期刊文献+
共找到130篇文章
< 1 2 7 >
每页显示 20 50 100
TENSILE TESTING OF C/C COMPOSITES AT HIGH TEMPERATURES
1
作者 Zhou, S.R. Qiao, S.R. +1 位作者 Bai, S.H. Tian, C.S. 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1999年第1期97-103,共7页
The tensile properties of three different carbonfiberreinforced carbon composites (C/C), mat C/C, 2D laminate and 4D C/C, were investigated under the combined influence of temperature and loading rate. From the experi... The tensile properties of three different carbonfiberreinforced carbon composites (C/C), mat C/C, 2D laminate and 4D C/C, were investigated under the combined influence of temperature and loading rate. From the experiments the following could be concluded: loading rate between 10-1-10 mm/min was valid; the fracture stress of the three kinds of C/C composites increased with increasing temperature in the range from room temperature to 1900, and the initial modulus of 2D laminate C/C composites increased with the increase of temperature up to 2000. 展开更多
关键词 tensile testing C/C composite high temperature mechanical property
下载PDF
Study on mechanical properties of composite materials by in-situ tensile test
2
作者 黄海波 李凡 《Journal of Southeast University(English Edition)》 EI CAS 2004年第1期49-52,共4页
The mechanical properties of the SiC fiber-reinforced Mg-Al metal matrix composite materials have been studied on internal microstructure by (scanning electron microscopy) SEM in-situ tensile test. The emergence and p... The mechanical properties of the SiC fiber-reinforced Mg-Al metal matrix composite materials have been studied on internal microstructure by (scanning electron microscopy) SEM in-situ tensile test. The emergence and propagation of the crack, and the fracture behavior in materials have been observed and studied. It is found that in the case of the tensile test, the crack emerged in SiC fiber initially. In the case of the strong cohesion of the fiber-metal interface, the crack propagated in the fiber, meanwhile the fibers in the neighborhood of the cracked fiber began to crack and the Mg-Al metal deformed plastically, and at last the material fractured. Otherwise the toughness of the materials grows in the case of the lower cohesion of the fiber-metal matrix interface. 展开更多
关键词 Cracks Fiber reinforced materials Interfaces (materials) Mechanical properties MICROSTRUCTURE Scanning electron microscopy Silicon carbide tensile testing
下载PDF
Acoustic emission activity in directly tensile test on marble specimens and its tensile damage constitutive model 被引量:12
3
作者 Ruifu Yuan Bowen Shi 《International Journal of Coal Science & Technology》 EI 2018年第3期295-304,共10页
For understanding acoustic emission (AE) activity and accumulation of micro-damage inside rock under pure tensile state, the AE signals has been monitored on the test of directly tension on two kinds of marble speci... For understanding acoustic emission (AE) activity and accumulation of micro-damage inside rock under pure tensile state, the AE signals has been monitored on the test of directly tension on two kinds of marble specimens. A tensile constitutive model was proposed with the damage factor calculated by AE energy rate. The tensile strength of marble was discrete obviously and was sensitive to the inside microdefects and grain composition. With increasing of loading, the tensile stress-strain curve obviously showed nonlinear with the tensile tangent modulus decreasing. In repeated loading cycle, the tensile elastic modulus was less than that in the previous loading cycle because of the generation of micro damage during the prior loading. It means the linear weakening occurring in the specimens. The AE activity was corresponding with occurrence of nonlinear deformation. In the initial loading stage which only elastic deformation happened on the specimens, there were few AE events occurred; while when the nonlinear deformation happened with increasing of loading, lots of AE events were generated. The quantity and energy of AE events were proportionally related to the variation of tensile tangent modulus. The Kaiser effect of AE activity could be clearly observed in tensile cycle loading. Based on the theory of damage mechanics, the damage factor was defined by AE energy rate and the tensile damage constitutive model was proposed which only needed two property constants. The theoretical stress-strain curve was well fitted with the curve plotted with tested datum and the two property constants were easily gotten by the laboratory testing. 展开更多
关键词 Marble specimens Direct tensile test Acoustic emission tensile tangent modulus Damage constitutive model
下载PDF
Characterization of microstructure and strain response in Ti-6Al-4V plasma welding deposited material by combined EBSD and in-situ tensile test 被引量:2
4
作者 Martin BORLAUG MATHISEN Lars ERIKSEN +2 位作者 Yingda YU Ola JENSRUD Jarle HJELEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第12期3929-3943,共15页
Additive layer manufacturing (ALM) of aerospace grade titanium components shows great promise in supplying a cost-effective alternative to the conventional production routes. Complex microstructures comprised of col... Additive layer manufacturing (ALM) of aerospace grade titanium components shows great promise in supplying a cost-effective alternative to the conventional production routes. Complex microstructures comprised of columnar remnants of directionally solidifiedβ-grains, with interior inhabited by colonies of finerα-plate structures, were found in samples produced by layered plasma welding of Ti-6Al-4V alloy. The application of in-situ tensile tests combined with rapid offline electron backscatter diffraction (EBSD) analysis provides a powerful tool for understanding and drawing qualitative correlations between microstructural features and deformation characteristics. Non-uniform deformation occurs due to a strong variation in strain response between colonies and across columnar grain boundaries. Prismatic and basal slip systems are active, with the prismatic systems contributing to the most severe deformation through coarse and widely spaced slip lines. Certain colonies behave as microstructural units, with easy slip transmission across the entire colony. Other regions exhibit significant deformation mismatch, with local build-up of strain gradients and stress concentration. The segmentation occurs due to the growth morphology and variant constraints imposed by the columnar solidification structures through orientation relationships, interface alignment and preferred growth directions. Tensile tests perpendicular to columnar structures reveal deformation localization at columnar grain boundaries. In this work connections are made between the theoretical macro- and microstructural growth mechanisms and the observed microstructure of the Ti-6Al-4V alloy, which in turn is linked to observations during in-situ tensile tests. 展开更多
关键词 Ti-6Al-4V alloy additive layer manufacturing electron backscatter diffraction in-situ tensile test plasma arc welding MICROSTRUCTURE plastic deformation
下载PDF
Microstructural Changes of Graphene/PLA/PBC Nanofibers by Electrospinning during Tensile Tests 被引量:2
5
作者 程伟东 任传慧 +5 位作者 顾晓华 吴昭君 邢雪青 默广 陈中军 吴忠华 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第3期95-98,共4页
This study focuses on the nanostructure and nanostructural changes of novel graphene/poly(lactic acid) (PLA)/ poly(butylene carbonate) (PBC) nanofibers via electrospinning, which are characterized by different... This study focuses on the nanostructure and nanostructural changes of novel graphene/poly(lactic acid) (PLA)/ poly(butylene carbonate) (PBC) nanofibers via electrospinning, which are characterized by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), tensile test and in situ small angle x-ray scattering. DSC indicates that the endothermic peak at 295℃ of pure PLA/PBC nanofibers shifted from 317℃ to lower 290℃ with the increasing graphene content. SEM observations reveal a fine dispersion of graphene in the nanofiber matrices. The graphene/PLA/PBC nanofiSers exhibit good improvements in mechanical property. The tensile strength of nanofibers increases with the addition of 0.01 g graphene but reduces with further addition of 0.04g graphene. The scattering intensities increase dramatically when the strain levels are higher than the yield point due to the nucleation and growth of nanovoids or crystals. However, the increasing content of graphene in the PLA/PBC matrix provokes a strong restriction to the deformation-induced crystals. 展开更多
关键词 PLA Microstructural Changes of Graphene/PLA/PBC Nanofibers by Electrospinning during tensile tests PBC
下载PDF
TENSILE TEST AND PHYSICAL MODEL OF NiTi SHAPE MEMORY ALLOY 被引量:1
6
作者 HUZi-li WANGXin-wei XIONGKe 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2004年第4期267-271,共5页
The tensile stress-strain curves of NiTi wires are obtained by tensile experiments under different heat treatments. A phenomenological physical model based on hysteresis element method is developed to describe the exp... The tensile stress-strain curves of NiTi wires are obtained by tensile experiments under different heat treatments. A phenomenological physical model based on hysteresis element method is developed to describe the experimentally determined stress-strain curves of shape memory alloy (SMA) wires. Numerical simulations are made. Simulation results show that:(1) a series of unusual changes on physical and mechanical properties of SMA wires occur when martensitic, especially R (rhombohedral) phase transformation emerge. The stress-strain relation of SMA wires is highly non-linear; (2) there are no notable yielding phenomena before NiTi wires are broken; (3) numerical results obtained by the physical model are in good agreement with experimental data. 展开更多
关键词 SMA tensile test physical model numerical simulation constitutive relation
下载PDF
Analysis on the deformation and fracture behavior of carbon steel by in situ tensile test 被引量:1
7
作者 Fan Li Haibo Huang 《Journal of University of Science and Technology Beijing》 CSCD 2006年第6期504-507,共4页
The deformation and fracture behaviors of low-carbon steel, medium-carbon steel, and high-carbon steel were studied on internal microstructure using the scanning electron microscopy in situ tensile test. The microstru... The deformation and fracture behaviors of low-carbon steel, medium-carbon steel, and high-carbon steel were studied on internal microstructure using the scanning electron microscopy in situ tensile test. The microstructure mechanism of their deformation and fracture behavior was analyzed. The results show that the deformation and fracture behavior of low-carbon steel depends on the grain size of ferrite, the deformation and fracture behavior of medium-carbon steel depends on the size of ferrite grain and pearlite lump, and the deformation and fracture behavior of high-carbon steel depends on the size of pearlite lump and the pearlitic interlamellar spacing. 展开更多
关键词 carbon steel DEFORMATION FRACTURE microstructure mechanism in situ tensile test
下载PDF
Tensile strength and failure behavior of rock-mortar interfaces: Direct and indirect measurements 被引量:1
8
作者 Ghasem Shams Patrice Rivard Omid Moradian 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期41-55,共15页
The tensile strength at the rock-concrete interface is one of the crucial factors controlling the failure mechanisms of structures,such as concrete gravity dams.Despite the critical importance of the failure mechanism... The tensile strength at the rock-concrete interface is one of the crucial factors controlling the failure mechanisms of structures,such as concrete gravity dams.Despite the critical importance of the failure mechanism and tensile strength of rock-concrete interfaces,understanding of these factors remains very limited.This study investigated the tensile strength and fracturing processes at rock-mortar interfaces subjected to direct and indirect tensile loadings.Digital image correlation(DIC)and acoustic emission(AE)techniques were used to monitor the failure mechanisms of specimens subjected to direct tension and indirect loading(Brazilian tests).The results indicated that the direct tensile strength of the rock-mortar specimens was lower than their indirect tensile strength,with a direct/indirect tensile strength ratio of 65%.DIC strain field data and moment tensor inversions(MTI)of AE events indicated that a significant number of shear microcracks occurred in the specimens subjected to the Brazilian test.The presence of these shear microcracks,which require more energy to break,resulted in a higher tensile strength during the Brazilian tests.In contrast,microcracks were predominantly tensile in specimens subjected to direct tension,leading to a lower tensile strength.Spatiotemporal monitoring of the cracking processes in the rock-mortar interfaces revealed that they show AE precursors before failure under the Brazilian test,whereas they show a minimal number of AE events before failure under direct tension.Due to different microcracking mechanisms,specimens tested under Brazilian tests showed lower roughness with flatter fracture surfaces than those tested under direct tension with jagged and rough fracture surfaces.The results of this study shed light on better understanding the micromechanics of damage in the rock-concrete interfaces for a safer design of engineering structures. 展开更多
关键词 Rock-mortar Rock-concrete Moment tensor inversion(MTI) Acoustic emission(AE) Digital image correlation(DIC) tensile strength Direct tensile test Brazilian test
下载PDF
A METHOD TO QUANTIFY CRAZING DEFORMATION BY TENSILE TESTS FOR POLYSTYRENE/POLYOLEFIN ELASTOMER IMMISCIBLE BLENDS
9
作者 方征平 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2007年第4期387-392,共6页
A method to quantify crazing deformations by tensile tests for polystyrene (PS) and polyolefin elastomer (POE) blends was investigated. The toughness of PS/POE blends, reflected by the Charpy impact strength, incr... A method to quantify crazing deformations by tensile tests for polystyrene (PS) and polyolefin elastomer (POE) blends was investigated. The toughness of PS/POE blends, reflected by the Charpy impact strength, increased with the content of POE. SEM micrographs showed the poor compatibility between PS and POE. In simple tensile tests, it is very easy to achieve the ratio of crazing deformation, i.e. K by measuring the size changes of samples. The K values decreased with increasing the content of POE, and the deformations of PS/POE blends were dominated by crazing. The plots of the change of volume (△V) against longitudinal variation (△I) showed a linear relationship, and the slope of lines decreased with the content of POE. Measuring samples at the tensile velocities of 5 mm/min, 50 mm/min, and 500 mm/min respectively, the K values kept unchanged for each PS/POE blends. 展开更多
关键词 Crazing deformation Shear yielding deformation tensile test Polystyrene (PS) Polyolefin elastomer (POE) Blend.
下载PDF
Study of Deformation Coating for Sheets by Using Tensile Test
10
作者 Milan Dvorak Emil Schwarzer Milos Klima 《Journal of Surface Engineered Materials and Advanced Technology》 2015年第2期73-83,共11页
This article focuses on the study of the defined values of tensile strain and the effect of low temperature plasma adhesion selected coatings on steel samples using a tensile testing flat test bars. Samples were made ... This article focuses on the study of the defined values of tensile strain and the effect of low temperature plasma adhesion selected coatings on steel samples using a tensile testing flat test bars. Samples were made by machining and welding technologies. The flat test bars were tested by pulling on a test rig UPC 1200. Part of the samples was treated on the surface prior to coating by a tensile test, second base coat and with a final coat continuous multi plasma system. The selected test samples were determined from the tensile test of the material characteristics apparent from the tensile diagrams. The examined samples were fitted top and base coat. Another group was the KTL basis. The presented graphs show the dependence of the strength on elongation of a sample according to DIN EN ISO 6892-2. The samples were then examined under a stereo microscope SCHUT brand, type SSM-E in the laboratory to conduct coating on a steel sheet at the moment of total violation sectional samples. The base layer, in which the temperature ranges from 160°C - 180°C, was applied by electrophoresis method. 展开更多
关键词 tensile test Sheet with Coating Adhesion of Coating Multi-Jet Plasma System
下载PDF
Effects of ultrasonic vibration on plastic deformation of AZ31 during the tensile process 被引量:16
11
作者 Tong Wen Li Wei Xia Chen Chun-lei Pei 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2011年第1期70-76,共7页
An investigation on the plastic behavior of AZ31 magnesium alloy under ultrasonic vibration(with a frequency of 15 kHz and a maximum output of 2 kW) during the process of tension at room temperature was conducted to... An investigation on the plastic behavior of AZ31 magnesium alloy under ultrasonic vibration(with a frequency of 15 kHz and a maximum output of 2 kW) during the process of tension at room temperature was conducted to reveal the volume effect of the vibrated plastic deformation of AZ31.The characteristics of mechanical properties and microstructures of AZ31 under routine and vibrated tensile processes with different amplitudes were compared.It is found that ultrasonic vibration has a remarkable influence on the plastic behavior of AZ31 which can be summarized into two opposite aspects:the softening effect which reduces the flow resistance and improves the plasticity,and the hardening effect which decreases the formability.When a lower amplitude or vibration energy is applied to the tensile sample,the softening effect dominates,leading to a decrease of AZ31 deformation resistance with an increase of formability.Under the application of a high-vibrating amplitude,the hardening effect dominates,resulting in the decline of plasticity and brittle fracture of the samples. 展开更多
关键词 ultrasonic effects tensile testing magnesium alloys plastic deformation
下载PDF
Effects of ultrasonic vibration on performance and microstructure of AZ31 magnesium alloy under tensile deformation 被引量:8
12
作者 XIE Zhen-dong GUAN Yan-jin +2 位作者 YU Xiao-hui ZHU Li-hua LIN Jun 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第7期1545-1559,共15页
Ultrasonic vibration can reduce the forming force, decrease the friction in the metal forming process and improve the surface quality of the workpiece effectively. Tensile tests of AZ31 magnesium alloy were carried ou... Ultrasonic vibration can reduce the forming force, decrease the friction in the metal forming process and improve the surface quality of the workpiece effectively. Tensile tests of AZ31 magnesium alloy were carried out. The stress–strain relationship, fracture modes of tensile specimens, microstructure and microhardness under different vibration conditions were analyzed, in order to study the effects of the ultrasonic vibration on microstructure and performance of AZ31 magnesium alloy under tensile deformation. The results showed that the different reductions of the true stress appeared under various ultrasonic vibration conditions, and the maximum decreasing range was 4.76%. The maximum microhardness difference among the 3 nodes selected along the specimen was HV 10.9. The fracture modes, plasticity and microstructure of AZ31 magnesium alloy also were affected by amplitude and action time of the ultrasonic vibration. The softening effect and the hardening effect occurred simultaneously when the ultrasonic vibration was applied. When the ultrasonic amplitude was 4.6 μm with short action time, the plastic deformation was dominated by twins and the softening effect was dominant. However, the twinning could be inhibited and the hardening effect became dominant in the case of high ultrasonic energy. 展开更多
关键词 ultrasonic vibration tensile test AZ31 magnesium alloy plastic behavior MICROSTRUCTURE
下载PDF
Variation of the mechanical properties of tungsten heavy alloys tested at different temperatures 被引量:4
13
作者 S.H.Islam 《Rare Metals》 SCIE EI CAS CSCD 2011年第4期392-395,共4页
The high-temperature mechanical properties of 95W-3.5Ni-1.5Fe and 95W-4.5Ni-0.5Co alloys were investigated in the temperature range of room temperature to1100℃. The yield strength and tensile strengths declined gradu... The high-temperature mechanical properties of 95W-3.5Ni-1.5Fe and 95W-4.5Ni-0.5Co alloys were investigated in the temperature range of room temperature to1100℃. The yield strength and tensile strengths declined gradually, and the ductility of both alloys increased as the testing temperature was increased to 300℃. All the three properties reached a plateau at temperatures between 300 and 500℃ in the case of 95W-3.5Ni-l.5Fe and at temperatures between 350 and 700℃ in the case of 95W-4.5Ni-0.5Co. Thereafter, the ductility as well as yield and tensile strengths decreased considerably. 展开更多
关键词 liquid phase sintering tungsten alloys tensile testing mechanical properties
下载PDF
A multifunctional rock testing system for rock failure analysis under different stress states: Development and application 被引量:3
14
作者 Shucai Li Jie Hu +4 位作者 Florian Amann Liping Li Hongliang Liu Shaoshuai Shi Pooya Hamdi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第5期1531-1544,共14页
The stress state in a rock mass is complex. Stress redistribution around underground excavation may lead to various failure modes, including compressive-shear, tensile-shear, and tensile failures. The ability to perfo... The stress state in a rock mass is complex. Stress redistribution around underground excavation may lead to various failure modes, including compressive-shear, tensile-shear, and tensile failures. The ability to perform laboratory tests with these complex stress states is significant for establishing new strength criteria. The present paper introduces a new rock testing system with “tensile-compressive-shear”loading functions. The device includes bi-directional and double-range hydraulic cylinders, auxiliary loading equipment, and roller rows that can perform direct compressive-shear tests, direct tensile tests,and direct tensile-shear tests. The testing system provides maximum vertical and lateral loading forces of2000 k N and allows testing cubical rock specimens with dimensions of 0.5 m × 0.5 m × 0.5 m. The performance of the testing machine was evaluated by testing a rock-like material based on cement mortar under compressive-shear, tensile, and tensile-shear stress states. The failure process and deformation characteristics were monitored during loading using acoustic emission(AE) transient recorder,piezoelectric AE sensors, a high-speed camera, and a thermal infrared camera. The failure mechanism was investigated by analyzing AE counts, AE amplitude, strain, and temperature changes on the rock specimen surface. The test results confirmed that the testing system could successfully simulate the abovementioned stress path. The AE counts and amplitude responses were influenced by different failure modes. The temperature response during the compressive-shear test indicated the development of a high-temperature band on the rock specimen surface. In contrast, a negligible temperature change was observed during the tensile and tensile-shear tests. The newly developed multifunctional rock testing system allows laboratory tests under various failure modes. The monitoring results of multiple variables during rock failure tests provide valuable information on failure characteristics. 展开更多
关键词 Rock testing system Compressive-shear test tensile test tensile-shear test Failure behavior Multiple variable evolutions
下载PDF
TENSILE PROPERTIES AND CREEP RESISTANCE OF AZ91 ALLOY CONTAINING ANTIMONY 被引量:2
15
作者 Yuan, G.Y. Sun, Y.S. +1 位作者 Zhang, W.M. Bao, Y.H. 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第3期867-871,共5页
Small amount of antimony addition to the Mg-9Al-0.8Zn-0.2Mn(AZ91) alloy results in the obvious increase of tensile strength at both ambient and elevated temperatures. The creep resistance at the temperatures up to 200... Small amount of antimony addition to the Mg-9Al-0.8Zn-0.2Mn(AZ91) alloy results in the obvious increase of tensile strength at both ambient and elevated temperatures. The creep resistance at the temperatures up to 200°C is also improved significantly by antimony addition. Microstructural observations revealed that the addition of antimony modifies morphology of the β(Mg17Al12) phase and causes the formation of some rod-shaped precipitates Mg3Sb2 at grain boundaries. These precipitates have high thermal stability and play an important role for strengthening grain boundaries at elevated temperatures. 展开更多
关键词 Aluminum alloys ANTIMONY Automobile materials Creep testing Grain boundaries MICROSTRUCTURE tensile stress tensile testing Zinc alloys
下载PDF
TENSILE STRESS RELAXATION OF TURBINE BOLT STEELS AT HIGH TEMPERATURE 被引量:3
16
作者 G.Q.Jia H.W.Shen Y.M.Zhu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第4期542-547,共6页
Stress relaxation behavior of two turbine bolt steels was evaluated by the manual-controlled tensile stress relaxation test (TSRT) at high temperature. First, feasibility and the procedure of the manual-controlled ten... Stress relaxation behavior of two turbine bolt steels was evaluated by the manual-controlled tensile stress relaxation test (TSRT) at high temperature. First, feasibility and the procedure of the manual-controlled tensile stress relaxation test (TSRT) is discussed and carried out on a general creep testing machine. And then, the experimental results from such type of test were compared to the existing data provided by certain Laboratory U.K. Overall good agreement between the results of manual-controlled TSRT method and the existing data provides confidence in the use of the proposed method in practice. Finally, the experimental results of turbine bolt steels from TSRT were compared with that of bending test. It is observed that great difference exists between the results from two different type stress relaxation tests. It is therefore suggested that the results from TSRT method be adopted in turbine bolt design in engineering. 展开更多
关键词 tensile stress-relaxation test bending stress-relaxation test turbine bolt steels
下载PDF
Effect of discrete fibre reinforcement on soil tensile strength 被引量:11
17
作者 Jian Li Chaosheng Tang +2 位作者 Deying Wang Xiangjun Pei Bin Shi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第2期133-137,共5页
The tensile behaviour of soil plays a significantly important role in various engineering applications. Compacted soils used in geotechnical constructions such as dams and clayey liners in waste containment facilities... The tensile behaviour of soil plays a significantly important role in various engineering applications. Compacted soils used in geotechnical constructions such as dams and clayey liners in waste containment facilities can suffer from cracking due to tensile failure. In order to increase soil tensile strength, discrete fibre reinforcement technique was proposed. An innovative tensile apparatus was developed to deter- mine the tensile strength characteristics of fibre reinforced soil. The effects of fibre content, dry density and water content on the tensile strength were studied. The results indicate that the developed test apparatus was applicable in determining tensile strength of soils. Fibre inclusion can significantly in- crease soil tensile strength and soil tensile failure ductility. The tensile strength basically increases with increasing fibre content. As the fibre content increases from 0% to 0.2%, the tensile strength increases by 65.7%. The tensile strength of fibre reinforced soil increases with increasing dry density and decreases with decreasing water content. For instance, the tensile strength at a dry density of 1.7 Mg/m^3 is 2.8 times higher than that at 1.4 Mg/m^3. It decreases by 30% as the water content increases from 14.5% to 20.5%. Furthermore, it is observed that the tensile strength of fibre reinforced soil is dominated by fibre pull-out resistance, depending on the interracial mechanical interaction between fibre surface and soil matrix. 展开更多
关键词 Fibre reinforced soil tensile strength Direct tensile test Fibre contentDry density Water content
下载PDF
Study on the Forming Limit Nomogram of Tensile Stamping Operations 被引量:1
18
作者 DachangKANG HaobinTIAN ShihongZHANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第3期363-364,共2页
Based on plasticity theory and physical experiments, the quantitative relationships between elongation δ obtained byuniaxial tensile test and forming limits of tensile stamping operations are given, which mainly reso... Based on plasticity theory and physical experiments, the quantitative relationships between elongation δ obtained byuniaxial tensile test and forming limits of tensile stamping operations are given, which mainly resolves the problem thatforming limits can be derived from simple tensile test. The forming limit nomogram of tensile stamping operationsis also established to apply to engineering. 展开更多
关键词 NOMOGRAM tensile test Forming limit tensile stamping
下载PDF
Process Evaluation, Tensile Properties and Fatigue Resistance of Chopped and Continuous Fiber Reinforced Thermoplastic Composites by 3D Printing 被引量:1
19
作者 Wei Chen Qiuju Zhang +1 位作者 Han Cao Ye Yuan 《Journal of Renewable Materials》 SCIE EI 2022年第2期329-358,共30页
The aim of this article was to comprehensively evaluate the manufacturing process,tensile properties and fatigue resistance of the chopped and continuous fiber reinforced thermoplastic composites(CFRTPCs)by 3D printin... The aim of this article was to comprehensively evaluate the manufacturing process,tensile properties and fatigue resistance of the chopped and continuous fiber reinforced thermoplastic composites(CFRTPCs)by 3D printing.The main results included:the common defects of the printed CFRTPCs contained redundant and accumulation defects,scratch and warping defects;the continuous fiber contributed to the dimensional stability and accuracy of width and thickness;associations between mass percentage of fiber reinforcement and the averages of elastic mod-ulus,strain at break and ultimate tensile strength were approximately linear based on tensile test results;the fati-gue resistance improved with the increasing fiber reinforcement based on fatigue test results.As for specimens with four fiber rings,there was a good linear relationship between the stress level and logarithm value of cycles during the whole life while those of pure matrix and specimens with one and two fiber rings were piecewise linear,taking about 10,000 cycles as boundary.The micro morphology showed that the fatigue failure behaved as matrix fracture,large and small fiber bundles and single fibers extracted from matrix.Under the tension-tension fatigue load,the deformations where easily concentrating stress behaved as sunken surfaces along thickness and width directions,and the deformation along width direction was greater than that along thickness direction. 展开更多
关键词 CFRTPCs 3D printing tensile test fatigue behavior stress level micro morphology
下载PDF
Effect laws and mechanisms of different temperatures on isothermal tensile fracture morphologies of high-strength boron steel 被引量:1
20
作者 刘佳宁 宋燕利 +1 位作者 路珏 郭巍 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1191-1202,共12页
The fracture behaviour and morphologies of high-strength boron steel were investigated at different temperatures at a constant strain rate of 0.1 s-1 based on isothermal tensile tests. Fracture mechanisms were also an... The fracture behaviour and morphologies of high-strength boron steel were investigated at different temperatures at a constant strain rate of 0.1 s-1 based on isothermal tensile tests. Fracture mechanisms were also analyzed based on the relationship between microstructure transformation and continuous cooling transformation(CCT) curves. It is found that 1) fractures of the investigated steel at high temperatures are dimple fractures; 2) the deformation of high-strength boron steel at high temperatures accelerates diffusion transformations; thus, to obtain full martensite, a higher cooling rate is needed; and 3) the investigated steel has the best plasticity when the deformation temperature is 750 °C. 展开更多
关键词 high-strength boron steel fracture morphology isothermal tensile test
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部