Latent variable models can effectively determine the condition of essential rotating machinery without needing labeled data.These models analyze vibration data via an unsupervised learning strategy.Temporal preservati...Latent variable models can effectively determine the condition of essential rotating machinery without needing labeled data.These models analyze vibration data via an unsupervised learning strategy.Temporal preservation is necessary to obtain an informative latent manifold for the fault diagnosis task.In a temporalpreserving context,two approaches exist to develop a condition-monitoring methodology:offline and online.For latent variable models,the available training modes are not different.While many traditional methods use offline training,online training can dynamically adjust the latent manifold,possibly leading to better fault signature extraction from the vibration data.This study explores online training using temporal-preserving latent variable models.Within online training,there are two main methods:one focuses on reconstructing data and the other on interpreting the data components.Both are considered to evaluate how they diagnose faults over time.Using two experimental datasets,the study confirms that models from both training modes can detect changes in machinery health and identify faults even under varying conditions.Importantly,the complementarity of offline and online models is emphasized,reassuring their versatility in fault diagnostics.Understanding the implications of the training approach and the available model formulations is crucial for further research in latent variable modelbased fault diagnostics.展开更多
In this paper, we studied the traveling wave solutions of a SIR epidemic model with spatial-temporal delay. We proved that this result is determined by the basic reproduction number R0and the minimum wave speed c*of t...In this paper, we studied the traveling wave solutions of a SIR epidemic model with spatial-temporal delay. We proved that this result is determined by the basic reproduction number R0and the minimum wave speed c*of the corresponding ordinary differential equations. The methods used in this paper are primarily the Schauder fixed point theorem and comparison principle. We have proved that when R0>1and c>c*, the model has a non-negative and non-trivial traveling wave solution. However, for R01and c≥0or R0>1and 0cc*, the model does not have a traveling wave solution.展开更多
With the popularity of 5G and the rapid development of mobile terminals,an endless stream of short video software exists.Browsing short-form mobile video in fragmented time has become the mainstream of user’s life.He...With the popularity of 5G and the rapid development of mobile terminals,an endless stream of short video software exists.Browsing short-form mobile video in fragmented time has become the mainstream of user’s life.Hence,designing an efficient short video recommendation method has become important for major network platforms to attract users and satisfy their requirements.Nevertheless,the explosive growth of data leads to the low efficiency of the algorithm,which fails to distill users’points of interest on one hand effectively.On the other hand,integrating user preferences and the content of items urgently intensify the requirements for platform recommendation.In this paper,we propose a collaborative filtering algorithm,integrating time context information and user context,which pours attention into expanding and discovering user interest.In the first place,we introduce the temporal context information into the typical collaborative filtering algorithm,and leverage the popularity penalty function to weight the similarity between recommended short videos and the historical short videos.There remains one more point.We also introduce the user situation into the traditional collaborative filtering recommendation algorithm,considering the context information of users in the generation recommendation stage,and weight the recommended short-formvideos of candidates.At last,a diverse approach is used to generate a Top-K recommendation list for users.And through a case study,we illustrate the accuracy and diversity of the proposed method.展开更多
User identity linkage(UIL)refers to identifying user accounts belonging to the same identity across different social media platforms.Most of the current research is based on text analysis,which fails to fully explore ...User identity linkage(UIL)refers to identifying user accounts belonging to the same identity across different social media platforms.Most of the current research is based on text analysis,which fails to fully explore the rich image resources generated by users,and the existing attempts touch on the multimodal domain,but still face the challenge of semantic differences between text and images.Given this,we investigate the UIL task across different social media platforms based on multimodal user-generated contents(UGCs).We innovatively introduce the efficient user identity linkage via aligned multi-modal features and temporal correlation(EUIL)approach.The method first generates captions for user-posted images with the BLIP model,alleviating the problem of missing textual information.Subsequently,we extract aligned text and image features with the CLIP model,which closely aligns the two modalities and significantly reduces the semantic gap.Accordingly,we construct a set of adapter modules to integrate the multimodal features.Furthermore,we design a temporal weight assignment mechanism to incorporate the temporal dimension of user behavior.We evaluate the proposed scheme on the real-world social dataset TWIN,and the results show that our method reaches 86.39%accuracy,which demonstrates the excellence in handling multimodal data,and provides strong algorithmic support for UIL.展开更多
Social networks like Facebook, X (Twitter), and LinkedIn provide an interaction and communication environment for users to generate and share content, allowing for the observation of social behaviours in the digital w...Social networks like Facebook, X (Twitter), and LinkedIn provide an interaction and communication environment for users to generate and share content, allowing for the observation of social behaviours in the digital world. These networks can be viewed as a collection of nodes and edges, where users and their interactions are represented as nodes and the connections between them as edges. Understanding the factors that contribute to the formation of these edges is important for studying network structure and processes. This knowledge can be applied to various areas such as identifying communities, recommending friends, and targeting online advertisements. Several factors, including node popularity and friends-of-friends relationships, influence edge formation and network growth. This research focuses on the temporal activity of nodes and its impact on edge formation. Specifically, the study examines how the minimum age of friends-of-friends edges and the average age of all edges connected to potential target nodes influence the formation of network edges. Discrete choice analysis is used to analyse the combined effect of these temporal factors and other well-known attributes like node degree (i.e., the number of connections a node has) and network distance between nodes. The findings reveal that temporal properties have a similar impact as network proximity in predicting the creation of links. By incorporating temporal features into the models, the accuracy of link prediction can be further improved.展开更多
Spatio-temporal models are valuable tools for disease mapping and understanding the geographical distribution of diseases and temporal dynamics. Spatio-temporal models have been proven empirically to be very complex a...Spatio-temporal models are valuable tools for disease mapping and understanding the geographical distribution of diseases and temporal dynamics. Spatio-temporal models have been proven empirically to be very complex and this complexity has led many to oversimply and model the spatial and temporal dependencies independently. Unlike common practice, this study formulated a new spatio-temporal model in a Bayesian hierarchical framework that accounts for spatial and temporal dependencies jointly. The spatial and temporal dependencies were dynamically modelled via the matern exponential covariance function. The temporal aspect was captured by the parameters of the exponential with a first-order autoregressive structure. Inferences about the parameters were obtained via Markov Chain Monte Carlo (MCMC) techniques and the spatio-temporal maps were obtained by mapping stable posterior means from the specific location and time from the best model that includes the significant risk factors. The model formulated was fitted to both simulation data and Kenya meningitis incidence data from 2013 to 2019 along with two covariates;Gross County Product (GCP) and average rainfall. The study found that both average rainfall and GCP had a significant positive association with meningitis occurrence. Also, regarding geographical distribution, the spatio-temporal maps showed that meningitis is not evenly distributed across the country as some counties reported a high number of cases compared with other counties.展开更多
To solve the problems of rural revitalization performance research,a quantitative model of non-oriented range-wide EBM(Epsilon-Based Measure)-GML(Global-Malmquist)based on VRS(Variable Returns to Scale)conditions incl...To solve the problems of rural revitalization performance research,a quantitative model of non-oriented range-wide EBM(Epsilon-Based Measure)-GML(Global-Malmquist)based on VRS(Variable Returns to Scale)conditions including non-desired outputs is constructed.A comprehensive spatio-temporal heterogeneity research index system of rural revitalization performance is also constructed.Taking the typical rural in Chifeng City as an example,the panel data from 2016-2020 are selected for empirical analysis,the conclusions and countermeasures are suggested as follows:1)In general,the rural revitalization performance of Chifeng City increases significantly during the five-year period,with significant spatio-temporal heterogeneity.The overall analysis shows that the overall performance value of rural revitalization in Chifeng City is 0.683 from 2016 to 2020.The highest performance value is 1 and the lowest performance value is 0.389.The performance growth rate increases year by year,with an average annual growth rate of 4.46%.2)From 2016 to 2020,the GML index of rural revitalization performance in Chifeng City is 1.174,showing an increasing trend.Based on the range of change of GML index,Chifeng City can be classified into three types:Continuous improvement,fluctuating improvement and fluctuating decline.3)Niujiayingzi,Guandongche,Zhaidamu,and Qiangangtai rural have the highest degree of technological progress.展开更多
In order to find the completeness threshold which offers a practical method of making bounded model checking complete, the over-approximation for the complete threshold is presented. First, a linear logic of knowledge...In order to find the completeness threshold which offers a practical method of making bounded model checking complete, the over-approximation for the complete threshold is presented. First, a linear logic of knowledge is introduced into the past tense operator, and then a new temporal epistemic logic LTLKP is obtained, so that LTLKP can naturally and precisely describe the system's reliability. Secondly, a set of prior algorithms are designed to calculate the maximal reachable depth and the length of the longest of loop free paths in the structure based on the graph structure theory. Finally, some theorems are proposed to show how to approximate the complete threshold with the diameter and recurrence diameter. The proposed work resolves the completeness threshold problem so that the completeness of bounded model checking can be guaranteed.展开更多
With a focus on the difficulty of quantitatively describing the degree of nonuniformity of temporal and spatial distributions of water resources, quantitative research was carried out on the temporal and spatial distr...With a focus on the difficulty of quantitatively describing the degree of nonuniformity of temporal and spatial distributions of water resources, quantitative research was carried out on the temporal and spatial distribution characteristics of water resources in Guangdong Province from 1956 to 2000 based on a cloud model. The spatial variation of the temporal distribution characteristics and the temporal variation of the spatial distribution characteristics were both analyzed. In addition, the relationships between the numerical characteristics of the cloud model of temporal and spatial distributions of water resources and precipitation were also studied. The results show that, using a cloud model, it is possible to intuitively describe the temporal and spatial distribution characteristics of water resources in cloud images. Water resources in Guangdong Province and their temporal and spatial distribution characteristics are differentiated by their geographic locations. Downstream and coastal areas have a larger amount of water resources with greater uniformity and stronger stability in terms of temporal distribution. Regions with more precipitation possess larger amounts of water resources, and years with more precipitation show greater nonuniformity in the spatial distribution of water resources. The correlation between the nonuniformity of the temporal distribution and local precipitation is small, and no correlation is found between the stability of the nonuniformity of the temporal and spatial distributions of water resources and precipitation. The amount of water resources in Guangdong Province shows an increasing trend from 1956 to 2000, the nonuniformity of the spatial distribution of water resources declines, and the stability of the nonuniformity of the spatial distribution of water resources is enhanced.展开更多
Model checking based on linear temporal logic reduces the false negative rate of misuse detection.However,linear temporal logic formulae cannot be used to describe concurrent attacks and piecewise attacks.So there is ...Model checking based on linear temporal logic reduces the false negative rate of misuse detection.However,linear temporal logic formulae cannot be used to describe concurrent attacks and piecewise attacks.So there is still a high rate of false negatives in detecting these complex attack patterns.To solve this problem,we use interval temporal logic formulae to describe concurrent attacks and piecewise attacks.On this basis,we formalize a novel algorithm for intrusion detection based on model checking interval temporal logic.Compared with the method based on model checking linear temporal logic,the new algorithm can find unknown succinct attacks.The simulation results show that the new method can effectively reduce the false negative rate of concurrent attacks and piecewise attacks.展开更多
There are mainly four kinds of models to record and deal with historical information. By taking them as reference, the spatio-temporal model based on event semantics is proposed. In this model, according to the way fo...There are mainly four kinds of models to record and deal with historical information. By taking them as reference, the spatio-temporal model based on event semantics is proposed. In this model, according to the way for describing an event, all the information are divided into five domains. This paper describes the model by using the land parcel change in the cadastral information system, and expounds the model by using five tables corresponding to the five domains. With the aid of this model, seven examples are given on historical query, trace back and recurrence. This model can be implemented either in the extended relational database or in the object-oriented database.展开更多
This paper presents a conceptual data model, the STA-model, for handling spatial, temporal and attribute aspects of objects in GIS. The model is developed on the basis of object-oriented modeling approach. This model ...This paper presents a conceptual data model, the STA-model, for handling spatial, temporal and attribute aspects of objects in GIS. The model is developed on the basis of object-oriented modeling approach. This model includes two major parts: (a) modeling the signal objects by STA-object elements, and (b) modeling relationships between STA-objects. As an example, the STA-model is applied for modeling land cover change data with spatial, temporal and attribute components.展开更多
ISDTM, based on an augmented Allen's interval temporal logic (ITL) and first-order predicate calculus, is a formal temporal model for representing intrusion signatures. It is augmented with some real time extensio...ISDTM, based on an augmented Allen's interval temporal logic (ITL) and first-order predicate calculus, is a formal temporal model for representing intrusion signatures. It is augmented with some real time extensions which enhance the expressivity. Intrusion scenarios usually are the set of events and system states, where- the temporal sequence is their basic relation. Intrusion signatures description, therefore , is to represent such temporal relations in a sense. While representing these signatures, ISDTM decomposes the intrusion process into the sequence of events according to their relevant intervals, and then specifies network states in these Intervals. The uncertain intrusion signatures as well as basic temporal modes of events, which consist of the parallel mode, the sequential mode and the hybrid mode, can be succinctly and naturally represented in ISDTM. Mode chart is the visualization of intrusion signatures in ISDTM, which makes the formulas more readable. The intrusion signatures descriptions in ISDTM have advantages of compact construct, concise syntax, scalability and easy implementation.展开更多
Root-cause identification plays a vital role in business decision making by providing effective future directions for the organizations.Aspect extraction and sentiment extraction plays a vital role in identifying the ...Root-cause identification plays a vital role in business decision making by providing effective future directions for the organizations.Aspect extraction and sentiment extraction plays a vital role in identifying the rootcauses.This paper proposes the Ensemble based temporal weighting and pareto ranking(ETP)model for Root-cause identification.Aspect extraction is performed based on rules and is followed by opinion identification using the proposed boosted ensemble model.The obtained aspects are validated and ranked using the proposed aspect weighing scheme.Pareto-rule based aspect selection is performed as the final selection mechanism and the results are presented for business decision making.Experiments were performed with the standard five product benchmark dataset.Performances on all five product reviews indicate the effective performance of the proposed model.Comparisons are performed using three standard state-of-the-art models and effectiveness is measured in terms of F-Measure and Detection rates.The results indicate improved performances exhibited by the proposed model with an increase in F-Measure levels at 1%–15%and detection rates at 4%–24%compared to the state-of-the-art models.展开更多
In this paper,a methodology for Leaf Area Index(LAI) estimating was proposed by assimilating remote sensed data into crop model based on temporal and spatial knowledge.Firstly,sensitive parameters of crop model were c...In this paper,a methodology for Leaf Area Index(LAI) estimating was proposed by assimilating remote sensed data into crop model based on temporal and spatial knowledge.Firstly,sensitive parameters of crop model were calibrated by Shuffled Complex Evolution method developed at the University of Arizona(SCE-UA) optimization method based on phenological information,which is called temporal knowledge.The calibrated crop model will be used as the forecast operator.Then,the Taylor′s mean value theorem was applied to extracting spatial information from the Moderate Resolution Imaging Spectroradiometer(MODIS) multi-scale data,which was used to calibrate the LAI inversion results by A two-layer Canopy Reflectance Model(ACRM) model.The calibrated LAI result was used as the observation operator.Finally,an Ensemble Kalman Filter(EnKF) was used to assimilate MODIS data into crop model.The results showed that the method could significantly improve the estimation accuracy of LAI and the simulated curves of LAI more conform to the crop growth situation closely comparing with MODIS LAI products.The root mean square error(RMSE) of LAI calculated by assimilation is 0.9185 which is reduced by 58.7% compared with that by simulation(0.3795),and before and after assimilation the mean error is reduced by 92.6% which is from 0.3563 to 0.0265.All these experiments indicated that the methodology proposed in this paper is reasonable and accurate for estimating crop LAI.展开更多
Temporal and spatial scales play important roles in fishery ecology,and an inappropriate spatio-temporal scale may result in large errors in modeling fish distribution.The objective of this study is to evaluate the ro...Temporal and spatial scales play important roles in fishery ecology,and an inappropriate spatio-temporal scale may result in large errors in modeling fish distribution.The objective of this study is to evaluate the roles of spatio-temporal scales in habitat suitability modeling,with the western stock of winter-spring cohort of neon flying squid (Ornmastrephes bartramii) in the northwest Pacific Ocean as an example.In this study,the fishery-dependent data from the Chinese Mainland Squid Jigging Technical Group and sea surface temperature (SST) from remote sensing during August to October of 2003-2008 were used.We evaluated the differences in a habitat suitability index model resulting from aggregating data with 36 different spatial scales with a combination of three latitude scales (0.5°,1 ° and 2°),four longitude scales (0.5°,1°,2° and 4°),and three temporal scales (week,fortnight,and month).The coefficients of variation (CV) of the weekly,biweekly and monthly suitability index (SI) were compared to determine which temporal and spatial scales of SI model are more precise.This study shows that the optimal temporal and spatial scales with the lowest CV are month,and 0.5° latitude and 0.5° longitude for O.bartramii in the northwest Pacific Ocean.This suitability index model developed with an optimal scale can be cost-effective in improving forecasting fishing ground and requires no excessive sampling efforts.We suggest that the uncertainty associated with spatial and temporal scales used in data aggregations needs to be considered in habitat suitability modeling.展开更多
A new temporal gravity field model called WHU-Grace01s solely recovered from Gravity Recovery and Climate Experiment (GRACE) K-Band Range Rate (KBRR) data based on dynamic integral approach is presented in this pa...A new temporal gravity field model called WHU-Grace01s solely recovered from Gravity Recovery and Climate Experiment (GRACE) K-Band Range Rate (KBRR) data based on dynamic integral approach is presented in this paper. After meticulously preprocessing of the GRACE KBRR data, the root mean square of its post residuals is about 0.2 micrometers per second, and seventy-two monthly temporal solutions truncated to degree and order 60 are computed for the period from January 2003 to December 2008. After applying the combi- nation filter in WHU-Grace01s, the global temporal signals show obvious periodical change rules in the large-scale fiver basins. In terms of the degree variance, our solution is smaller at high degrees, and shows a good consistency at the rest of degrees with the Release 05 models from Center for Space Research (CSR), GeoForschungsZentrum Potsdam (GFZ) and Jet Pro- pulsion Laboratory 0PL). Compared with other published models in terms of equivalent water height distribution, our solution is consistent with those published by CSR, GFZ, JPL, Delft institute of Earth Observation and Space system (DEOS), Tongji University (Tongji), Institute of Theoretical Geodesy (ITG), Astronomical Institute in University of Bern (AIUB) and Groupe de Recherche de Geodesie Spatiale (GRGS}, which indicates that the accuracy of WHU-Grace01s has a good consistency with the previously published GRACE solutions.展开更多
This study aimed to investigate the effects of temporal variability on the optimization of the Hydrologiska ByrS.ns Vattenbalansavedlning (HBV) model, as well as the calibration performance using manual optimization...This study aimed to investigate the effects of temporal variability on the optimization of the Hydrologiska ByrS.ns Vattenbalansavedlning (HBV) model, as well as the calibration performance using manual optimization and average parameter values. By applying the HBV model to the Jiangwan Catchment, whose geological features include lots of cracks and gaps, simulations under various schemes were developed: short, medium-length, and long temporal calibrations. The results show that, with long temporal calibration, the objective function values of the Nash- Sutcliffe efficiency coefficient (NSE), relative error (RE), root mean square error (RMSE), and high flow ratio generally deliver a preferable simulation. Although NSE and RMSE are relatively stable with different temporal scales, significant improvements to RE and the high flow ratio are seen with longer temporal calibration. It is also noted that use of average parameter values does not lead to better simulation results compared with manual optimization. With medium-length temporal calibration, manual optimization delivers the best simulation results, with NSE, RE, RMSE, and the high flow ratio being 0.563 6, 0.122 3, 0.978 8, and 0.854 7, respectively; and calibration using average parameter values delivers NSE, RE, RMSE, and the high flow ratio of 0.481 1, 0.467 6, 1.021 0, and 2.784 0, respectively. Similar behavior is found with long temporal calibration, when NSE, RE, RMSE, and the high flow ratio using manual optimization are 0.525 3, -0.069 2, 1.058 0, and 0.980 0, respectively, as compared with 0.490 3, 0.224 8, 1.096 2, and 0.547 9, respectively, using average parameter values. This study shows that selection of longer periods of temooral calibration in hvdrolouical analysis delivers better simulation in general for water balance analysis.展开更多
A new method was put forward to make up the three-dimensional deposit model, and the spatiotemporal models of open-pit with temporal dynamics were also studied combined with the corrected models of multilevel ground s...A new method was put forward to make up the three-dimensional deposit model, and the spatiotemporal models of open-pit with temporal dynamics were also studied combined with the corrected models of multilevel ground states so as to bring the three-dimensional open-pit model at different time and its model serial formed from the evolvement into the management of temporal dimension in order to realize the spatial three-dimension and temporal dynamic for the mining management in open-pits,which makes this model easy to query and analyze 3-D information, also help surface mining replaying and stope evolution forecasting. Finally, the time-spatial model was established to show the dynamic mining on some open-pit under the windows XP and VC++ environment.展开更多
A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a force...A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a forced aligned Hidden Markov Model(HMM) state sequence obtained from the GMM-based acoustic model. Therefore, it requires a long computation time for training both the GMM-based acoustic model and a deep learning-based acoustic model. In order to solve this problem, an acoustic model using CTC algorithm is proposed. CTC algorithm does not require the GMM-based acoustic model because it does not use the forced aligned HMM state sequence. However, previous works on a LSTM RNN-based acoustic model using CTC used a small-scale training corpus. In this paper, the LSTM RNN-based acoustic model using CTC is trained on a large-scale training corpus and its performance is evaluated. The implemented acoustic model has a performance of 6.18% and 15.01% in terms of Word Error Rate(WER) for clean speech and noisy speech, respectively. This is similar to a performance of the acoustic model based on the hybrid method.展开更多
文摘Latent variable models can effectively determine the condition of essential rotating machinery without needing labeled data.These models analyze vibration data via an unsupervised learning strategy.Temporal preservation is necessary to obtain an informative latent manifold for the fault diagnosis task.In a temporalpreserving context,two approaches exist to develop a condition-monitoring methodology:offline and online.For latent variable models,the available training modes are not different.While many traditional methods use offline training,online training can dynamically adjust the latent manifold,possibly leading to better fault signature extraction from the vibration data.This study explores online training using temporal-preserving latent variable models.Within online training,there are two main methods:one focuses on reconstructing data and the other on interpreting the data components.Both are considered to evaluate how they diagnose faults over time.Using two experimental datasets,the study confirms that models from both training modes can detect changes in machinery health and identify faults even under varying conditions.Importantly,the complementarity of offline and online models is emphasized,reassuring their versatility in fault diagnostics.Understanding the implications of the training approach and the available model formulations is crucial for further research in latent variable modelbased fault diagnostics.
文摘In this paper, we studied the traveling wave solutions of a SIR epidemic model with spatial-temporal delay. We proved that this result is determined by the basic reproduction number R0and the minimum wave speed c*of the corresponding ordinary differential equations. The methods used in this paper are primarily the Schauder fixed point theorem and comparison principle. We have proved that when R0>1and c>c*, the model has a non-negative and non-trivial traveling wave solution. However, for R01and c≥0or R0>1and 0cc*, the model does not have a traveling wave solution.
文摘With the popularity of 5G and the rapid development of mobile terminals,an endless stream of short video software exists.Browsing short-form mobile video in fragmented time has become the mainstream of user’s life.Hence,designing an efficient short video recommendation method has become important for major network platforms to attract users and satisfy their requirements.Nevertheless,the explosive growth of data leads to the low efficiency of the algorithm,which fails to distill users’points of interest on one hand effectively.On the other hand,integrating user preferences and the content of items urgently intensify the requirements for platform recommendation.In this paper,we propose a collaborative filtering algorithm,integrating time context information and user context,which pours attention into expanding and discovering user interest.In the first place,we introduce the temporal context information into the typical collaborative filtering algorithm,and leverage the popularity penalty function to weight the similarity between recommended short videos and the historical short videos.There remains one more point.We also introduce the user situation into the traditional collaborative filtering recommendation algorithm,considering the context information of users in the generation recommendation stage,and weight the recommended short-formvideos of candidates.At last,a diverse approach is used to generate a Top-K recommendation list for users.And through a case study,we illustrate the accuracy and diversity of the proposed method.
文摘User identity linkage(UIL)refers to identifying user accounts belonging to the same identity across different social media platforms.Most of the current research is based on text analysis,which fails to fully explore the rich image resources generated by users,and the existing attempts touch on the multimodal domain,but still face the challenge of semantic differences between text and images.Given this,we investigate the UIL task across different social media platforms based on multimodal user-generated contents(UGCs).We innovatively introduce the efficient user identity linkage via aligned multi-modal features and temporal correlation(EUIL)approach.The method first generates captions for user-posted images with the BLIP model,alleviating the problem of missing textual information.Subsequently,we extract aligned text and image features with the CLIP model,which closely aligns the two modalities and significantly reduces the semantic gap.Accordingly,we construct a set of adapter modules to integrate the multimodal features.Furthermore,we design a temporal weight assignment mechanism to incorporate the temporal dimension of user behavior.We evaluate the proposed scheme on the real-world social dataset TWIN,and the results show that our method reaches 86.39%accuracy,which demonstrates the excellence in handling multimodal data,and provides strong algorithmic support for UIL.
文摘Social networks like Facebook, X (Twitter), and LinkedIn provide an interaction and communication environment for users to generate and share content, allowing for the observation of social behaviours in the digital world. These networks can be viewed as a collection of nodes and edges, where users and their interactions are represented as nodes and the connections between them as edges. Understanding the factors that contribute to the formation of these edges is important for studying network structure and processes. This knowledge can be applied to various areas such as identifying communities, recommending friends, and targeting online advertisements. Several factors, including node popularity and friends-of-friends relationships, influence edge formation and network growth. This research focuses on the temporal activity of nodes and its impact on edge formation. Specifically, the study examines how the minimum age of friends-of-friends edges and the average age of all edges connected to potential target nodes influence the formation of network edges. Discrete choice analysis is used to analyse the combined effect of these temporal factors and other well-known attributes like node degree (i.e., the number of connections a node has) and network distance between nodes. The findings reveal that temporal properties have a similar impact as network proximity in predicting the creation of links. By incorporating temporal features into the models, the accuracy of link prediction can be further improved.
文摘Spatio-temporal models are valuable tools for disease mapping and understanding the geographical distribution of diseases and temporal dynamics. Spatio-temporal models have been proven empirically to be very complex and this complexity has led many to oversimply and model the spatial and temporal dependencies independently. Unlike common practice, this study formulated a new spatio-temporal model in a Bayesian hierarchical framework that accounts for spatial and temporal dependencies jointly. The spatial and temporal dependencies were dynamically modelled via the matern exponential covariance function. The temporal aspect was captured by the parameters of the exponential with a first-order autoregressive structure. Inferences about the parameters were obtained via Markov Chain Monte Carlo (MCMC) techniques and the spatio-temporal maps were obtained by mapping stable posterior means from the specific location and time from the best model that includes the significant risk factors. The model formulated was fitted to both simulation data and Kenya meningitis incidence data from 2013 to 2019 along with two covariates;Gross County Product (GCP) and average rainfall. The study found that both average rainfall and GCP had a significant positive association with meningitis occurrence. Also, regarding geographical distribution, the spatio-temporal maps showed that meningitis is not evenly distributed across the country as some counties reported a high number of cases compared with other counties.
基金Research on Local Knowledge Mapping and Planning Application Strategies of Traditional Rural in Qinba Mountains(No.19YJAZH107)Humanities and Social Sciences Research Planning Fund,Ministry of Education,China.
文摘To solve the problems of rural revitalization performance research,a quantitative model of non-oriented range-wide EBM(Epsilon-Based Measure)-GML(Global-Malmquist)based on VRS(Variable Returns to Scale)conditions including non-desired outputs is constructed.A comprehensive spatio-temporal heterogeneity research index system of rural revitalization performance is also constructed.Taking the typical rural in Chifeng City as an example,the panel data from 2016-2020 are selected for empirical analysis,the conclusions and countermeasures are suggested as follows:1)In general,the rural revitalization performance of Chifeng City increases significantly during the five-year period,with significant spatio-temporal heterogeneity.The overall analysis shows that the overall performance value of rural revitalization in Chifeng City is 0.683 from 2016 to 2020.The highest performance value is 1 and the lowest performance value is 0.389.The performance growth rate increases year by year,with an average annual growth rate of 4.46%.2)From 2016 to 2020,the GML index of rural revitalization performance in Chifeng City is 1.174,showing an increasing trend.Based on the range of change of GML index,Chifeng City can be classified into three types:Continuous improvement,fluctuating improvement and fluctuating decline.3)Niujiayingzi,Guandongche,Zhaidamu,and Qiangangtai rural have the highest degree of technological progress.
基金The National Natural Science Foundation of China (No.10974093)the Scientific Research Foundation for Senior Personnel of Jiangsu University (No.07JDG014)the Natural Science Foundation of Higher Education Institutions of Jiangsu Province (No.08KJD520015)
文摘In order to find the completeness threshold which offers a practical method of making bounded model checking complete, the over-approximation for the complete threshold is presented. First, a linear logic of knowledge is introduced into the past tense operator, and then a new temporal epistemic logic LTLKP is obtained, so that LTLKP can naturally and precisely describe the system's reliability. Secondly, a set of prior algorithms are designed to calculate the maximal reachable depth and the length of the longest of loop free paths in the structure based on the graph structure theory. Finally, some theorems are proposed to show how to approximate the complete threshold with the diameter and recurrence diameter. The proposed work resolves the completeness threshold problem so that the completeness of bounded model checking can be guaranteed.
基金supported by the National Science and Technology Major Project of Water Pollution Control and Treatment(Grants No.2014ZX07405002,2012ZX07506007,2012ZX07506006,and 2012ZX07506002)the Natural Science Foundation of the Anhui Higher Education Institutions of China(Grant No.KJ2016A868)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘With a focus on the difficulty of quantitatively describing the degree of nonuniformity of temporal and spatial distributions of water resources, quantitative research was carried out on the temporal and spatial distribution characteristics of water resources in Guangdong Province from 1956 to 2000 based on a cloud model. The spatial variation of the temporal distribution characteristics and the temporal variation of the spatial distribution characteristics were both analyzed. In addition, the relationships between the numerical characteristics of the cloud model of temporal and spatial distributions of water resources and precipitation were also studied. The results show that, using a cloud model, it is possible to intuitively describe the temporal and spatial distribution characteristics of water resources in cloud images. Water resources in Guangdong Province and their temporal and spatial distribution characteristics are differentiated by their geographic locations. Downstream and coastal areas have a larger amount of water resources with greater uniformity and stronger stability in terms of temporal distribution. Regions with more precipitation possess larger amounts of water resources, and years with more precipitation show greater nonuniformity in the spatial distribution of water resources. The correlation between the nonuniformity of the temporal distribution and local precipitation is small, and no correlation is found between the stability of the nonuniformity of the temporal and spatial distributions of water resources and precipitation. The amount of water resources in Guangdong Province shows an increasing trend from 1956 to 2000, the nonuniformity of the spatial distribution of water resources declines, and the stability of the nonuniformity of the spatial distribution of water resources is enhanced.
基金supported by National Natural Science Foundation of China under Grant No. 61003079
文摘Model checking based on linear temporal logic reduces the false negative rate of misuse detection.However,linear temporal logic formulae cannot be used to describe concurrent attacks and piecewise attacks.So there is still a high rate of false negatives in detecting these complex attack patterns.To solve this problem,we use interval temporal logic formulae to describe concurrent attacks and piecewise attacks.On this basis,we formalize a novel algorithm for intrusion detection based on model checking interval temporal logic.Compared with the method based on model checking linear temporal logic,the new algorithm can find unknown succinct attacks.The simulation results show that the new method can effectively reduce the false negative rate of concurrent attacks and piecewise attacks.
文摘There are mainly four kinds of models to record and deal with historical information. By taking them as reference, the spatio-temporal model based on event semantics is proposed. In this model, according to the way for describing an event, all the information are divided into five domains. This paper describes the model by using the land parcel change in the cadastral information system, and expounds the model by using five tables corresponding to the five domains. With the aid of this model, seven examples are given on historical query, trace back and recurrence. This model can be implemented either in the extended relational database or in the object-oriented database.
文摘This paper presents a conceptual data model, the STA-model, for handling spatial, temporal and attribute aspects of objects in GIS. The model is developed on the basis of object-oriented modeling approach. This model includes two major parts: (a) modeling the signal objects by STA-object elements, and (b) modeling relationships between STA-objects. As an example, the STA-model is applied for modeling land cover change data with spatial, temporal and attribute components.
基金the National Natural Science Foundation of China(60073074)
文摘ISDTM, based on an augmented Allen's interval temporal logic (ITL) and first-order predicate calculus, is a formal temporal model for representing intrusion signatures. It is augmented with some real time extensions which enhance the expressivity. Intrusion scenarios usually are the set of events and system states, where- the temporal sequence is their basic relation. Intrusion signatures description, therefore , is to represent such temporal relations in a sense. While representing these signatures, ISDTM decomposes the intrusion process into the sequence of events according to their relevant intervals, and then specifies network states in these Intervals. The uncertain intrusion signatures as well as basic temporal modes of events, which consist of the parallel mode, the sequential mode and the hybrid mode, can be succinctly and naturally represented in ISDTM. Mode chart is the visualization of intrusion signatures in ISDTM, which makes the formulas more readable. The intrusion signatures descriptions in ISDTM have advantages of compact construct, concise syntax, scalability and easy implementation.
文摘Root-cause identification plays a vital role in business decision making by providing effective future directions for the organizations.Aspect extraction and sentiment extraction plays a vital role in identifying the rootcauses.This paper proposes the Ensemble based temporal weighting and pareto ranking(ETP)model for Root-cause identification.Aspect extraction is performed based on rules and is followed by opinion identification using the proposed boosted ensemble model.The obtained aspects are validated and ranked using the proposed aspect weighing scheme.Pareto-rule based aspect selection is performed as the final selection mechanism and the results are presented for business decision making.Experiments were performed with the standard five product benchmark dataset.Performances on all five product reviews indicate the effective performance of the proposed model.Comparisons are performed using three standard state-of-the-art models and effectiveness is measured in terms of F-Measure and Detection rates.The results indicate improved performances exhibited by the proposed model with an increase in F-Measure levels at 1%–15%and detection rates at 4%–24%compared to the state-of-the-art models.
基金Under the auspices of Major State Basic Research Development Program of China(No.2007CB714407)National Natural Science Foundation of China(No.40801070)Action Plan for West Development Program of Chinese Academy of Sciences(No.KZCX2-XB2-09)
文摘In this paper,a methodology for Leaf Area Index(LAI) estimating was proposed by assimilating remote sensed data into crop model based on temporal and spatial knowledge.Firstly,sensitive parameters of crop model were calibrated by Shuffled Complex Evolution method developed at the University of Arizona(SCE-UA) optimization method based on phenological information,which is called temporal knowledge.The calibrated crop model will be used as the forecast operator.Then,the Taylor′s mean value theorem was applied to extracting spatial information from the Moderate Resolution Imaging Spectroradiometer(MODIS) multi-scale data,which was used to calibrate the LAI inversion results by A two-layer Canopy Reflectance Model(ACRM) model.The calibrated LAI result was used as the observation operator.Finally,an Ensemble Kalman Filter(EnKF) was used to assimilate MODIS data into crop model.The results showed that the method could significantly improve the estimation accuracy of LAI and the simulated curves of LAI more conform to the crop growth situation closely comparing with MODIS LAI products.The root mean square error(RMSE) of LAI calculated by assimilation is 0.9185 which is reduced by 58.7% compared with that by simulation(0.3795),and before and after assimilation the mean error is reduced by 92.6% which is from 0.3563 to 0.0265.All these experiments indicated that the methodology proposed in this paper is reasonable and accurate for estimating crop LAI.
基金funded by National High Technology Research and Development Program of China (863 Program,2012AA092303)Project of Shanghai Science and Technology Innovation (12231203900)+2 种基金Industrialization Program of National Development and Reform Commission (2159999)National Science and Technology Support Program (2013BAD13B01)Shanghai Leading Academic Discipline Project
文摘Temporal and spatial scales play important roles in fishery ecology,and an inappropriate spatio-temporal scale may result in large errors in modeling fish distribution.The objective of this study is to evaluate the roles of spatio-temporal scales in habitat suitability modeling,with the western stock of winter-spring cohort of neon flying squid (Ornmastrephes bartramii) in the northwest Pacific Ocean as an example.In this study,the fishery-dependent data from the Chinese Mainland Squid Jigging Technical Group and sea surface temperature (SST) from remote sensing during August to October of 2003-2008 were used.We evaluated the differences in a habitat suitability index model resulting from aggregating data with 36 different spatial scales with a combination of three latitude scales (0.5°,1 ° and 2°),four longitude scales (0.5°,1°,2° and 4°),and three temporal scales (week,fortnight,and month).The coefficients of variation (CV) of the weekly,biweekly and monthly suitability index (SI) were compared to determine which temporal and spatial scales of SI model are more precise.This study shows that the optimal temporal and spatial scales with the lowest CV are month,and 0.5° latitude and 0.5° longitude for O.bartramii in the northwest Pacific Ocean.This suitability index model developed with an optimal scale can be cost-effective in improving forecasting fishing ground and requires no excessive sampling efforts.We suggest that the uncertainty associated with spatial and temporal scales used in data aggregations needs to be considered in habitat suitability modeling.
基金supported by the National 973Program of China(2013CB733302)the National Natural Science Foundation of China(41131067,41174020,41374023,41474019)+2 种基金the Open Research Fund Program of the State Key Laboratory of Geodesy and Earth's Dynamics(SKLGED2015-1-3-E)the open fund of State Key Laboratory of Geographic Information Engineering(SKLGIE2013-M-1-3)the open fund of Key Laboratory of Geospace Environment and Geodesy,Ministry of Education(13-02-05)
文摘A new temporal gravity field model called WHU-Grace01s solely recovered from Gravity Recovery and Climate Experiment (GRACE) K-Band Range Rate (KBRR) data based on dynamic integral approach is presented in this paper. After meticulously preprocessing of the GRACE KBRR data, the root mean square of its post residuals is about 0.2 micrometers per second, and seventy-two monthly temporal solutions truncated to degree and order 60 are computed for the period from January 2003 to December 2008. After applying the combi- nation filter in WHU-Grace01s, the global temporal signals show obvious periodical change rules in the large-scale fiver basins. In terms of the degree variance, our solution is smaller at high degrees, and shows a good consistency at the rest of degrees with the Release 05 models from Center for Space Research (CSR), GeoForschungsZentrum Potsdam (GFZ) and Jet Pro- pulsion Laboratory 0PL). Compared with other published models in terms of equivalent water height distribution, our solution is consistent with those published by CSR, GFZ, JPL, Delft institute of Earth Observation and Space system (DEOS), Tongji University (Tongji), Institute of Theoretical Geodesy (ITG), Astronomical Institute in University of Bern (AIUB) and Groupe de Recherche de Geodesie Spatiale (GRGS}, which indicates that the accuracy of WHU-Grace01s has a good consistency with the previously published GRACE solutions.
基金supported by the National Natural Science Foundation of China(Grant No.41271040)the Special Fund of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(Grant No.20145028012)
文摘This study aimed to investigate the effects of temporal variability on the optimization of the Hydrologiska ByrS.ns Vattenbalansavedlning (HBV) model, as well as the calibration performance using manual optimization and average parameter values. By applying the HBV model to the Jiangwan Catchment, whose geological features include lots of cracks and gaps, simulations under various schemes were developed: short, medium-length, and long temporal calibrations. The results show that, with long temporal calibration, the objective function values of the Nash- Sutcliffe efficiency coefficient (NSE), relative error (RE), root mean square error (RMSE), and high flow ratio generally deliver a preferable simulation. Although NSE and RMSE are relatively stable with different temporal scales, significant improvements to RE and the high flow ratio are seen with longer temporal calibration. It is also noted that use of average parameter values does not lead to better simulation results compared with manual optimization. With medium-length temporal calibration, manual optimization delivers the best simulation results, with NSE, RE, RMSE, and the high flow ratio being 0.563 6, 0.122 3, 0.978 8, and 0.854 7, respectively; and calibration using average parameter values delivers NSE, RE, RMSE, and the high flow ratio of 0.481 1, 0.467 6, 1.021 0, and 2.784 0, respectively. Similar behavior is found with long temporal calibration, when NSE, RE, RMSE, and the high flow ratio using manual optimization are 0.525 3, -0.069 2, 1.058 0, and 0.980 0, respectively, as compared with 0.490 3, 0.224 8, 1.096 2, and 0.547 9, respectively, using average parameter values. This study shows that selection of longer periods of temooral calibration in hvdrolouical analysis delivers better simulation in general for water balance analysis.
基金Project(LS2010071)supported by the Key Laboratory Projects in Universities’Scientific Research Plan of Education Department of Liaoning Province,China
文摘A new method was put forward to make up the three-dimensional deposit model, and the spatiotemporal models of open-pit with temporal dynamics were also studied combined with the corrected models of multilevel ground states so as to bring the three-dimensional open-pit model at different time and its model serial formed from the evolvement into the management of temporal dimension in order to realize the spatial three-dimension and temporal dynamic for the mining management in open-pits,which makes this model easy to query and analyze 3-D information, also help surface mining replaying and stope evolution forecasting. Finally, the time-spatial model was established to show the dynamic mining on some open-pit under the windows XP and VC++ environment.
基金supported by the Ministry of Trade,Industry & Energy(MOTIE,Korea) under Industrial Technology Innovation Program (No.10063424,'development of distant speech recognition and multi-task dialog processing technologies for in-door conversational robots')
文摘A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a forced aligned Hidden Markov Model(HMM) state sequence obtained from the GMM-based acoustic model. Therefore, it requires a long computation time for training both the GMM-based acoustic model and a deep learning-based acoustic model. In order to solve this problem, an acoustic model using CTC algorithm is proposed. CTC algorithm does not require the GMM-based acoustic model because it does not use the forced aligned HMM state sequence. However, previous works on a LSTM RNN-based acoustic model using CTC used a small-scale training corpus. In this paper, the LSTM RNN-based acoustic model using CTC is trained on a large-scale training corpus and its performance is evaluated. The implemented acoustic model has a performance of 6.18% and 15.01% in terms of Word Error Rate(WER) for clean speech and noisy speech, respectively. This is similar to a performance of the acoustic model based on the hybrid method.