The cloud type product 2B-CLDCLASS-LIDAR based on CloudSat and CALIPSO from June 2006 to May 2017 is used to examine the temporal and spatial distribution characteristics and interannual variability of eight cloud typ...The cloud type product 2B-CLDCLASS-LIDAR based on CloudSat and CALIPSO from June 2006 to May 2017 is used to examine the temporal and spatial distribution characteristics and interannual variability of eight cloud types(high cloud, altostratus, altocumulus, stratus, stratocumulus, cumulus, nimbostratus, and deep convection) and three phases(ice,mixed, and water) in the Arctic. Possible reasons for the observed interannual variability are also discussed. The main conclusions are as follows:(1) More water clouds occur on the Atlantic side, and more ice clouds occur over continents.(2)The average spatial and seasonal distributions of cloud types show three patterns: high clouds and most cumuliform clouds are concentrated in low-latitude locations and peak in summer;altostratus and nimbostratus are concentrated over and around continents and are less abundant in summer;stratocumulus and stratus are concentrated near the inner Arctic and peak during spring and autumn.(3) Regional averaged interannual frequencies of ice clouds and altostratus clouds significantly decrease, while those of water clouds, altocumulus, and cumulus clouds increase significantly.(4) Significant features of the linear trends of cloud frequencies are mainly located over ocean areas.(5) The monthly water cloud frequency anomalies are positively correlated with air temperature in most of the troposphere, while those for ice clouds are negatively correlated.(6) The decrease in altostratus clouds is associated with the weakening of the Arctic front due to Arctic warming, while increased water vapor transport into the Arctic and higher atmospheric instability lead to more cumulus and altocumulus clouds.展开更多
Rapidly monitoring regional water quality and the changing trend is of great practical and scientific significance,especially for the Beijing-Tianjin-Hebei(BTH)region of China where water resources are relatively scar...Rapidly monitoring regional water quality and the changing trend is of great practical and scientific significance,especially for the Beijing-Tianjin-Hebei(BTH)region of China where water resources are relatively scarce and inland water bodies are generally small.The remote sensing data of the GF 1 satellite launched in 2013 have characteristics of high spatial and temporal resolution,which can be used for the dynamic monitoring of the water environment in small lakes and reservoirs.However,the water quality remote sensing monitoring model based on the GF 1 satellite data for lakes and reservoirs in BTH is still lacking because of the considerable differences in the optical characteristics of the lakes and reservoirs.In this paper,the typical reservoirs in BTH-Guanting Reservoir,Yuqiao Reservoir,Panjiakou Reservoir,and Daheiting Reservoir are taken as the study areas.In the atmospheric correction of GF 1-WFV,the relative radiation normalized atmospheric correction was adopted after comparing it with other methods,such as 6 S and FLAASH.In the water clarity retrieval,a water color hue angle based model was proposed and outperformed other available published models,with the R 2 of 0.74 and MRE of 31.7%.The clarity products of the four typical reservoirs in the BTH region in 2013-2019 were produced using the GF 1-WFV data.Based on the products,temporal and spatial changes in clarity were analyzed,and the main influencing factors for each water body were discussed.It was found that the clarity of Guanting,Daheiting,and Panjiakou reservoirs showed an upward trend during this period,while that of Yuqiao Reservoir showed a downward trend.In the influencing factors,the water level of the water bodies can be an important factor related to the water clarity changes in this region.展开更多
The spatial and temporal distribution of bacterioplankton communities plays a vital role in understanding the ecological dynamics and health of aquatic ecosystems.In this study,we conducted a comprehensive investigati...The spatial and temporal distribution of bacterioplankton communities plays a vital role in understanding the ecological dynamics and health of aquatic ecosystems.In this study,we conducted a comprehensive investigation of the bacterioplankton communities in the Qiantang River(Hangzhou section).Water samples were collected quarterly from seven sites over a one-year period.Physical and chemical parameters,including dissolved oxygen(DO),water temperature(WT),chemical oxygen demand(COD),nitrite(NO_(2)^(-)),active phosphate(PO_(4)^(3-))and other indices were determined.In this study,theαdiversity,βdiversity and abundance differences of bacterial communities were investigated using 16S rRNA high-throughput sequencing analysis.The spatial and temporal distribution characteristics and main driving factors of the bacterioplankton community structure and diversity were discussed.The results showed that a total of 57 phyla were detected in the bacterioplankton community,among which Proteobacteria and Actinomycetes were the two dominant groups with the highest relative abundance.The results of PCoA based on Bray-Curtis distance showed that the sampling season had a slightly greater effect on the changes in bacterioplankton community structure in the Qiantang River.Mantel and partial Mantel test showed that environmental variables(Mantel r=0.6739,P<0.0001;partial Mantel r=0.507,P=0.0001)were more important than geographical distance(Mantel r=0.5322,P<0.001;partial Mantel r=0.1563,P=0.001).The distance attenuation model showed that there was significant distance attenuation in all four seasons,and the maximum limit of bacterial community diffusion was found in spring.RDA analysis showed that nine environmental factors,including COD,WT and DO,significantly affected community distribution(P<0.05).This study provides valuable insights into the spatial and temporal distribution characteristics of bacterioplankton communities,shedding light on their ecological roles in the Qiantang River.The information obtained can guide future research on the interactions between bacterioplankton and their environment,enabling the development of effective conservation strategies and sustainable management practices for aquatic ecosystems.展开更多
Based on the data of daily snowfall and weather phenomena of 11 national meteorological stations in Ulanqab City from 1991 to 2020,the spatial and temporal distribution characteristics of snowstorm were analyzed.The r...Based on the data of daily snowfall and weather phenomena of 11 national meteorological stations in Ulanqab City from 1991 to 2020,the spatial and temporal distribution characteristics of snowstorm were analyzed.The results show that the snowstorm in Ulanqab had obvious seasonal distribution characteristics,mainly happening in spring(March-May)and autumn(September-November).It also had obvious regional distribution in space,and the snowstorm center appeared in Chahar Right Wing Middle Banner and Jining District,namely the east side of the Yinshan Mountain.In the past 30 years,the amount of snowstorm in the whole year in Ulanqab showed a certain fluctuation trend,and the number of snowstorm days had shown an obvious upward trend since 2011.展开更多
The dynamic parameters of multiple projectiles that are fired using multi-barrel weapons in highfrequency continuous firing modes are important indicators to measure the performance of these weapons.The characteristic...The dynamic parameters of multiple projectiles that are fired using multi-barrel weapons in highfrequency continuous firing modes are important indicators to measure the performance of these weapons.The characteristics of multiple projectiles are high randomness and large numbers launched in a short period of time,making it very difficult to obtain the real dispersion parameters of the projectiles due to the occlusion or coincidence of multiple projectiles.Using six intersecting-screen testing system,in this paper,we propose an association recognition and matching algorithm of multiple projectiles using a temporal and spatial information constraint mechanism.We extract the output signal from each detection screen and then use the wavelet transform to process the output signal.We present a method to identify and extract the time values on which the projectiles pass through the detection screens using the wavelet transform modulus maximum theory.We then use the correlation of the output signals of three parallel detection screens to establish a correlation coefficient recognition constraint function for the multiple projectiles.Based on the premise of linear projectile motion,we establish a temporal and spatial constraint matching model using the projectile’s position coordinates in each detection screen and the projectile’s time constraints within the multiple intersecting-screen geometry.We then determine the time values of the multiple projectiles in each detection screen using an iterative search cycle registration,and finally obtain the flight parameters for the multiple projectiles in the presence of uncertainty.The proposed method and algorithm were verified experimentally and can solve the problem of uncertainty in projectiles flight parameter under different multiple projectile firing states.展开更多
The CO_(2)effl ux of branches and leaves plays an important role in ecosystem carbon balance.Using a carbon fl ux system,the effl ux of Larix gmelinii var.principisrupprechtii(Dahurian larch)was investigated in 27 yea...The CO_(2)effl ux of branches and leaves plays an important role in ecosystem carbon balance.Using a carbon fl ux system,the effl ux of Larix gmelinii var.principisrupprechtii(Dahurian larch)was investigated in 27 years(immature),31 years(near-mature),and 47 years(mature)stands at diurnal,seasonal,and spatial scales(direction and height)as well as its connection with environmental factors from May to October 2020.Diurnal variation in effl ux was a single peak,and the maximum occurring between 14:00 and 16:00.Seasonal variation also exhibited a single peak,with the maximum in late July and the minimum in early October.From May to September,effl ux on the south side was the largest among the three stands,and mean values on the south side of 27 year-old,31 year-old,and 47 year-old trees were 0.50,0.97 and 1.05μmol·m^(–2)·s^(–1),respectively.The minimum occurred on the north side.Except for the maximum in July and September in the 27 year-old stand in the middle of the canopy,the maximum effl ux in the upper canopy,and the means in the 27 year-old,31 year-old,and 47 year-old stands were 0.49,0.96 and 1.04μmol·m^(-2)·s^(-1),respectively;the minimum occurred in the lower canopy.Temperatures and relative humidity infl uenced seasonal variations in effl ux.Seasonal variation in temperature sensitivity coeffi cient(Q 10)was opposite that of temperature,increasing with decreasing temperature.At the spatial scale,maximum Q 10 occurred in the mid canopy.With the effl ux and temperature data in diff erent locations,it is possible to better estimate effl ux variations in each stand.展开更多
Rapid development of deepfake technology led to the spread of forged audios and videos across network platforms,presenting risks for numerous countries,societies,and individuals,and posing a serious threat to cyberspa...Rapid development of deepfake technology led to the spread of forged audios and videos across network platforms,presenting risks for numerous countries,societies,and individuals,and posing a serious threat to cyberspace security.To address the problem of insufficient extraction of spatial features and the fact that temporal features are not considered in the deepfake video detection,we propose a detection method based on improved CapsNet and temporal–spatial features(iCapsNet–TSF).First,the dynamic routing algorithm of CapsNet is improved using weight initialization and updating.Then,the optical flow algorithm is used to extract interframe temporal features of the videos to form a dataset of temporal–spatial features.Finally,the iCapsNet model is employed to fully learn the temporal–spatial features of facial videos,and the results are fused.Experimental results show that the detection accuracy of iCapsNet–TSF reaches 94.07%,98.83%,and 98.50%on the Celeb-DF,FaceSwap,and Deepfakes datasets,respectively,displaying a better performance than most existing mainstream algorithms.The iCapsNet–TSF method combines the capsule network and the optical flow algorithm,providing a novel strategy for the deepfake detection,which is of great significance to the prevention of deepfake attacks and the preservation of cyberspace security.展开更多
The preceding and succeeding precipitation(PSP)often act together with extreme precipitation(EP),in turn,causing floods,which is an objective component that is often overlooked with regard to summer flood hazards in t...The preceding and succeeding precipitation(PSP)often act together with extreme precipitation(EP),in turn,causing floods,which is an objective component that is often overlooked with regard to summer flood hazards in the arid region of Northwest China.In this study,event-based extreme precipitation(EEP)was defined as continuous precipitation that includes at least one day of EP.We analyzed the spatiotemporal variation characteristics of four EEP types(front EEP,late EEP,balanced EEP,and single day EEP)across the Loess Plateau(LP)based on data acquired from 87 meteorological stations from 1960 to 2019.Precipitation on the LP basically maintained a spatial pattern of"low in the northwest region and high in the southeast region",and EP over the last 10 a increased significantly.The cumulative precipitation percentage of single day EEP was 34%and was dominant for 60 a,while the cumulative precipitation percentage of front,late,and balanced EEP types associated with PSP accounted for 66%,which confirms to the connotation of EEP.The cumulative frequencies of front and late EEP types were 23%and 21%,respectively,while the cumulative frequency of balanced EEP had the lowest value at only 13%.Moreover,global warming could lead to more single day EEP across the LP,and continuous EEP could increase in the northwestern region and decrease in the eastern region in the future.The concept of process-oriented EP could facilitate further exploration of disaster-causing processes associated with different types of EP,and provide a theoretical basis for deriving precipitation disaster chains and construction of disaster cluster characteristics.展开更多
Water resources are one of the key factors restricting the development of arid areas,and cloud water resources is an important part of water resources.The arid region of central Asia is the core region of the current ...Water resources are one of the key factors restricting the development of arid areas,and cloud water resources is an important part of water resources.The arid region of central Asia is the core region of the current national green silk road construction,and is the largest arid region in the world.Based on cloud cover data of ECMWF,the current study analyzed temporal and spatial characteristics of cloud properties in arid regions of Central Asia between 1980 and 2019.Our findings show that:(1)From the point of view of spatial distribution,total cloudiness in arid regions of Central Asia was low in the south and high in the north.The distribution of high cloud frequency and medium cloud frequency was higher in the south and lower in the north,while low cloud frequency distribution was low in the south and high in the north.(2)In terms of time,the variation of cloud cover and cloud type frequency had obvious seasonal characteristics.From winter to spring,cloud cover increased,and the change of cloud type frequency increased.From spring to summer,cloud cover continued to increase and the change of cloud type frequency increased further.Cloud cover began to decrease from summer to autumn,and the change of cloud type frequency also decreased.(3)Generally,average total cloud cover decreased in most of central Asia,and high and medium cloud cover increased while low cloud cover decreased.This study provides a reference for the rational development of cloud resources in the region.展开更多
The ever-growing available visual data(i.e.,uploaded videos and pictures by internet users)has attracted the research community’s attention in the computer vision field.Therefore,finding efficient solutions to extrac...The ever-growing available visual data(i.e.,uploaded videos and pictures by internet users)has attracted the research community’s attention in the computer vision field.Therefore,finding efficient solutions to extract knowledge from these sources is imperative.Recently,the BlazePose system has been released for skeleton extraction from images oriented to mobile devices.With this skeleton graph representation in place,a Spatial-Temporal Graph Convolutional Network can be implemented to predict the action.We hypothesize that just by changing the skeleton input data for a different set of joints that offers more information about the action of interest,it is possible to increase the performance of the Spatial-Temporal Graph Convolutional Network for HAR tasks.Hence,in this study,we present the first implementation of the BlazePose skeleton topology upon this architecture for action recognition.Moreover,we propose the Enhanced-BlazePose topology that can achieve better results than its predecessor.Additionally,we propose different skeleton detection thresholds that can improve the accuracy performance even further.We reached a top-1 accuracy performance of 40.1%on the Kinetics dataset.For the NTU-RGB+D dataset,we achieved 87.59%and 92.1%accuracy for Cross-Subject and Cross-View evaluation criteria,respectively.展开更多
From January 2020 to December 2021,Ulanqab Meteorological Bureau of Inner Mongolia used VLF/LF lightning locator to carry out three-dimensional lightning monitoring in Ulanqab City,and compared with ADTD lightning loc...From January 2020 to December 2021,Ulanqab Meteorological Bureau of Inner Mongolia used VLF/LF lightning locator to carry out three-dimensional lightning monitoring in Ulanqab City,and compared with ADTD lightning location data in the same period.The results show that both VLF/LF lightning locator and ADTD lightning locator had excellent monitoring ability for lightning during flood season in Ulanqab.VLF/LF lightning locator was slightly superior to ADTD lightning locator in observation accuracy,the observation ability of low-current cloud-to-ground lightning,intracloud lightning observation and so on.There were obvious temporal and spatial characteristics of cloud-to-ground lightning during flood season in Ulanqab,and there was a certain correlation between the areas where lightning appeared frequently and surface water.Intracloud lightning was mainly concentrated at a height of 1-7 km.Negative cloud-to-ground lightning accounted for about 75%of total cloud-to-ground lightning,and negative intracloud lightning accounted for 39%of total intracloud lightning.展开更多
The multi-scale spatial and temporal evolution characteristics of extreme precipitation and isohyets in Ningxia were studied using daily,monthly,and annual precipitation data from 20 meteorological stations in Ningxia...The multi-scale spatial and temporal evolution characteristics of extreme precipitation and isohyets in Ningxia were studied using daily,monthly,and annual precipitation data from 20 meteorological stations in Ningxia over the last 60 years.The results revealed that the intensity of rainstorms in Ningxia had decreased slightly over the previous 60 years,with the intensity of rainstorms in southern and central Ningxia being higher than in northern areas.Ningxia's annual and seasonal precipitation varied regionally,declining from the southeast to the northwest.Annual,spring and autumn precipitation exhibited a significantly declining trend from 1960 to the early 21^(st)century;summer precipitation displayed a slightly decreasing trend;and winter precipitation showed a significantly increasing trend.Nevertheless,there was a noticeable increase in annual and seasonal precipitation after 2005.From the 1960s to the 2000s,the 200 mm isohyet moved slowly southward,while the 400 mm isohyet jumped southward twice in the 1970s and 2000s before jumping considerably northward in the 2010s to reach their northernmost region.展开更多
Based on the daily maximum temperature data of 31 meteorological observation stations and some statistical methods, the temporal and spatial characteristics of summer extreme high temperature in Guizhou province from ...Based on the daily maximum temperature data of 31 meteorological observation stations and some statistical methods, the temporal and spatial characteristics of summer extreme high temperature in Guizhou province from 1970 to 2020 are analyzed. The results indicate that: 1) The threshold of extreme high temperature (EHT) in summer in Guizhou province had a large spatial difference, with decreasing characteristics from the northeast to the southwest, it was negatively correlated with the altitude. 2) In most parts of Guizhou province, the extreme high temperature days (EHTD) in summer can reach about 4.2 d, the lowest EHTD occurred in the southernmost part. From June to August, the EHTD gradually increased, especially in Central and eastern parts of Guizhou province. However, the extreme high temperature intensity (EHTI) displayed similar distribution characteristics in summer, June, July and August, with larger value in the northeast part and lower value in the southwest part of Guizhou. 3) EHTD had a rising trend in almost stations, except for the PZ station, the increased range and intensity gradually increased from June to August. But the EHTI had a larger spatial difference, especially in June, it declined in most parts of Guizhou, the declined scope and intensity gradually decreased in July, and completely increased in August, this made EHTI show an increasing trend in summer in most parts the Guizhou province. 4) The averaged EHTD increased by 0.62 d/10a (p 0.1), the significant increase also occurred in August, but it increased insignificantly in June and July. The averaged EHTI had insignificant increase in summer and the three months. In general, the EHTD and EHTI increased in most parts of Guizhou province during the period of 1970-2020, this may be related to the changes of them in August.展开更多
With China entering the stage of high-quality development,the issue of carbon emission has become a hot research topic.This paper analyzes the different temporal and spatial effects of per capita income on household i...With China entering the stage of high-quality development,the issue of carbon emission has become a hot research topic.This paper analyzes the different temporal and spatial effects of per capita income on household indirect carbon emissions in western China.Based on the data of Chinese Family Panel Studies(CFPS)in 2016 and 2018 in the western China,this paper uses Regression analysis and Bayesian correlation analysis to study the relationship between per capita income and household indirect carbon emissions.The results showed that the indirect carbon emissions generated by the expenditure on food,housing and household equipment in the household consumption structure in the western China were relatively high.In 2016-2018,the per capita income and per capita household consumption indirect carbon emissions in the western China showed an increasing trend.There was a positive correlation between per capita income and indirect carbon emissions of per capita household consumption,and its correlation was gradually enhanced in time dimension.In the spatial dimension,the household indirect carbon emissions in Yunnan,Qinghai,Guangxi Zhuang and Ningxia in the western China were greatly affected by per capita income,while the household indirect carbon emissions in Guizhou was least affected by per capita income.Finally,the paper puts forward some problems that we should consider in the process of facing the per capita income growth and climate change:the collection of carbon tax,the optimization of household consumption structure,the research and development of low-carbon products,and the differentiated carbon reduction.展开更多
Climate change has resulted in serious social-economic ramifications and extremely catastrophic weather events in the world, Tanzania and Zanzibar in particular, with adaptation being the only option to reduce impacts...Climate change has resulted in serious social-economic ramifications and extremely catastrophic weather events in the world, Tanzania and Zanzibar in particular, with adaptation being the only option to reduce impacts. The study focuses on the influence of climate change and variability on spatio-temporal rainfall and temperature variability and distribution in Zanzibar. The station observation datasets of rainfall, T<sub>max</sub> and T<sub>min</sub> acquired from Tanzania Meteorological Authority (TMA) and the Coordinated Regional Climate Downscaling Experiment program (CORDEX) projected datasets from the Regional climate model HIRHAM5 under driving model ICHEC-EC-EARH, for the three periods of 1991-2020 used as baseline (HS), 2021-2050 as near future (NF) and 2051-2080 far future (FF), under two representative concentration pathways (RCP) of 4.5 and 8.5, were used. The long-term observed T<sub>max</sub> and T<sub>min</sub> were used to produce time series for observing the nature and trends, while the observed rainfall data was used for understanding wet and dry periods, trends and slope (at p ≤ 0.05) using the Standardized Precipitation Index (SPI) and the Mann Kendall test (MK). Moreover, the Quantum Geographic Information System (QGIS) under the Inverse Distance Weighting (IDW) interpolation techniques were used for mapping the three decades of 1991-2000 (hereafter D1), 2001-2010 (hereafter D2) and 2011-2020 (hereafter D3) to analyze periodical spatial rainfall distribution in Zanzibar. As for the projected datasets the Climate Data Operator Commands (CDO), python scripts and Grid analysis and Display System (GrADS) soft-wares were used to process and display the results of the projected datasets of rainfall, T<sub>max</sub> and T<sub>min</sub> for the HS, NF and FF, respectively. The results show that the observed T<sub>max</sub> increased by the rates of 0.035℃ yr<sup>-</sup><sup>1</sup> and 0.0169℃ yr<sup>-</sup><sup>1</sup>, while the T<sub>min</sub> was increased by a rate of 0.064℃ yr<sup>-</sup><sup>1</sup> and 0.104℃ yr<sup>-</sup><sup>1</sup> for Unguja and Pemba, respectively. The temporal distribution of wetness and dryness indices showed a climate shift from near normal to moderate wet during 2005 at Zanzibar Airport, while normal to moderately dry conditions, were observed in Pemba at Matangatuani. The decadal rainfall variability and distributions revealed higher rainfall intensity with an increasing trend and good spatial distribution in D3 from March to May (MAM) and October to December (OND). The projected results for T<sub>max</sub> during MAM and OND depicted higher values ranging from 1.7℃ - 1.8℃ to 1.9℃ - 2.0℃ and 1.5℃ to 2.0℃ in FF compared to NF under both RCPs. Also, higher T<sub>min</sub> values of 1.12℃ - 1.16℃ was projected in FF for MAM and OND under both RCPs. Besides, the rainfall projection generally revealed increased rainfall intensity in the range of 0 - 25 mm for Pemba and declined rainfall in the range of 25 - 50 mm in Unguja under both RCPs in perspectives of both NF and FF. Conclusively the study has shown that the undergoing climate change has posed a significant impact on both rainfall and temperature spatial and temporal distributions in Zanzibar (Unguja and Pemba), with Unguja being projected to have higher rainfall deficits while increasing rainfall strengths in Pemba. Thus, the study calls for more studies and formulation of effective adaptation, strategies and resilience mechanisms to combat the projected climate change impacts especially in the agricultural sector, water and food security.展开更多
Spatio-temporal models are valuable tools for disease mapping and understanding the geographical distribution of diseases and temporal dynamics. Spatio-temporal models have been proven empirically to be very complex a...Spatio-temporal models are valuable tools for disease mapping and understanding the geographical distribution of diseases and temporal dynamics. Spatio-temporal models have been proven empirically to be very complex and this complexity has led many to oversimply and model the spatial and temporal dependencies independently. Unlike common practice, this study formulated a new spatio-temporal model in a Bayesian hierarchical framework that accounts for spatial and temporal dependencies jointly. The spatial and temporal dependencies were dynamically modelled via the matern exponential covariance function. The temporal aspect was captured by the parameters of the exponential with a first-order autoregressive structure. Inferences about the parameters were obtained via Markov Chain Monte Carlo (MCMC) techniques and the spatio-temporal maps were obtained by mapping stable posterior means from the specific location and time from the best model that includes the significant risk factors. The model formulated was fitted to both simulation data and Kenya meningitis incidence data from 2013 to 2019 along with two covariates;Gross County Product (GCP) and average rainfall. The study found that both average rainfall and GCP had a significant positive association with meningitis occurrence. Also, regarding geographical distribution, the spatio-temporal maps showed that meningitis is not evenly distributed across the country as some counties reported a high number of cases compared with other counties.展开更多
The process of entrainment-mixing between cumulus clouds and the ambient air is important for the development of cumulus clouds.Accurately obtaining the entrainment rate(λ)is particularly important for its parameteri...The process of entrainment-mixing between cumulus clouds and the ambient air is important for the development of cumulus clouds.Accurately obtaining the entrainment rate(λ)is particularly important for its parameterization within the overall cumulus parameterization scheme.In this study,an improved bulk-plume method is proposed by solving the equations of two conserved variables simultaneously to calculateλof cumulus clouds in a large-eddy simulation.The results demonstrate that the improved bulk-plume method is more reliable than the traditional bulk-plume method,becauseλ,as calculated from the improved method,falls within the range ofλvalues obtained from the traditional method using different conserved variables.The probability density functions ofλfor all data,different times,and different heights can be well-fitted by a log-normal distribution,which supports the assumed stochastic entrainment process in previous studies.Further analysis demonstrate that the relationship betweenλand the vertical velocity is better than other thermodynamic/dynamical properties;thus,the vertical velocity is recommended as the primary influencing factor for the parameterization ofλin the future.The results of this study enhance the theoretical understanding ofλand its influencing factors and shed new light on the development ofλparameterization.展开更多
The coupling of water and fertilizer is the only way for high yield, efficiency, sugar on sugarcane. On sugarcane production, the spatial and temporal controlling technology of fertigation is an important direction of...The coupling of water and fertilizer is the only way for high yield, efficiency, sugar on sugarcane. On sugarcane production, the spatial and temporal controlling technology of fertigation is an important direction of the sustainable and healthy development of ecological agriculture in cane area of China. This paper reviews main achievements and advances on the coupling effect of water and fertilizer on sugarcane from time and space at home or abroad in recent years, analyzes the application prospects of the temporal and spatial coupling effect of water and fertilizer on sugarcane and puts forward some problems which need further research in future.展开更多
A comprehensive analysis on the change of the total grain production and the temporal and spatial change of three main crops production(including wheat,maize and rice),as well as the transfer trace of the center gra...A comprehensive analysis on the change of the total grain production and the temporal and spatial change of three main crops production(including wheat,maize and rice),as well as the transfer trace of the center gravity of grain production in China were analyzed to reveal the overall developing trend of the grain production,explore the reasons and finally propose the corresponding suggestions and strategies to cope with the situation.展开更多
To understand the spatial and temporal variation characteristics of blue algae in summer in Lake Dianshan,the phytoplankton in Lake Dianshan from June to September in 2009 was surveyed. It found 11 genera and 28 speci...To understand the spatial and temporal variation characteristics of blue algae in summer in Lake Dianshan,the phytoplankton in Lake Dianshan from June to September in 2009 was surveyed. It found 11 genera and 28 species blue algae in total. Microcystis,Oscillatoria and Chroococcus were the main composition communities of blue algae in Lake Dianshan in summer. In the survey period,the average density of blue algae in Lake Dianshan was 16.48×106 cells/L which changed during 1.01×106-59.76×106 cells/L. The characteristics were:September > July > August > June. The mass propagation and aggregation of Microcystis in September caused that the water blooms phenomenon in the partial water areas was serious. In the space,the average density of blue algae in the west and southwest parts of Lake Dianshan was bigger than in the east and southeast. When the nutritive matter was sufficient,the temperature was the main factor which affected the generation and disappearance of blue algae water blooms. The wind direction was also an important factor which affected the distribution of blue algae.展开更多
基金supported in part by the National Natural Science Foundation of China (Grant No. 42105127)the Special Research Assistant Project of the Chinese Academy of Sciencesthe National Key Research and Development Plans of China (Grant Nos. 2019YFC1510304 and 2016YFE0201900-02)。
文摘The cloud type product 2B-CLDCLASS-LIDAR based on CloudSat and CALIPSO from June 2006 to May 2017 is used to examine the temporal and spatial distribution characteristics and interannual variability of eight cloud types(high cloud, altostratus, altocumulus, stratus, stratocumulus, cumulus, nimbostratus, and deep convection) and three phases(ice,mixed, and water) in the Arctic. Possible reasons for the observed interannual variability are also discussed. The main conclusions are as follows:(1) More water clouds occur on the Atlantic side, and more ice clouds occur over continents.(2)The average spatial and seasonal distributions of cloud types show three patterns: high clouds and most cumuliform clouds are concentrated in low-latitude locations and peak in summer;altostratus and nimbostratus are concentrated over and around continents and are less abundant in summer;stratocumulus and stratus are concentrated near the inner Arctic and peak during spring and autumn.(3) Regional averaged interannual frequencies of ice clouds and altostratus clouds significantly decrease, while those of water clouds, altocumulus, and cumulus clouds increase significantly.(4) Significant features of the linear trends of cloud frequencies are mainly located over ocean areas.(5) The monthly water cloud frequency anomalies are positively correlated with air temperature in most of the troposphere, while those for ice clouds are negatively correlated.(6) The decrease in altostratus clouds is associated with the weakening of the Arctic front due to Arctic warming, while increased water vapor transport into the Arctic and higher atmospheric instability lead to more cumulus and altocumulus clouds.
基金Supported by the International Partnership Program of Chinese Academy of Sciences(No.313GJHZ2022085 FN)the Dragon 5 Cooperation(No.59193)。
文摘Rapidly monitoring regional water quality and the changing trend is of great practical and scientific significance,especially for the Beijing-Tianjin-Hebei(BTH)region of China where water resources are relatively scarce and inland water bodies are generally small.The remote sensing data of the GF 1 satellite launched in 2013 have characteristics of high spatial and temporal resolution,which can be used for the dynamic monitoring of the water environment in small lakes and reservoirs.However,the water quality remote sensing monitoring model based on the GF 1 satellite data for lakes and reservoirs in BTH is still lacking because of the considerable differences in the optical characteristics of the lakes and reservoirs.In this paper,the typical reservoirs in BTH-Guanting Reservoir,Yuqiao Reservoir,Panjiakou Reservoir,and Daheiting Reservoir are taken as the study areas.In the atmospheric correction of GF 1-WFV,the relative radiation normalized atmospheric correction was adopted after comparing it with other methods,such as 6 S and FLAASH.In the water clarity retrieval,a water color hue angle based model was proposed and outperformed other available published models,with the R 2 of 0.74 and MRE of 31.7%.The clarity products of the four typical reservoirs in the BTH region in 2013-2019 were produced using the GF 1-WFV data.Based on the products,temporal and spatial changes in clarity were analyzed,and the main influencing factors for each water body were discussed.It was found that the clarity of Guanting,Daheiting,and Panjiakou reservoirs showed an upward trend during this period,while that of Yuqiao Reservoir showed a downward trend.In the influencing factors,the water level of the water bodies can be an important factor related to the water clarity changes in this region.
基金financially supported by the Fisheries Species Conservation Program of the Agricultural Department of China (Nos.171821303154051044,17190236)the Natural Science Foundation of Zhejiang Province (No.LQ20C190003)+1 种基金the Natural Science Foundation of Ningbo Municipality (Nos.2019A610421,2019A 610443)the K.C.Wong Magna Fund in Ningbo University。
文摘The spatial and temporal distribution of bacterioplankton communities plays a vital role in understanding the ecological dynamics and health of aquatic ecosystems.In this study,we conducted a comprehensive investigation of the bacterioplankton communities in the Qiantang River(Hangzhou section).Water samples were collected quarterly from seven sites over a one-year period.Physical and chemical parameters,including dissolved oxygen(DO),water temperature(WT),chemical oxygen demand(COD),nitrite(NO_(2)^(-)),active phosphate(PO_(4)^(3-))and other indices were determined.In this study,theαdiversity,βdiversity and abundance differences of bacterial communities were investigated using 16S rRNA high-throughput sequencing analysis.The spatial and temporal distribution characteristics and main driving factors of the bacterioplankton community structure and diversity were discussed.The results showed that a total of 57 phyla were detected in the bacterioplankton community,among which Proteobacteria and Actinomycetes were the two dominant groups with the highest relative abundance.The results of PCoA based on Bray-Curtis distance showed that the sampling season had a slightly greater effect on the changes in bacterioplankton community structure in the Qiantang River.Mantel and partial Mantel test showed that environmental variables(Mantel r=0.6739,P<0.0001;partial Mantel r=0.507,P=0.0001)were more important than geographical distance(Mantel r=0.5322,P<0.001;partial Mantel r=0.1563,P=0.001).The distance attenuation model showed that there was significant distance attenuation in all four seasons,and the maximum limit of bacterial community diffusion was found in spring.RDA analysis showed that nine environmental factors,including COD,WT and DO,significantly affected community distribution(P<0.05).This study provides valuable insights into the spatial and temporal distribution characteristics of bacterioplankton communities,shedding light on their ecological roles in the Qiantang River.The information obtained can guide future research on the interactions between bacterioplankton and their environment,enabling the development of effective conservation strategies and sustainable management practices for aquatic ecosystems.
文摘Based on the data of daily snowfall and weather phenomena of 11 national meteorological stations in Ulanqab City from 1991 to 2020,the spatial and temporal distribution characteristics of snowstorm were analyzed.The results show that the snowstorm in Ulanqab had obvious seasonal distribution characteristics,mainly happening in spring(March-May)and autumn(September-November).It also had obvious regional distribution in space,and the snowstorm center appeared in Chahar Right Wing Middle Banner and Jining District,namely the east side of the Yinshan Mountain.In the past 30 years,the amount of snowstorm in the whole year in Ulanqab showed a certain fluctuation trend,and the number of snowstorm days had shown an obvious upward trend since 2011.
基金been supported by Project of the National Natural Science Foundation of China(No.62073256)the Shaanxi Provincial Science and Technology Department(No.2020GY-125)Xi’an Science and Technology Innovation talent service enterprise project(No.2020KJRC0041)。
文摘The dynamic parameters of multiple projectiles that are fired using multi-barrel weapons in highfrequency continuous firing modes are important indicators to measure the performance of these weapons.The characteristics of multiple projectiles are high randomness and large numbers launched in a short period of time,making it very difficult to obtain the real dispersion parameters of the projectiles due to the occlusion or coincidence of multiple projectiles.Using six intersecting-screen testing system,in this paper,we propose an association recognition and matching algorithm of multiple projectiles using a temporal and spatial information constraint mechanism.We extract the output signal from each detection screen and then use the wavelet transform to process the output signal.We present a method to identify and extract the time values on which the projectiles pass through the detection screens using the wavelet transform modulus maximum theory.We then use the correlation of the output signals of three parallel detection screens to establish a correlation coefficient recognition constraint function for the multiple projectiles.Based on the premise of linear projectile motion,we establish a temporal and spatial constraint matching model using the projectile’s position coordinates in each detection screen and the projectile’s time constraints within the multiple intersecting-screen geometry.We then determine the time values of the multiple projectiles in each detection screen using an iterative search cycle registration,and finally obtain the flight parameters for the multiple projectiles in the presence of uncertainty.The proposed method and algorithm were verified experimentally and can solve the problem of uncertainty in projectiles flight parameter under different multiple projectile firing states.
基金supported by the National Natural Science Foundation of China(No.31870387),China Scholarship Council.
文摘The CO_(2)effl ux of branches and leaves plays an important role in ecosystem carbon balance.Using a carbon fl ux system,the effl ux of Larix gmelinii var.principisrupprechtii(Dahurian larch)was investigated in 27 years(immature),31 years(near-mature),and 47 years(mature)stands at diurnal,seasonal,and spatial scales(direction and height)as well as its connection with environmental factors from May to October 2020.Diurnal variation in effl ux was a single peak,and the maximum occurring between 14:00 and 16:00.Seasonal variation also exhibited a single peak,with the maximum in late July and the minimum in early October.From May to September,effl ux on the south side was the largest among the three stands,and mean values on the south side of 27 year-old,31 year-old,and 47 year-old trees were 0.50,0.97 and 1.05μmol·m^(–2)·s^(–1),respectively.The minimum occurred on the north side.Except for the maximum in July and September in the 27 year-old stand in the middle of the canopy,the maximum effl ux in the upper canopy,and the means in the 27 year-old,31 year-old,and 47 year-old stands were 0.49,0.96 and 1.04μmol·m^(-2)·s^(-1),respectively;the minimum occurred in the lower canopy.Temperatures and relative humidity infl uenced seasonal variations in effl ux.Seasonal variation in temperature sensitivity coeffi cient(Q 10)was opposite that of temperature,increasing with decreasing temperature.At the spatial scale,maximum Q 10 occurred in the mid canopy.With the effl ux and temperature data in diff erent locations,it is possible to better estimate effl ux variations in each stand.
基金supported by the Fundamental Research Funds for the Central Universities under Grant 2020JKF101the Research Funds of Sugon under Grant 2022KY001.
文摘Rapid development of deepfake technology led to the spread of forged audios and videos across network platforms,presenting risks for numerous countries,societies,and individuals,and posing a serious threat to cyberspace security.To address the problem of insufficient extraction of spatial features and the fact that temporal features are not considered in the deepfake video detection,we propose a detection method based on improved CapsNet and temporal–spatial features(iCapsNet–TSF).First,the dynamic routing algorithm of CapsNet is improved using weight initialization and updating.Then,the optical flow algorithm is used to extract interframe temporal features of the videos to form a dataset of temporal–spatial features.Finally,the iCapsNet model is employed to fully learn the temporal–spatial features of facial videos,and the results are fused.Experimental results show that the detection accuracy of iCapsNet–TSF reaches 94.07%,98.83%,and 98.50%on the Celeb-DF,FaceSwap,and Deepfakes datasets,respectively,displaying a better performance than most existing mainstream algorithms.The iCapsNet–TSF method combines the capsule network and the optical flow algorithm,providing a novel strategy for the deepfake detection,which is of great significance to the prevention of deepfake attacks and the preservation of cyberspace security.
基金This research was supported by the National Natural Science Foundation of China(52022081)the Technology Project Funded by Clean Energy and Ecological Water Conservancy Engineering Research Center of China(QNZX-2019-03).
文摘The preceding and succeeding precipitation(PSP)often act together with extreme precipitation(EP),in turn,causing floods,which is an objective component that is often overlooked with regard to summer flood hazards in the arid region of Northwest China.In this study,event-based extreme precipitation(EEP)was defined as continuous precipitation that includes at least one day of EP.We analyzed the spatiotemporal variation characteristics of four EEP types(front EEP,late EEP,balanced EEP,and single day EEP)across the Loess Plateau(LP)based on data acquired from 87 meteorological stations from 1960 to 2019.Precipitation on the LP basically maintained a spatial pattern of"low in the northwest region and high in the southeast region",and EP over the last 10 a increased significantly.The cumulative precipitation percentage of single day EEP was 34%and was dominant for 60 a,while the cumulative precipitation percentage of front,late,and balanced EEP types associated with PSP accounted for 66%,which confirms to the connotation of EEP.The cumulative frequencies of front and late EEP types were 23%and 21%,respectively,while the cumulative frequency of balanced EEP had the lowest value at only 13%.Moreover,global warming could lead to more single day EEP across the LP,and continuous EEP could increase in the northwestern region and decrease in the eastern region in the future.The concept of process-oriented EP could facilitate further exploration of disaster-causing processes associated with different types of EP,and provide a theoretical basis for deriving precipitation disaster chains and construction of disaster cluster characteristics.
基金financially supported by the National Natural Science Foundation of China (41867030, 41971036)the National Natural Science Foundation innovation research group science foundation of China (41421061)
文摘Water resources are one of the key factors restricting the development of arid areas,and cloud water resources is an important part of water resources.The arid region of central Asia is the core region of the current national green silk road construction,and is the largest arid region in the world.Based on cloud cover data of ECMWF,the current study analyzed temporal and spatial characteristics of cloud properties in arid regions of Central Asia between 1980 and 2019.Our findings show that:(1)From the point of view of spatial distribution,total cloudiness in arid regions of Central Asia was low in the south and high in the north.The distribution of high cloud frequency and medium cloud frequency was higher in the south and lower in the north,while low cloud frequency distribution was low in the south and high in the north.(2)In terms of time,the variation of cloud cover and cloud type frequency had obvious seasonal characteristics.From winter to spring,cloud cover increased,and the change of cloud type frequency increased.From spring to summer,cloud cover continued to increase and the change of cloud type frequency increased further.Cloud cover began to decrease from summer to autumn,and the change of cloud type frequency also decreased.(3)Generally,average total cloud cover decreased in most of central Asia,and high and medium cloud cover increased while low cloud cover decreased.This study provides a reference for the rational development of cloud resources in the region.
文摘The ever-growing available visual data(i.e.,uploaded videos and pictures by internet users)has attracted the research community’s attention in the computer vision field.Therefore,finding efficient solutions to extract knowledge from these sources is imperative.Recently,the BlazePose system has been released for skeleton extraction from images oriented to mobile devices.With this skeleton graph representation in place,a Spatial-Temporal Graph Convolutional Network can be implemented to predict the action.We hypothesize that just by changing the skeleton input data for a different set of joints that offers more information about the action of interest,it is possible to increase the performance of the Spatial-Temporal Graph Convolutional Network for HAR tasks.Hence,in this study,we present the first implementation of the BlazePose skeleton topology upon this architecture for action recognition.Moreover,we propose the Enhanced-BlazePose topology that can achieve better results than its predecessor.Additionally,we propose different skeleton detection thresholds that can improve the accuracy performance even further.We reached a top-1 accuracy performance of 40.1%on the Kinetics dataset.For the NTU-RGB+D dataset,we achieved 87.59%and 92.1%accuracy for Cross-Subject and Cross-View evaluation criteria,respectively.
文摘From January 2020 to December 2021,Ulanqab Meteorological Bureau of Inner Mongolia used VLF/LF lightning locator to carry out three-dimensional lightning monitoring in Ulanqab City,and compared with ADTD lightning location data in the same period.The results show that both VLF/LF lightning locator and ADTD lightning locator had excellent monitoring ability for lightning during flood season in Ulanqab.VLF/LF lightning locator was slightly superior to ADTD lightning locator in observation accuracy,the observation ability of low-current cloud-to-ground lightning,intracloud lightning observation and so on.There were obvious temporal and spatial characteristics of cloud-to-ground lightning during flood season in Ulanqab,and there was a certain correlation between the areas where lightning appeared frequently and surface water.Intracloud lightning was mainly concentrated at a height of 1-7 km.Negative cloud-to-ground lightning accounted for about 75%of total cloud-to-ground lightning,and negative intracloud lightning accounted for 39%of total intracloud lightning.
基金Sponsored by National Natural Science Foundation of China(42161008)Ningxia Natural Science Foundation(2021AAC03070)。
文摘The multi-scale spatial and temporal evolution characteristics of extreme precipitation and isohyets in Ningxia were studied using daily,monthly,and annual precipitation data from 20 meteorological stations in Ningxia over the last 60 years.The results revealed that the intensity of rainstorms in Ningxia had decreased slightly over the previous 60 years,with the intensity of rainstorms in southern and central Ningxia being higher than in northern areas.Ningxia's annual and seasonal precipitation varied regionally,declining from the southeast to the northwest.Annual,spring and autumn precipitation exhibited a significantly declining trend from 1960 to the early 21^(st)century;summer precipitation displayed a slightly decreasing trend;and winter precipitation showed a significantly increasing trend.Nevertheless,there was a noticeable increase in annual and seasonal precipitation after 2005.From the 1960s to the 2000s,the 200 mm isohyet moved slowly southward,while the 400 mm isohyet jumped southward twice in the 1970s and 2000s before jumping considerably northward in the 2010s to reach their northernmost region.
文摘Based on the daily maximum temperature data of 31 meteorological observation stations and some statistical methods, the temporal and spatial characteristics of summer extreme high temperature in Guizhou province from 1970 to 2020 are analyzed. The results indicate that: 1) The threshold of extreme high temperature (EHT) in summer in Guizhou province had a large spatial difference, with decreasing characteristics from the northeast to the southwest, it was negatively correlated with the altitude. 2) In most parts of Guizhou province, the extreme high temperature days (EHTD) in summer can reach about 4.2 d, the lowest EHTD occurred in the southernmost part. From June to August, the EHTD gradually increased, especially in Central and eastern parts of Guizhou province. However, the extreme high temperature intensity (EHTI) displayed similar distribution characteristics in summer, June, July and August, with larger value in the northeast part and lower value in the southwest part of Guizhou. 3) EHTD had a rising trend in almost stations, except for the PZ station, the increased range and intensity gradually increased from June to August. But the EHTI had a larger spatial difference, especially in June, it declined in most parts of Guizhou, the declined scope and intensity gradually decreased in July, and completely increased in August, this made EHTI show an increasing trend in summer in most parts the Guizhou province. 4) The averaged EHTD increased by 0.62 d/10a (p 0.1), the significant increase also occurred in August, but it increased insignificantly in June and July. The averaged EHTI had insignificant increase in summer and the three months. In general, the EHTD and EHTI increased in most parts of Guizhou province during the period of 1970-2020, this may be related to the changes of them in August.
基金supported by the National Natural Science Foundation of China(Grant No.72264035)。
文摘With China entering the stage of high-quality development,the issue of carbon emission has become a hot research topic.This paper analyzes the different temporal and spatial effects of per capita income on household indirect carbon emissions in western China.Based on the data of Chinese Family Panel Studies(CFPS)in 2016 and 2018 in the western China,this paper uses Regression analysis and Bayesian correlation analysis to study the relationship between per capita income and household indirect carbon emissions.The results showed that the indirect carbon emissions generated by the expenditure on food,housing and household equipment in the household consumption structure in the western China were relatively high.In 2016-2018,the per capita income and per capita household consumption indirect carbon emissions in the western China showed an increasing trend.There was a positive correlation between per capita income and indirect carbon emissions of per capita household consumption,and its correlation was gradually enhanced in time dimension.In the spatial dimension,the household indirect carbon emissions in Yunnan,Qinghai,Guangxi Zhuang and Ningxia in the western China were greatly affected by per capita income,while the household indirect carbon emissions in Guizhou was least affected by per capita income.Finally,the paper puts forward some problems that we should consider in the process of facing the per capita income growth and climate change:the collection of carbon tax,the optimization of household consumption structure,the research and development of low-carbon products,and the differentiated carbon reduction.
文摘Climate change has resulted in serious social-economic ramifications and extremely catastrophic weather events in the world, Tanzania and Zanzibar in particular, with adaptation being the only option to reduce impacts. The study focuses on the influence of climate change and variability on spatio-temporal rainfall and temperature variability and distribution in Zanzibar. The station observation datasets of rainfall, T<sub>max</sub> and T<sub>min</sub> acquired from Tanzania Meteorological Authority (TMA) and the Coordinated Regional Climate Downscaling Experiment program (CORDEX) projected datasets from the Regional climate model HIRHAM5 under driving model ICHEC-EC-EARH, for the three periods of 1991-2020 used as baseline (HS), 2021-2050 as near future (NF) and 2051-2080 far future (FF), under two representative concentration pathways (RCP) of 4.5 and 8.5, were used. The long-term observed T<sub>max</sub> and T<sub>min</sub> were used to produce time series for observing the nature and trends, while the observed rainfall data was used for understanding wet and dry periods, trends and slope (at p ≤ 0.05) using the Standardized Precipitation Index (SPI) and the Mann Kendall test (MK). Moreover, the Quantum Geographic Information System (QGIS) under the Inverse Distance Weighting (IDW) interpolation techniques were used for mapping the three decades of 1991-2000 (hereafter D1), 2001-2010 (hereafter D2) and 2011-2020 (hereafter D3) to analyze periodical spatial rainfall distribution in Zanzibar. As for the projected datasets the Climate Data Operator Commands (CDO), python scripts and Grid analysis and Display System (GrADS) soft-wares were used to process and display the results of the projected datasets of rainfall, T<sub>max</sub> and T<sub>min</sub> for the HS, NF and FF, respectively. The results show that the observed T<sub>max</sub> increased by the rates of 0.035℃ yr<sup>-</sup><sup>1</sup> and 0.0169℃ yr<sup>-</sup><sup>1</sup>, while the T<sub>min</sub> was increased by a rate of 0.064℃ yr<sup>-</sup><sup>1</sup> and 0.104℃ yr<sup>-</sup><sup>1</sup> for Unguja and Pemba, respectively. The temporal distribution of wetness and dryness indices showed a climate shift from near normal to moderate wet during 2005 at Zanzibar Airport, while normal to moderately dry conditions, were observed in Pemba at Matangatuani. The decadal rainfall variability and distributions revealed higher rainfall intensity with an increasing trend and good spatial distribution in D3 from March to May (MAM) and October to December (OND). The projected results for T<sub>max</sub> during MAM and OND depicted higher values ranging from 1.7℃ - 1.8℃ to 1.9℃ - 2.0℃ and 1.5℃ to 2.0℃ in FF compared to NF under both RCPs. Also, higher T<sub>min</sub> values of 1.12℃ - 1.16℃ was projected in FF for MAM and OND under both RCPs. Besides, the rainfall projection generally revealed increased rainfall intensity in the range of 0 - 25 mm for Pemba and declined rainfall in the range of 25 - 50 mm in Unguja under both RCPs in perspectives of both NF and FF. Conclusively the study has shown that the undergoing climate change has posed a significant impact on both rainfall and temperature spatial and temporal distributions in Zanzibar (Unguja and Pemba), with Unguja being projected to have higher rainfall deficits while increasing rainfall strengths in Pemba. Thus, the study calls for more studies and formulation of effective adaptation, strategies and resilience mechanisms to combat the projected climate change impacts especially in the agricultural sector, water and food security.
文摘Spatio-temporal models are valuable tools for disease mapping and understanding the geographical distribution of diseases and temporal dynamics. Spatio-temporal models have been proven empirically to be very complex and this complexity has led many to oversimply and model the spatial and temporal dependencies independently. Unlike common practice, this study formulated a new spatio-temporal model in a Bayesian hierarchical framework that accounts for spatial and temporal dependencies jointly. The spatial and temporal dependencies were dynamically modelled via the matern exponential covariance function. The temporal aspect was captured by the parameters of the exponential with a first-order autoregressive structure. Inferences about the parameters were obtained via Markov Chain Monte Carlo (MCMC) techniques and the spatio-temporal maps were obtained by mapping stable posterior means from the specific location and time from the best model that includes the significant risk factors. The model formulated was fitted to both simulation data and Kenya meningitis incidence data from 2013 to 2019 along with two covariates;Gross County Product (GCP) and average rainfall. The study found that both average rainfall and GCP had a significant positive association with meningitis occurrence. Also, regarding geographical distribution, the spatio-temporal maps showed that meningitis is not evenly distributed across the country as some counties reported a high number of cases compared with other counties.
基金supported by the National Natural Science Foundation of China(Grant Nos.42175099,42027804,42075073)the Innovative Project of Postgraduates in Jiangsu Province in 2023(Grant No.KYCX23_1319)+3 种基金supported by the National Natural Science Foundation of China(Grant No.42205080)the Natural Science Foundation of Sichuan(Grant No.2023YFS0442)the Research Fund of Civil Aviation Flight University of China(Grant No.J2022-037)supported by the National Key Scientific and Technological Infrastructure project“Earth System Science Numerical Simulator Facility”(Earth Lab)。
文摘The process of entrainment-mixing between cumulus clouds and the ambient air is important for the development of cumulus clouds.Accurately obtaining the entrainment rate(λ)is particularly important for its parameterization within the overall cumulus parameterization scheme.In this study,an improved bulk-plume method is proposed by solving the equations of two conserved variables simultaneously to calculateλof cumulus clouds in a large-eddy simulation.The results demonstrate that the improved bulk-plume method is more reliable than the traditional bulk-plume method,becauseλ,as calculated from the improved method,falls within the range ofλvalues obtained from the traditional method using different conserved variables.The probability density functions ofλfor all data,different times,and different heights can be well-fitted by a log-normal distribution,which supports the assumed stochastic entrainment process in previous studies.Further analysis demonstrate that the relationship betweenλand the vertical velocity is better than other thermodynamic/dynamical properties;thus,the vertical velocity is recommended as the primary influencing factor for the parameterization ofλin the future.The results of this study enhance the theoretical understanding ofλand its influencing factors and shed new light on the development ofλparameterization.
基金Supported by Open Fund of Key Laboratory of Plant Nutrition and Fertilizer,Ministry of Agriculture(2013-1)Guangxi Natural Science Foundation for Youths(2011GXNSFB018026)+2 种基金Guangxi Scientific Research and Technological Development Program(14125008-2-15)Scientific and Technological Development Fund for Youths of Guangxi Academy of Agricultural Sciences(2013YQ18,2013YF06)the State Key Program of National Natural Science of China(U1033004-06)~~
文摘The coupling of water and fertilizer is the only way for high yield, efficiency, sugar on sugarcane. On sugarcane production, the spatial and temporal controlling technology of fertigation is an important direction of the sustainable and healthy development of ecological agriculture in cane area of China. This paper reviews main achievements and advances on the coupling effect of water and fertilizer on sugarcane from time and space at home or abroad in recent years, analyzes the application prospects of the temporal and spatial coupling effect of water and fertilizer on sugarcane and puts forward some problems which need further research in future.
基金Supported by National Scientific and Technological Supporting Project(2006BAD20B05)~~
文摘A comprehensive analysis on the change of the total grain production and the temporal and spatial change of three main crops production(including wheat,maize and rice),as well as the transfer trace of the center gravity of grain production in China were analyzed to reveal the overall developing trend of the grain production,explore the reasons and finally propose the corresponding suggestions and strategies to cope with the situation.
基金Supported by The Project of Shanghai Scientific and Technological Commission(08DZ1203102,08dz1203002,08dz1203101)
文摘To understand the spatial and temporal variation characteristics of blue algae in summer in Lake Dianshan,the phytoplankton in Lake Dianshan from June to September in 2009 was surveyed. It found 11 genera and 28 species blue algae in total. Microcystis,Oscillatoria and Chroococcus were the main composition communities of blue algae in Lake Dianshan in summer. In the survey period,the average density of blue algae in Lake Dianshan was 16.48×106 cells/L which changed during 1.01×106-59.76×106 cells/L. The characteristics were:September > July > August > June. The mass propagation and aggregation of Microcystis in September caused that the water blooms phenomenon in the partial water areas was serious. In the space,the average density of blue algae in the west and southwest parts of Lake Dianshan was bigger than in the east and southeast. When the nutritive matter was sufficient,the temperature was the main factor which affected the generation and disappearance of blue algae water blooms. The wind direction was also an important factor which affected the distribution of blue algae.