complex nature of software projects.In recent years,machine learning approaches have shown promise in improving the accuracy of effort estimation models.This study proposes a hybrid model that combines Long Short-Term Memory(LSTM)and Random Forest(RF)algorithms to enhance software effort estimation.The proposed hybrid model takes advantage of the strengths of both LSTM and RF algorithms.To evaluate the performance of the hybrid model,an extensive set of software development projects is used as the experimental dataset.The experimental results demonstrate that the proposed hybrid model outperforms traditional estimation techniques in terms of accuracy and reliability.The integration of LSTM and RF enables the model to efficiently capture temporal dependencies and non-linear interactions in the software development data.The hybrid model enhances estimation accuracy,enabling project managers and stakeholders to make more precise predictions of effort needed for upcoming software projects.展开更多
A study is made of the distribution of the diagnostic quantity vector E and the teleconnection structure of 30-50 (quasi-40) day oscillation, together with the dependence on the conversion of barotropic unstable energ...A study is made of the distribution of the diagnostic quantity vector E and the teleconnection structure of 30-50 (quasi-40) day oscillation, together with the dependence on the conversion of barotropic unstable energy of mean flow in terms of ECWMF daily 500 hPa grid data in winter, indicating that the energy transportation is closely associated with the westerly jet position, with zonal (meridional) propagation in the strong (weak) wind region, that considerable conversion of barotropic energy occurs at the jet exit region where low-frequency oscillation gains energy from the mean flow, leading to maximum kinetic energy for the oscillation observed there, which is marked by evident barotropy in striking contrast to the baroclinicity at low latitudes and that the teleconnection core is related to the center of action in the atmosphere and bound up with the pattern of the west wind.展开更多
With the growing popularity of data-intensive services on the Internet, the traditional process-centric model for business process meets challenges due to the lack of abilities to describe data semantics and dependenc...With the growing popularity of data-intensive services on the Internet, the traditional process-centric model for business process meets challenges due to the lack of abilities to describe data semantics and dependencies, resulting in the inflexibility of the design and implement for the processes. This paper proposes a novel data-aware business process model which is able to describe both explicit control flow and implicit data flow. Data model with dependencies which are formulated by Linear-time Temporal Logic(LTL) is presented, and their satisfiability is validated by an automaton-based model checking algorithm. Data dependencies are fully considered in modeling phase, which helps to improve the efficiency and reliability of programming during developing phase. Finally, a prototype system based on j BPM for data-aware workflow is designed using such model, and has been deployed to Beijing Kingfore heating management system to validate the flexibility, efficacy and convenience of our approach for massive coding and large-scale system management in reality.展开更多
An experiment of a 500-fs KrF laser pulse incident upon a high density supersonic O2 gas jet synchronously with an ns frequency-doubled Nd:YAG laser pulse is performed in orthogonal configuration. Significant atomic ...An experiment of a 500-fs KrF laser pulse incident upon a high density supersonic O2 gas jet synchronously with an ns frequency-doubled Nd:YAG laser pulse is performed in orthogonal configuration. Significant atomic emission enhancement of over forty-fold is observed with an optical multi-channel analyser. The enhancement effect is probably attributed to the different ionization mechanisms between fs and ns laser pulses.展开更多
The modeling of volatility and correlation is important in order to calculate hedge ratios, value at risk estimates, CAPM (Capital Asset Pricing Model betas), derivate pricing and risk management in general. Recent ...The modeling of volatility and correlation is important in order to calculate hedge ratios, value at risk estimates, CAPM (Capital Asset Pricing Model betas), derivate pricing and risk management in general. Recent access to intra-daily high-frequency data for two of the most liquid contracts at the Nord Pool exchange has made it possible to apply new and promising methods for analyzing volatility and correlation. The concepts of realized volatility and realized correlation are applied, and this study statistically describes the distribution (both distributional properties and temporal dependencies) of electricity forward data from 2005 to 2009. The main findings show that the logarithmic realized volatility is approximately normally distributed, while realized correlation seems not to be. Further, realized volatility and realized correlation have a long-memory feature. There also seems to be a high correlation between realized correlation and volatilities and positive relations between trading volume and realized volatility and between trading volume and realized correlation. These results are to a large extent consistent with earlier studies of stylized facts of other financial and commodity markets.展开更多
The uncertainty of wind power forecasting significantly influences power systems with high percentage of wind power generation. Despite the wind power forecasting error causation, the temporal and spatial dependence o...The uncertainty of wind power forecasting significantly influences power systems with high percentage of wind power generation. Despite the wind power forecasting error causation, the temporal and spatial dependence of prediction errors has done great influence in specific applications, such as multistage scheduling and aggregated wind power integration. In this paper, Pair-Copula theory has been introduced to construct a multivariate model which can fully considers the margin distribution and stochastic dependence characteristics of wind power forecasting errors. The characteristics of temporal and spatial dependence have been modelled, and their influences on wind power integrations have been analyzed.Model comparisons indicate that the proposed model can reveal the essential relationships of wind power forecasting uncertainty, and describe the various dependences more accurately.展开更多
文摘Spatio-temporal models are valuable tools for disease mapping and understanding the geographical distribution of diseases and temporal dynamics. Spatio-temporal models have been proven empirically to be very complex and this complexity has led many to oversimply and model the spatial and temporal dependencies independently. Unlike common practice, this study formulated a new spatio-temporal model in a Bayesian hierarchical framework that accounts for spatial and temporal dependencies jointly. The spatial and temporal dependencies were dynamically modelled via the matern exponential covariance function. The temporal aspect was captured by the parameters of the exponential with a first-order autoregressive structure. Inferences about the parameters were obtained via Markov Chain Monte Carlo (MCMC) techniques and the spatio-temporal maps were obtained by mapping stable posterior means from the specific location and time from the best model that includes the significant risk factors. The model formulated was fitted to both simulation data and Kenya meningitis incidence data from 2013 to 2019 along with two covariates;Gross County Product (GCP) and average rainfall. The study found that both average rainfall and GCP had a significant positive association with meningitis occurrence. Also, regarding geographical distribution, the spatio-temporal maps showed that meningitis is not evenly distributed across the country as some counties reported a high number of cases compared with other counties.
文摘Effort estimation plays a crucial role in software development projects,aiding in resource allocation,project planning,and risk management.Traditional estimation techniques often struggle to provide accurate estimates due to the complex nature of software projects.In recent years,machine learning approaches have shown promise in improving the accuracy of effort estimation models.This study proposes a hybrid model that combines Long Short-Term Memory(LSTM)and Random Forest(RF)algorithms to enhance software effort estimation.The proposed hybrid model takes advantage of the strengths of both LSTM and RF algorithms.To evaluate the performance of the hybrid model,an extensive set of software development projects is used as the experimental dataset.The experimental results demonstrate that the proposed hybrid model outperforms traditional estimation techniques in terms of accuracy and reliability.The integration of LSTM and RF enables the model to efficiently capture temporal dependencies and non-linear interactions in the software development data.The hybrid model enhances estimation accuracy,enabling project managers and stakeholders to make more precise predictions of effort needed for upcoming software projects.
基金This work is supported by National Natural Science Foundation of China.
文摘A study is made of the distribution of the diagnostic quantity vector E and the teleconnection structure of 30-50 (quasi-40) day oscillation, together with the dependence on the conversion of barotropic unstable energy of mean flow in terms of ECWMF daily 500 hPa grid data in winter, indicating that the energy transportation is closely associated with the westerly jet position, with zonal (meridional) propagation in the strong (weak) wind region, that considerable conversion of barotropic energy occurs at the jet exit region where low-frequency oscillation gains energy from the mean flow, leading to maximum kinetic energy for the oscillation observed there, which is marked by evident barotropy in striking contrast to the baroclinicity at low latitudes and that the teleconnection core is related to the center of action in the atmosphere and bound up with the pattern of the west wind.
基金supported by the National Natural Science Foundation of China (No. 61502043, No. 61132001)Beijing Natural Science Foundation (No. 4162042)BeiJing Talents Fund (No. 2015000020124G082)
文摘With the growing popularity of data-intensive services on the Internet, the traditional process-centric model for business process meets challenges due to the lack of abilities to describe data semantics and dependencies, resulting in the inflexibility of the design and implement for the processes. This paper proposes a novel data-aware business process model which is able to describe both explicit control flow and implicit data flow. Data model with dependencies which are formulated by Linear-time Temporal Logic(LTL) is presented, and their satisfiability is validated by an automaton-based model checking algorithm. Data dependencies are fully considered in modeling phase, which helps to improve the efficiency and reliability of programming during developing phase. Finally, a prototype system based on j BPM for data-aware workflow is designed using such model, and has been deployed to Beijing Kingfore heating management system to validate the flexibility, efficacy and convenience of our approach for massive coding and large-scale system management in reality.
基金Supported by the National Natural Science Foundation of China under Grant No 10474081.
文摘An experiment of a 500-fs KrF laser pulse incident upon a high density supersonic O2 gas jet synchronously with an ns frequency-doubled Nd:YAG laser pulse is performed in orthogonal configuration. Significant atomic emission enhancement of over forty-fold is observed with an optical multi-channel analyser. The enhancement effect is probably attributed to the different ionization mechanisms between fs and ns laser pulses.
文摘The modeling of volatility and correlation is important in order to calculate hedge ratios, value at risk estimates, CAPM (Capital Asset Pricing Model betas), derivate pricing and risk management in general. Recent access to intra-daily high-frequency data for two of the most liquid contracts at the Nord Pool exchange has made it possible to apply new and promising methods for analyzing volatility and correlation. The concepts of realized volatility and realized correlation are applied, and this study statistically describes the distribution (both distributional properties and temporal dependencies) of electricity forward data from 2005 to 2009. The main findings show that the logarithmic realized volatility is approximately normally distributed, while realized correlation seems not to be. Further, realized volatility and realized correlation have a long-memory feature. There also seems to be a high correlation between realized correlation and volatilities and positive relations between trading volume and realized volatility and between trading volume and realized correlation. These results are to a large extent consistent with earlier studies of stylized facts of other financial and commodity markets.
基金supported by China’s National High Technology Research and Development Program(No.2012AA050207)China’s National Nature Science Foundation(No.51190101)Science and Technology Projects of the State Grid Corporation of China(No.SGHN0000DKJS130022)
文摘The uncertainty of wind power forecasting significantly influences power systems with high percentage of wind power generation. Despite the wind power forecasting error causation, the temporal and spatial dependence of prediction errors has done great influence in specific applications, such as multistage scheduling and aggregated wind power integration. In this paper, Pair-Copula theory has been introduced to construct a multivariate model which can fully considers the margin distribution and stochastic dependence characteristics of wind power forecasting errors. The characteristics of temporal and spatial dependence have been modelled, and their influences on wind power integrations have been analyzed.Model comparisons indicate that the proposed model can reveal the essential relationships of wind power forecasting uncertainty, and describe the various dependences more accurately.