Marine oil spill emulsions are difficult to recover,and the damage to the environment is not easy to eliminate.The use of remote sensing to accurately identify oil spill emulsions is highly important for the protectio...Marine oil spill emulsions are difficult to recover,and the damage to the environment is not easy to eliminate.The use of remote sensing to accurately identify oil spill emulsions is highly important for the protection of marine environments.However,the spectrum of oil emulsions changes due to different water content.Hyperspectral remote sensing and deep learning can use spectral and spatial information to identify different types of oil emulsions.Nonetheless,hyperspectral data can also cause information redundancy,reducing classification accuracy and efficiency,and even overfitting in machine learning models.To address these problems,an oil emulsion deep-learning identification model with spatial-spectral feature fusion is established,and feature bands that can distinguish between crude oil,seawater,water-in-oil emulsion(WO),and oil-in-water emulsion(OW)are filtered based on a standard deviation threshold–mutual information method.Using oil spill airborne hyperspectral data,we conducted identification experiments on oil emulsions in different background waters and under different spatial and temporal conditions,analyzed the transferability of the model,and explored the effects of feature band selection and spectral resolution on the identification of oil emulsions.The results show the following.(1)The standard deviation–mutual information feature selection method is able to effectively extract feature bands that can distinguish between WO,OW,oil slick,and seawater.The number of bands was reduced from 224 to 134 after feature selection on the Airborne Visible Infrared Imaging Spectrometer(AVIRIS)data and from 126 to 100 on the S185 data.(2)With feature selection,the overall accuracy and Kappa of the identification results for the training area are 91.80%and 0.86,respectively,improved by 2.62%and 0.04,and the overall accuracy and Kappa of the identification results for the migration area are 86.53%and 0.80,respectively,improved by 3.45%and 0.05.(3)The oil emulsion identification model has a certain degree of transferability and can effectively identify oil spill emulsions for AVIRIS data at different times and locations,with an overall accuracy of more than 80%,Kappa coefficient of more than 0.7,and F1 score of 0.75 or more for each category.(4)As the spectral resolution decreasing,the model yields different degrees of misclassification for areas with a mixed distribution of oil slick and seawater or mixed distribution of WO and OW.Based on the above experimental results,we demonstrate that the oil emulsion identification model with spatial–spectral feature fusion achieves a high accuracy rate in identifying oil emulsion using airborne hyperspectral data,and can be applied to images under different spatial and temporal conditions.Furthermore,we also elucidate the impact of factors such as spectral resolution and background water bodies on the identification process.These findings provide new reference for future endeavors in automated marine oil spill detection.展开更多
The degradation of optical remote sensing images due to atmospheric haze poses a significant obstacle,profoundly impeding their effective utilization across various domains.Dehazing methodologies have emerged as pivot...The degradation of optical remote sensing images due to atmospheric haze poses a significant obstacle,profoundly impeding their effective utilization across various domains.Dehazing methodologies have emerged as pivotal components of image preprocessing,fostering an improvement in the quality of remote sensing imagery.This enhancement renders remote sensing data more indispensable,thereby enhancing the accuracy of target iden-tification.Conventional defogging techniques based on simplistic atmospheric degradation models have proven inadequate for mitigating non-uniform haze within remotely sensed images.In response to this challenge,a novel UNet Residual Attention Network(URA-Net)is proposed.This paradigmatic approach materializes as an end-to-end convolutional neural network distinguished by its utilization of multi-scale dense feature fusion clusters and gated jump connections.The essence of our methodology lies in local feature fusion within dense residual clusters,enabling the extraction of pertinent features from both preceding and current local data,depending on contextual demands.The intelligently orchestrated gated structures facilitate the propagation of these features to the decoder,resulting in superior outcomes in haze removal.Empirical validation through a plethora of experiments substantiates the efficacy of URA-Net,demonstrating its superior performance compared to existing methods when applied to established datasets for remote sensing image defogging.On the RICE-1 dataset,URA-Net achieves a Peak Signal-to-Noise Ratio(PSNR)of 29.07 dB,surpassing the Dark Channel Prior(DCP)by 11.17 dB,the All-in-One Network for Dehazing(AOD)by 7.82 dB,the Optimal Transmission Map and Adaptive Atmospheric Light For Dehazing(OTM-AAL)by 5.37 dB,the Unsupervised Single Image Dehazing(USID)by 8.0 dB,and the Superpixel-based Remote Sensing Image Dehazing(SRD)by 8.5 dB.Particularly noteworthy,on the SateHaze1k dataset,URA-Net attains preeminence in overall performance,yielding defogged images characterized by consistent visual quality.This underscores the contribution of the research to the advancement of remote sensing technology,providing a robust and efficient solution for alleviating the adverse effects of haze on image quality.展开更多
With the increasing popularity of high-resolution remote sensing images,the remote sensing image retrieval(RSIR)has always been a topic of major issue.A combined,global non-subsampled shearlet transform(NSST)-domain s...With the increasing popularity of high-resolution remote sensing images,the remote sensing image retrieval(RSIR)has always been a topic of major issue.A combined,global non-subsampled shearlet transform(NSST)-domain statistical features(NSSTds)and local three dimensional local ternary pattern(3D-LTP)features,is proposed for high-resolution remote sensing images.We model the NSST image coefficients of detail subbands using 2-state laplacian mixture(LM)distribution and its three parameters are estimated using Expectation-Maximization(EM)algorithm.We also calculate the statistical parameters such as subband kurtosis and skewness from detail subbands along with mean and standard deviation calculated from approximation subband,and concatenate all of them with the 2-state LM parameters to describe the global features of the image.The various properties of NSST such as multiscale,localization and flexible directional sensitivity make it a suitable choice to provide an effective approximation of an image.In order to extract the dense local features,a new 3D-LTP is proposed where dimension reduction is performed via selection of‘uniform’patterns.The 3D-LTP is calculated from spatial RGB planes of the input image.The proposed inter-channel 3D-LTP not only exploits the local texture information but the color information is captured too.Finally,a fused feature representation(NSSTds-3DLTP)is proposed using new global(NSSTds)and local(3D-LTP)features to enhance the discriminativeness of features.The retrieval performance of proposed NSSTds-3DLTP features are tested on three challenging remote sensing image datasets such as WHU-RS19,Aerial Image Dataset(AID)and PatternNet in terms of mean average precision(MAP),average normalized modified retrieval rank(ANMRR)and precision-recall(P-R)graph.The experimental results are encouraging and the NSSTds-3DLTP features leads to superior retrieval performance compared to many well known existing descriptors such as Gabor RGB,Granulometry,local binary pattern(LBP),Fisher vector(FV),vector of locally aggregated descriptors(VLAD)and median robust extended local binary pattern(MRELBP).For WHU-RS19 dataset,in terms of{MAP,ANMRR},the NSSTds-3DLTP improves upon Gabor RGB,Granulometry,LBP,FV,VLAD and MRELBP descriptors by{41.93%,20.87%},{92.30%,32.68%},{86.14%,31.97%},{18.18%,15.22%},{8.96%,19.60%}and{15.60%,13.26%},respectively.For AID,in terms of{MAP,ANMRR},the NSSTds-3DLTP improves upon Gabor RGB,Granulometry,LBP,FV,VLAD and MRELBP descriptors by{152.60%,22.06%},{226.65%,25.08%},{185.03%,23.33%},{80.06%,12.16%},{50.58%,10.49%}and{62.34%,3.24%},respectively.For PatternNet,the NSSTds-3DLTP respectively improves upon Gabor RGB,Granulometry,LBP,FV,VLAD and MRELBP descriptors by{32.79%,10.34%},{141.30%,24.72%},{17.47%,10.34%},{83.20%,19.07%},{21.56%,3.60%},and{19.30%,0.48%}in terms of{MAP,ANMRR}.The moderate dimensionality of simple NSSTds-3DLTP allows the system to run in real-time.展开更多
Remote sensing image classification is the basis of remote sensing image analysis and understanding.It aims to assign each pixel an object class label.To achieve satisfactory classification accuracy,single feature is ...Remote sensing image classification is the basis of remote sensing image analysis and understanding.It aims to assign each pixel an object class label.To achieve satisfactory classification accuracy,single feature is not enough.Multiple features are usually integrated in remote sensing image classification.In this paper,a method based on neural network to combine multiple features was proposed.A single network was used to perform the task instead of ensemble of neural networks.A special architecture of network was designed to fit the task.The method effectively avoids the problems in direct conjunction of multiple features.Experiments on Indian93 data set show that the method has obvious advantages over conjunction of features on both recognition rate and training time.展开更多
The semantic segmentation methods based on CNN have made great progress,but there are still some shortcomings in the application of remote sensing images segmentation,such as the small receptive field can not effectiv...The semantic segmentation methods based on CNN have made great progress,but there are still some shortcomings in the application of remote sensing images segmentation,such as the small receptive field can not effectively capture global context.In order to solve this problem,this paper proposes a hybrid model based on ResNet50 and swin transformer to directly capture long-range dependence,which fuses features through Cross Feature Modulation Module(CFMM).Experimental results on two publicly available datasets,Vaihingen and Potsdam,are mIoU of 70.27%and 76.63%,respectively.Thus,CFM-UNet can maintain a high segmentation performance compared with other competitive networks.展开更多
The classification of hyperspectral remote sensing data is an important problem theoretically and practically. With the increase of spectral bands, the separability of objects on remote sensing image should be improve...The classification of hyperspectral remote sensing data is an important problem theoretically and practically. With the increase of spectral bands, the separability of objects on remote sensing image should be improved. But the effects of traditional algorithm on feature extraction such as principal component analysis(PCA) is not so good for hyperspectral image. The key problem is that PCA can only represent the linear structure of data set; while the data clouds of different objects on hyperspectral image usually distribute on a nonlinear manifold. This paper established an algorithm of nonlinear feature extraction named as nonlinear principal poly lines, based on the algorithm, a classifier is constructed and the classification accuracy of hyperspectral image can be improved.展开更多
Due to the large quantities of data and high relativity of the spectra of remote sensing images, K-L transformation is used to eliminate the relativity. An improved ISODATA(Interative Self-Organizing Data Analysis Tec...Due to the large quantities of data and high relativity of the spectra of remote sensing images, K-L transformation is used to eliminate the relativity. An improved ISODATA(Interative Self-Organizing Data Analysis Technique A) algorithm is used to extract the spectrum features of the images. The computation is greatly reduced and the dynamic arguments are realized. The comparison of features between two images is carried out, and good results are achieved in simulation.展开更多
In order to improve the accuracy of building structure identification using remote sensing images,a building structure classification method based on multi-feature fusion of UAV remote sensing image is proposed in thi...In order to improve the accuracy of building structure identification using remote sensing images,a building structure classification method based on multi-feature fusion of UAV remote sensing image is proposed in this paper.Three identification approaches of remote sensing images are integrated in this method:object-oriented,texture feature,and digital elevation based on DSM and DEM.So RGB threshold classification method is used to classify the identification results.The accuracy of building structure classification based on each feature and the multi-feature fusion are compared and analyzed.The results show that the building structure classification method is feasible and can accurately identify the structures in large-area remote sensing images.展开更多
With the arrival of new data acquisition platforms derived from the Internet of Things(IoT),this paper goes beyond the understanding of traditional remote sensing technologies.Deep fusion of remote sensing and compute...With the arrival of new data acquisition platforms derived from the Internet of Things(IoT),this paper goes beyond the understanding of traditional remote sensing technologies.Deep fusion of remote sensing and computer vision has hit the industrial world and makes it possible to apply Artificial intelligence to solve problems such as automatic extraction of information and image interpretation.However,due to the complex architecture of IoT and the lack of a unified security protection mechanism,devices in remote sensing are vulnerable to privacy leaks when sharing data.It is necessary to design a security scheme suitable for computation‐limited devices in IoT,since traditional encryption methods are based on computational complexity.Visual Cryptography(VC)is a threshold scheme for images that can be decoded directly by the human visual system when superimposing encrypted images.The stacking‐to‐see feature and simple Boolean decryption operation make VC an ideal solution for privacy‐preserving recognition for large‐scale remote sensing images in IoT.In this study,the secure and efficient transmission of high‐resolution remote sensing images by meaningful VC is achieved.By diffusing the error between the encryption block and the original block to adjacent blocks,the degradation of quality in recovery images is mitigated.By fine‐tuning the pre‐trained model from large‐scale datasets,we improve the recognition performance of small encryption datasets for remote sensing images.The experimental results show that the proposed lightweight privacy‐preserving recognition framework maintains high recognition performance while enhancing security.展开更多
To retrieve the object region efficaciously from massive remote sensing image database, a model for content-based retrieval of remote sensing image is given according to the characters of remote sensing image applicat...To retrieve the object region efficaciously from massive remote sensing image database, a model for content-based retrieval of remote sensing image is given according to the characters of remote sensing image application firstly, and then the algorithm adopted for feature extraction and multidimensional indexing, and relevance feedback by this model are analyzed in detail. Finally, the contents intending to be researched about this model are proposed.展开更多
This paper aims at providing multi-source remote sensing images registered in geometric space for image fusion.Focusing on the characteristics and differences of multi-source remote sensing images,a feature-based regi...This paper aims at providing multi-source remote sensing images registered in geometric space for image fusion.Focusing on the characteristics and differences of multi-source remote sensing images,a feature-based registration algorithm is implemented.The key technologies include image scale-space for implementing multi-scale properties,Harris corner detection for keypoints extraction,and partial intensity invariant feature descriptor(PIIFD)for keypoints description.Eventually,a multi-scale Harris-PIIFD image registration algorithm framework is proposed.The experimental results of fifteen sets of representative real data show that the algorithm has excellent,stable performance in multi-source remote sensing image registration,and can achieve accurate spatial alignment,which has strong practical application value and certain generalization ability.展开更多
Semantic segmentation of remote sensing images is one of the core tasks of remote sensing image interpretation.With the continuous develop-ment of artificial intelligence technology,the use of deep learning methods fo...Semantic segmentation of remote sensing images is one of the core tasks of remote sensing image interpretation.With the continuous develop-ment of artificial intelligence technology,the use of deep learning methods for interpreting remote-sensing images has matured.Existing neural networks disregard the spatial relationship between two targets in remote sensing images.Semantic segmentation models that combine convolutional neural networks(CNNs)and graph convolutional neural networks(GCNs)cause a lack of feature boundaries,which leads to the unsatisfactory segmentation of various target feature boundaries.In this paper,we propose a new semantic segmentation model for remote sensing images(called DGCN hereinafter),which combines deep semantic segmentation networks(DSSN)and GCNs.In the GCN module,a loss function for boundary information is employed to optimize the learning of spatial relationship features between the target features and their relationships.A hierarchical fusion method is utilized for feature fusion and classification to optimize the spatial relationship informa-tion in the original feature information.Extensive experiments on ISPRS 2D and DeepGlobe semantic segmentation datasets show that compared with the existing semantic segmentation models of remote sensing images,the DGCN significantly optimizes the segmentation effect of feature boundaries,effectively reduces the noise in the segmentation results and improves the segmentation accuracy,which demonstrates the advancements of our model.展开更多
Accurate estimation of soil lead pollution degree is one of the key steps in controlling soil lead pollution; vegetable hyperspectral features research provided a new approach to discovering and monitoring soil heavy ...Accurate estimation of soil lead pollution degree is one of the key steps in controlling soil lead pollution; vegetable hyperspectral features research provided a new approach to discovering and monitoring soil heavy metal pollution.Spectral reflectance implies information of pollution impacts on vegetation;estimation of lead pollution degree based on the spectral reflectance is equivalent to extraction of weak information.This study puts forward a new feature extraction method based展开更多
The northern Tibet plateau is the core of generalized Qinghai—Tibet plateau. The main part of Qiangtang—Changdu massif, which is 45×10 4km 2 and more than 5000m in altitude, conforms to the northern Tibet plate...The northern Tibet plateau is the core of generalized Qinghai—Tibet plateau. The main part of Qiangtang—Changdu massif, which is 45×10 4km 2 and more than 5000m in altitude, conforms to the northern Tibet plateau in area.1 The shape features and boundary conditions of Qiangtang—Changdu massif\;(1) Qiangtang—Changdu massif shows huge flat\|lying “S” area In MSS7 mosaic image, Qiangtang—Changdu massif extends in west and east, and appears a long\|elliptic huge block composed of feathered and dendritic textures.. Noticeably, there are two similar texture “tails" in the west and east ends of the massif. The western tail turns and constringes to the north, and eastern tail to the south. Thereby, the massif shows huge “S" area. According to the regional analysis, the eastern tail locates between Shaluli Mt.\|Taniantaweng Mt. and Mujiang River, and western part through Bangong\|Co connects with Pamirs along Karakoram Mt. In regional tectonics, the massif locates between Lazhulong\|Xijinwulan\|Co\|Jinshajiang River and Bangong\|Co\|Dongqiao\|Nujiang River fault belts.展开更多
IHS (Intensity, Hue and Saturation) transform is one of the most commonly used tusion algonthm. But the matching error causes spectral distortion and degradation in processing of image fusion with IHS method. A stud...IHS (Intensity, Hue and Saturation) transform is one of the most commonly used tusion algonthm. But the matching error causes spectral distortion and degradation in processing of image fusion with IHS method. A study on IHS fusion indicates that the color distortion can't be avoided. Meanwhile, the statistical property of wavelet coefficient with wavelet decomposition reflects those significant features, such as edges, lines and regions. So, a united optimal fusion method, which uses the statistical property and IHS transform on pixel and feature levels, is proposed. That is, the high frequency of intensity component Ⅰ is fused on feature level with multi-resolution wavelet in IHS space. And the low frequency of intensity component Ⅰ is fused on pixel level with optimal weight coefficients. Spectral information and spatial resolution are two performance indexes of optimal weight coefficients. Experiment results with QuickBird data of Shanghai show that it is a practical and effective method.展开更多
Extracting building contours from aerial images is a fundamental task in remote sensing.Current building extraction methods cannot accurately extract building contour information and have errors in extracting small-sc...Extracting building contours from aerial images is a fundamental task in remote sensing.Current building extraction methods cannot accurately extract building contour information and have errors in extracting small-scale buildings.This paper introduces a novel dense feature iterative(DFI)fusion network,denoted as DFINet,for extracting building contours.The network uses a DFI decoder to fuse semantic information at different scales and learns the building contour knowledge,producing the last features through iterative fusion.The dense feature fusion(DFF)module combines features at multiple scales.We employ the contour reconstruction(CR)module to access the final predictions.Extensive experiments validate the effectiveness of the DFINet on two different remote sensing datasets,INRIA aerial image dataset and Wuhan University(WHU)building dataset.On the INRIA aerial image dataset,our method achieves the highest intersection over union(IoU),overall accuracy(OA)and F 1 scores compared to other state-of-the-art methods.展开更多
Soil moisture(SM), which plays a crucial role in studies of the climate, ecology, agriculture and the environment, can be estimated and mapped by remote sensing technology over a wide region. However, remotely sensed ...Soil moisture(SM), which plays a crucial role in studies of the climate, ecology, agriculture and the environment, can be estimated and mapped by remote sensing technology over a wide region. However, remotely sensed SM is constrained by its estimation accuracy, which mainly stems from the influence of vegetation cover on soil spectra information in mixed pixels. To overcome the low-accuracy defects of existing surface albedo method for estimating SM, in this paper, Qinghai Lake Basin, an important animal husbandry production area in Qinghai Province, China, was chosen as an empirical research area. Using the surface albedo computed from moderate resolution imaging spectroradiometer(MODIS) reflectance products and the actual measured SM data, an albedo/vegetation coverage trapezoid feature space was constructed. Bare soil albedo was extracted from the surface albedo mainly containing information of soil, vegetation, and both albedo models for estimating SM were constructed separately. The accuracy of the bare soil albedo model(root mean square error=4.20, mean absolute percent error=22.75%, and theil inequality coefficient=0.67) was higher than that of the existing surface albedo model(root mean square error=4.66, mean absolute percent error=25.46% and theil inequality coefficient=0.74). This result indicated that the bare soil albedo greatly improved the accuracy of SM estimation and mapping. As this method eliminated the effect of vegetation cover and restored the inherent soil spectra, it not only quantitatively estimates and maps SM at regional scales with high accuracy, but also provides a new way of improving the accuracy of soil organic matter estimation and mapping.展开更多
Sanduao is an important sea-breeding bay in Fujian,South China and holds a high economic status in aquaculture.Quickly and accurately obtaining information including the distribution area,quantity,and aquaculture area...Sanduao is an important sea-breeding bay in Fujian,South China and holds a high economic status in aquaculture.Quickly and accurately obtaining information including the distribution area,quantity,and aquaculture area is important for breeding area planning,production value estimation,ecological survey,and storm surge prevention.However,as the aquaculture area expands,the seawater background becomes increasingly complex and spectral characteristics differ dramatically,making it difficult to determine the aquaculture area.In this study,we used a high-resolution remote-sensing satellite GF-2 image to introduce a deep-learning Richer Convolutional Features(RCF)network model to extract the aquaculture area.Then we used the density of aquaculture as an assessment index to assess the vulnerability of aquaculture areas in Sanduao.The results demonstrate that this method does not require land and water separation of the area in advance,and good extraction can be achieved in the areas with more sediment and waves,with an extraction accuracy>93%,which is suitable for large-scale aquaculture area extraction.Vulnerability assessment results indicate that the density of aquaculture in the eastern part of Sanduao is considerably high,reaching a higher vulnerability level than other parts.展开更多
Purpose-Extracting suitable features to represent an image based on its content is a very tedious task.Especially in remote sensing we have high-resolution images with a variety of objects on the Earth’s surface.Maha...Purpose-Extracting suitable features to represent an image based on its content is a very tedious task.Especially in remote sensing we have high-resolution images with a variety of objects on the Earth’s surface.Mahalanobis distance metric is used to measure the similarity between query and database images.The low distance obtained image is indexed at the top as high relevant information to the query.Design/methodology/approach-This paper aims to develop an automatic feature extraction system for remote sensing image data.Haralick texture features based on Contourlet transform are fused with statistical features extracted from the QuadTree(QT)decomposition are developed as feature set to represent the input data.The extracted features will retrieve similar images from the large image datasets using an image-based query through the web-based user interface.Findings-The developed retrieval system performance has been analyzed using precision and recall and F1 score.The proposed feature vector gives better performance with 0.69 precision for the top 50 relevant retrieved results over other existing multiscale-based feature extraction methods.Originality/value-The main contribution of this paper is developing a texture feature vector in a multiscale domain by combining the Haralick texture properties in the Contourlet domain and Statistical features using QT decomposition.The features required to represent the image is 207 which is very less dimension compare to other texture methods.The performance shows superior than the other state of art methods.展开更多
A topic studied in cartography is to make the extraction of cartographic features that provide the update of cartographic maps more easily. For this reason many automatic routines were created with the intent to perfo...A topic studied in cartography is to make the extraction of cartographic features that provide the update of cartographic maps more easily. For this reason many automatic routines were created with the intent to perform the features extraction. Despite of all studies about this, some features cannot be found by the algorithm or it can extract some pixels unduly. So the current article aims to show the results with the software development that uses the original and reference image to calculate some statistics about the extraction process. Furthermore, the calculated statistics can be used to evaluate the extraction process.展开更多
基金The National Natural Science Foundation of China under contract Nos 61890964 and 42206177the Joint Funds of the National Natural Science Foundation of China under contract No.U1906217.
文摘Marine oil spill emulsions are difficult to recover,and the damage to the environment is not easy to eliminate.The use of remote sensing to accurately identify oil spill emulsions is highly important for the protection of marine environments.However,the spectrum of oil emulsions changes due to different water content.Hyperspectral remote sensing and deep learning can use spectral and spatial information to identify different types of oil emulsions.Nonetheless,hyperspectral data can also cause information redundancy,reducing classification accuracy and efficiency,and even overfitting in machine learning models.To address these problems,an oil emulsion deep-learning identification model with spatial-spectral feature fusion is established,and feature bands that can distinguish between crude oil,seawater,water-in-oil emulsion(WO),and oil-in-water emulsion(OW)are filtered based on a standard deviation threshold–mutual information method.Using oil spill airborne hyperspectral data,we conducted identification experiments on oil emulsions in different background waters and under different spatial and temporal conditions,analyzed the transferability of the model,and explored the effects of feature band selection and spectral resolution on the identification of oil emulsions.The results show the following.(1)The standard deviation–mutual information feature selection method is able to effectively extract feature bands that can distinguish between WO,OW,oil slick,and seawater.The number of bands was reduced from 224 to 134 after feature selection on the Airborne Visible Infrared Imaging Spectrometer(AVIRIS)data and from 126 to 100 on the S185 data.(2)With feature selection,the overall accuracy and Kappa of the identification results for the training area are 91.80%and 0.86,respectively,improved by 2.62%and 0.04,and the overall accuracy and Kappa of the identification results for the migration area are 86.53%and 0.80,respectively,improved by 3.45%and 0.05.(3)The oil emulsion identification model has a certain degree of transferability and can effectively identify oil spill emulsions for AVIRIS data at different times and locations,with an overall accuracy of more than 80%,Kappa coefficient of more than 0.7,and F1 score of 0.75 or more for each category.(4)As the spectral resolution decreasing,the model yields different degrees of misclassification for areas with a mixed distribution of oil slick and seawater or mixed distribution of WO and OW.Based on the above experimental results,we demonstrate that the oil emulsion identification model with spatial–spectral feature fusion achieves a high accuracy rate in identifying oil emulsion using airborne hyperspectral data,and can be applied to images under different spatial and temporal conditions.Furthermore,we also elucidate the impact of factors such as spectral resolution and background water bodies on the identification process.These findings provide new reference for future endeavors in automated marine oil spill detection.
基金This project is supported by the National Natural Science Foundation of China(NSFC)(No.61902158).
文摘The degradation of optical remote sensing images due to atmospheric haze poses a significant obstacle,profoundly impeding their effective utilization across various domains.Dehazing methodologies have emerged as pivotal components of image preprocessing,fostering an improvement in the quality of remote sensing imagery.This enhancement renders remote sensing data more indispensable,thereby enhancing the accuracy of target iden-tification.Conventional defogging techniques based on simplistic atmospheric degradation models have proven inadequate for mitigating non-uniform haze within remotely sensed images.In response to this challenge,a novel UNet Residual Attention Network(URA-Net)is proposed.This paradigmatic approach materializes as an end-to-end convolutional neural network distinguished by its utilization of multi-scale dense feature fusion clusters and gated jump connections.The essence of our methodology lies in local feature fusion within dense residual clusters,enabling the extraction of pertinent features from both preceding and current local data,depending on contextual demands.The intelligently orchestrated gated structures facilitate the propagation of these features to the decoder,resulting in superior outcomes in haze removal.Empirical validation through a plethora of experiments substantiates the efficacy of URA-Net,demonstrating its superior performance compared to existing methods when applied to established datasets for remote sensing image defogging.On the RICE-1 dataset,URA-Net achieves a Peak Signal-to-Noise Ratio(PSNR)of 29.07 dB,surpassing the Dark Channel Prior(DCP)by 11.17 dB,the All-in-One Network for Dehazing(AOD)by 7.82 dB,the Optimal Transmission Map and Adaptive Atmospheric Light For Dehazing(OTM-AAL)by 5.37 dB,the Unsupervised Single Image Dehazing(USID)by 8.0 dB,and the Superpixel-based Remote Sensing Image Dehazing(SRD)by 8.5 dB.Particularly noteworthy,on the SateHaze1k dataset,URA-Net attains preeminence in overall performance,yielding defogged images characterized by consistent visual quality.This underscores the contribution of the research to the advancement of remote sensing technology,providing a robust and efficient solution for alleviating the adverse effects of haze on image quality.
文摘With the increasing popularity of high-resolution remote sensing images,the remote sensing image retrieval(RSIR)has always been a topic of major issue.A combined,global non-subsampled shearlet transform(NSST)-domain statistical features(NSSTds)and local three dimensional local ternary pattern(3D-LTP)features,is proposed for high-resolution remote sensing images.We model the NSST image coefficients of detail subbands using 2-state laplacian mixture(LM)distribution and its three parameters are estimated using Expectation-Maximization(EM)algorithm.We also calculate the statistical parameters such as subband kurtosis and skewness from detail subbands along with mean and standard deviation calculated from approximation subband,and concatenate all of them with the 2-state LM parameters to describe the global features of the image.The various properties of NSST such as multiscale,localization and flexible directional sensitivity make it a suitable choice to provide an effective approximation of an image.In order to extract the dense local features,a new 3D-LTP is proposed where dimension reduction is performed via selection of‘uniform’patterns.The 3D-LTP is calculated from spatial RGB planes of the input image.The proposed inter-channel 3D-LTP not only exploits the local texture information but the color information is captured too.Finally,a fused feature representation(NSSTds-3DLTP)is proposed using new global(NSSTds)and local(3D-LTP)features to enhance the discriminativeness of features.The retrieval performance of proposed NSSTds-3DLTP features are tested on three challenging remote sensing image datasets such as WHU-RS19,Aerial Image Dataset(AID)and PatternNet in terms of mean average precision(MAP),average normalized modified retrieval rank(ANMRR)and precision-recall(P-R)graph.The experimental results are encouraging and the NSSTds-3DLTP features leads to superior retrieval performance compared to many well known existing descriptors such as Gabor RGB,Granulometry,local binary pattern(LBP),Fisher vector(FV),vector of locally aggregated descriptors(VLAD)and median robust extended local binary pattern(MRELBP).For WHU-RS19 dataset,in terms of{MAP,ANMRR},the NSSTds-3DLTP improves upon Gabor RGB,Granulometry,LBP,FV,VLAD and MRELBP descriptors by{41.93%,20.87%},{92.30%,32.68%},{86.14%,31.97%},{18.18%,15.22%},{8.96%,19.60%}and{15.60%,13.26%},respectively.For AID,in terms of{MAP,ANMRR},the NSSTds-3DLTP improves upon Gabor RGB,Granulometry,LBP,FV,VLAD and MRELBP descriptors by{152.60%,22.06%},{226.65%,25.08%},{185.03%,23.33%},{80.06%,12.16%},{50.58%,10.49%}and{62.34%,3.24%},respectively.For PatternNet,the NSSTds-3DLTP respectively improves upon Gabor RGB,Granulometry,LBP,FV,VLAD and MRELBP descriptors by{32.79%,10.34%},{141.30%,24.72%},{17.47%,10.34%},{83.20%,19.07%},{21.56%,3.60%},and{19.30%,0.48%}in terms of{MAP,ANMRR}.The moderate dimensionality of simple NSSTds-3DLTP allows the system to run in real-time.
基金National Natural Science Foundation of China(No.61101202)
文摘Remote sensing image classification is the basis of remote sensing image analysis and understanding.It aims to assign each pixel an object class label.To achieve satisfactory classification accuracy,single feature is not enough.Multiple features are usually integrated in remote sensing image classification.In this paper,a method based on neural network to combine multiple features was proposed.A single network was used to perform the task instead of ensemble of neural networks.A special architecture of network was designed to fit the task.The method effectively avoids the problems in direct conjunction of multiple features.Experiments on Indian93 data set show that the method has obvious advantages over conjunction of features on both recognition rate and training time.
基金Young Innovative Talents Project of Guangdong Ordinary Universities(No.2022KQNCX225)School-level Teaching and Research Project of Guangzhou City Polytechnic(No.2022xky046)。
文摘The semantic segmentation methods based on CNN have made great progress,but there are still some shortcomings in the application of remote sensing images segmentation,such as the small receptive field can not effectively capture global context.In order to solve this problem,this paper proposes a hybrid model based on ResNet50 and swin transformer to directly capture long-range dependence,which fuses features through Cross Feature Modulation Module(CFMM).Experimental results on two publicly available datasets,Vaihingen and Potsdam,are mIoU of 70.27%and 76.63%,respectively.Thus,CFM-UNet can maintain a high segmentation performance compared with other competitive networks.
基金Project(40174003) supported by the National Natural Science Foundation of China
文摘The classification of hyperspectral remote sensing data is an important problem theoretically and practically. With the increase of spectral bands, the separability of objects on remote sensing image should be improved. But the effects of traditional algorithm on feature extraction such as principal component analysis(PCA) is not so good for hyperspectral image. The key problem is that PCA can only represent the linear structure of data set; while the data clouds of different objects on hyperspectral image usually distribute on a nonlinear manifold. This paper established an algorithm of nonlinear feature extraction named as nonlinear principal poly lines, based on the algorithm, a classifier is constructed and the classification accuracy of hyperspectral image can be improved.
文摘Due to the large quantities of data and high relativity of the spectra of remote sensing images, K-L transformation is used to eliminate the relativity. An improved ISODATA(Interative Self-Organizing Data Analysis Technique A) algorithm is used to extract the spectrum features of the images. The computation is greatly reduced and the dynamic arguments are realized. The comparison of features between two images is carried out, and good results are achieved in simulation.
基金sponsored by National Key R&D Program of China(2018YFC1504504)Youth Foundation of Yunnan Earthquake Agency(2021K01)Project of Yunnan Earthquake Agency“Chuan bang dai”(CQ3-2021001).
文摘In order to improve the accuracy of building structure identification using remote sensing images,a building structure classification method based on multi-feature fusion of UAV remote sensing image is proposed in this paper.Three identification approaches of remote sensing images are integrated in this method:object-oriented,texture feature,and digital elevation based on DSM and DEM.So RGB threshold classification method is used to classify the identification results.The accuracy of building structure classification based on each feature and the multi-feature fusion are compared and analyzed.The results show that the building structure classification method is feasible and can accurately identify the structures in large-area remote sensing images.
基金supported in part by the National Natural Science Foundation of China under Grants(62250410365,62071084)the Guangdong Basic and Applied Basic Research Foundation of China(2022A1515011542)the Guangzhou Science and technology program of China(202201010606).
文摘With the arrival of new data acquisition platforms derived from the Internet of Things(IoT),this paper goes beyond the understanding of traditional remote sensing technologies.Deep fusion of remote sensing and computer vision has hit the industrial world and makes it possible to apply Artificial intelligence to solve problems such as automatic extraction of information and image interpretation.However,due to the complex architecture of IoT and the lack of a unified security protection mechanism,devices in remote sensing are vulnerable to privacy leaks when sharing data.It is necessary to design a security scheme suitable for computation‐limited devices in IoT,since traditional encryption methods are based on computational complexity.Visual Cryptography(VC)is a threshold scheme for images that can be decoded directly by the human visual system when superimposing encrypted images.The stacking‐to‐see feature and simple Boolean decryption operation make VC an ideal solution for privacy‐preserving recognition for large‐scale remote sensing images in IoT.In this study,the secure and efficient transmission of high‐resolution remote sensing images by meaningful VC is achieved.By diffusing the error between the encryption block and the original block to adjacent blocks,the degradation of quality in recovery images is mitigated.By fine‐tuning the pre‐trained model from large‐scale datasets,we improve the recognition performance of small encryption datasets for remote sensing images.The experimental results show that the proposed lightweight privacy‐preserving recognition framework maintains high recognition performance while enhancing security.
文摘To retrieve the object region efficaciously from massive remote sensing image database, a model for content-based retrieval of remote sensing image is given according to the characters of remote sensing image application firstly, and then the algorithm adopted for feature extraction and multidimensional indexing, and relevance feedback by this model are analyzed in detail. Finally, the contents intending to be researched about this model are proposed.
文摘This paper aims at providing multi-source remote sensing images registered in geometric space for image fusion.Focusing on the characteristics and differences of multi-source remote sensing images,a feature-based registration algorithm is implemented.The key technologies include image scale-space for implementing multi-scale properties,Harris corner detection for keypoints extraction,and partial intensity invariant feature descriptor(PIIFD)for keypoints description.Eventually,a multi-scale Harris-PIIFD image registration algorithm framework is proposed.The experimental results of fifteen sets of representative real data show that the algorithm has excellent,stable performance in multi-source remote sensing image registration,and can achieve accurate spatial alignment,which has strong practical application value and certain generalization ability.
基金funded by the Major Scientific and Technological Innovation Project of Shandong Province,Grant No.2022CXGC010609.
文摘Semantic segmentation of remote sensing images is one of the core tasks of remote sensing image interpretation.With the continuous develop-ment of artificial intelligence technology,the use of deep learning methods for interpreting remote-sensing images has matured.Existing neural networks disregard the spatial relationship between two targets in remote sensing images.Semantic segmentation models that combine convolutional neural networks(CNNs)and graph convolutional neural networks(GCNs)cause a lack of feature boundaries,which leads to the unsatisfactory segmentation of various target feature boundaries.In this paper,we propose a new semantic segmentation model for remote sensing images(called DGCN hereinafter),which combines deep semantic segmentation networks(DSSN)and GCNs.In the GCN module,a loss function for boundary information is employed to optimize the learning of spatial relationship features between the target features and their relationships.A hierarchical fusion method is utilized for feature fusion and classification to optimize the spatial relationship informa-tion in the original feature information.Extensive experiments on ISPRS 2D and DeepGlobe semantic segmentation datasets show that compared with the existing semantic segmentation models of remote sensing images,the DGCN significantly optimizes the segmentation effect of feature boundaries,effectively reduces the noise in the segmentation results and improves the segmentation accuracy,which demonstrates the advancements of our model.
文摘Accurate estimation of soil lead pollution degree is one of the key steps in controlling soil lead pollution; vegetable hyperspectral features research provided a new approach to discovering and monitoring soil heavy metal pollution.Spectral reflectance implies information of pollution impacts on vegetation;estimation of lead pollution degree based on the spectral reflectance is equivalent to extraction of weak information.This study puts forward a new feature extraction method based
文摘The northern Tibet plateau is the core of generalized Qinghai—Tibet plateau. The main part of Qiangtang—Changdu massif, which is 45×10 4km 2 and more than 5000m in altitude, conforms to the northern Tibet plateau in area.1 The shape features and boundary conditions of Qiangtang—Changdu massif\;(1) Qiangtang—Changdu massif shows huge flat\|lying “S” area In MSS7 mosaic image, Qiangtang—Changdu massif extends in west and east, and appears a long\|elliptic huge block composed of feathered and dendritic textures.. Noticeably, there are two similar texture “tails" in the west and east ends of the massif. The western tail turns and constringes to the north, and eastern tail to the south. Thereby, the massif shows huge “S" area. According to the regional analysis, the eastern tail locates between Shaluli Mt.\|Taniantaweng Mt. and Mujiang River, and western part through Bangong\|Co connects with Pamirs along Karakoram Mt. In regional tectonics, the massif locates between Lazhulong\|Xijinwulan\|Co\|Jinshajiang River and Bangong\|Co\|Dongqiao\|Nujiang River fault belts.
基金Supported by the High Technology Research and Development Programme of China (2001AA135091) and the National Natural Science Foundation of China (60375008).
文摘IHS (Intensity, Hue and Saturation) transform is one of the most commonly used tusion algonthm. But the matching error causes spectral distortion and degradation in processing of image fusion with IHS method. A study on IHS fusion indicates that the color distortion can't be avoided. Meanwhile, the statistical property of wavelet coefficient with wavelet decomposition reflects those significant features, such as edges, lines and regions. So, a united optimal fusion method, which uses the statistical property and IHS transform on pixel and feature levels, is proposed. That is, the high frequency of intensity component Ⅰ is fused on feature level with multi-resolution wavelet in IHS space. And the low frequency of intensity component Ⅰ is fused on pixel level with optimal weight coefficients. Spectral information and spatial resolution are two performance indexes of optimal weight coefficients. Experiment results with QuickBird data of Shanghai show that it is a practical and effective method.
基金National Natural Science Foundation of China(No.61903078)Fundamental Research Funds for the Central Universities,China(No.2232021A-10)+1 种基金Shanghai Sailing Program,China(No.22YF1401300)Natural Science Foundation of Shanghai,China(No.20ZR1400400)。
文摘Extracting building contours from aerial images is a fundamental task in remote sensing.Current building extraction methods cannot accurately extract building contour information and have errors in extracting small-scale buildings.This paper introduces a novel dense feature iterative(DFI)fusion network,denoted as DFINet,for extracting building contours.The network uses a DFI decoder to fuse semantic information at different scales and learns the building contour knowledge,producing the last features through iterative fusion.The dense feature fusion(DFF)module combines features at multiple scales.We employ the contour reconstruction(CR)module to access the final predictions.Extensive experiments validate the effectiveness of the DFINet on two different remote sensing datasets,INRIA aerial image dataset and Wuhan University(WHU)building dataset.On the INRIA aerial image dataset,our method achieves the highest intersection over union(IoU),overall accuracy(OA)and F 1 scores compared to other state-of-the-art methods.
基金supported by the National Philosophy and Social Science Foundation of China (14XMZ072)the Natural Science Foundation of Qinghai Province, China (2017-ZJ-901 and 2014-ZJ-723)+1 种基金the National Natural Science Foundation of China (40861022 and 41661023)the Cooperative Scientific Research Project of "Chunhui Plan", Ministry of Education of China (Z2012092 and S2016026)
文摘Soil moisture(SM), which plays a crucial role in studies of the climate, ecology, agriculture and the environment, can be estimated and mapped by remote sensing technology over a wide region. However, remotely sensed SM is constrained by its estimation accuracy, which mainly stems from the influence of vegetation cover on soil spectra information in mixed pixels. To overcome the low-accuracy defects of existing surface albedo method for estimating SM, in this paper, Qinghai Lake Basin, an important animal husbandry production area in Qinghai Province, China, was chosen as an empirical research area. Using the surface albedo computed from moderate resolution imaging spectroradiometer(MODIS) reflectance products and the actual measured SM data, an albedo/vegetation coverage trapezoid feature space was constructed. Bare soil albedo was extracted from the surface albedo mainly containing information of soil, vegetation, and both albedo models for estimating SM were constructed separately. The accuracy of the bare soil albedo model(root mean square error=4.20, mean absolute percent error=22.75%, and theil inequality coefficient=0.67) was higher than that of the existing surface albedo model(root mean square error=4.66, mean absolute percent error=25.46% and theil inequality coefficient=0.74). This result indicated that the bare soil albedo greatly improved the accuracy of SM estimation and mapping. As this method eliminated the effect of vegetation cover and restored the inherent soil spectra, it not only quantitatively estimates and maps SM at regional scales with high accuracy, but also provides a new way of improving the accuracy of soil organic matter estimation and mapping.
基金Supported by the National Key Research and Development Program of China(No.2016YFC1402003)the National Natural Science Foundation of China(No.41671436)the Innovation Project of LREIS(No.O88RAA01YA)
文摘Sanduao is an important sea-breeding bay in Fujian,South China and holds a high economic status in aquaculture.Quickly and accurately obtaining information including the distribution area,quantity,and aquaculture area is important for breeding area planning,production value estimation,ecological survey,and storm surge prevention.However,as the aquaculture area expands,the seawater background becomes increasingly complex and spectral characteristics differ dramatically,making it difficult to determine the aquaculture area.In this study,we used a high-resolution remote-sensing satellite GF-2 image to introduce a deep-learning Richer Convolutional Features(RCF)network model to extract the aquaculture area.Then we used the density of aquaculture as an assessment index to assess the vulnerability of aquaculture areas in Sanduao.The results demonstrate that this method does not require land and water separation of the area in advance,and good extraction can be achieved in the areas with more sediment and waves,with an extraction accuracy>93%,which is suitable for large-scale aquaculture area extraction.Vulnerability assessment results indicate that the density of aquaculture in the eastern part of Sanduao is considerably high,reaching a higher vulnerability level than other parts.
基金Satellite Application Centre partially funds this project,Indian Space Research Organization(ISRO)under the grant No:ISRO/RES/3/789/18-19.The authors are thankful to the agency for supporting this research.
文摘Purpose-Extracting suitable features to represent an image based on its content is a very tedious task.Especially in remote sensing we have high-resolution images with a variety of objects on the Earth’s surface.Mahalanobis distance metric is used to measure the similarity between query and database images.The low distance obtained image is indexed at the top as high relevant information to the query.Design/methodology/approach-This paper aims to develop an automatic feature extraction system for remote sensing image data.Haralick texture features based on Contourlet transform are fused with statistical features extracted from the QuadTree(QT)decomposition are developed as feature set to represent the input data.The extracted features will retrieve similar images from the large image datasets using an image-based query through the web-based user interface.Findings-The developed retrieval system performance has been analyzed using precision and recall and F1 score.The proposed feature vector gives better performance with 0.69 precision for the top 50 relevant retrieved results over other existing multiscale-based feature extraction methods.Originality/value-The main contribution of this paper is developing a texture feature vector in a multiscale domain by combining the Haralick texture properties in the Contourlet domain and Statistical features using QT decomposition.The features required to represent the image is 207 which is very less dimension compare to other texture methods.The performance shows superior than the other state of art methods.
文摘A topic studied in cartography is to make the extraction of cartographic features that provide the update of cartographic maps more easily. For this reason many automatic routines were created with the intent to perform the features extraction. Despite of all studies about this, some features cannot be found by the algorithm or it can extract some pixels unduly. So the current article aims to show the results with the software development that uses the original and reference image to calculate some statistics about the extraction process. Furthermore, the calculated statistics can be used to evaluate the extraction process.