期刊文献+
共找到52篇文章
< 1 2 3 >
每页显示 20 50 100
Influence of temperature on tensile behavior and deformation mechanism of Re-containing single crystal superalloy 被引量:5
1
作者 刘金来 于金江 +3 位作者 金涛 孙晓峰 管恒荣 胡壮麒 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第7期1518-1523,共6页
Tensile properties of a Re-containing single crystal superalloy were determined within the temperature range from 20 to 1 100 ℃with a constant strain rate of 1.67 ×10^-4 s^-1.From room temperature to 600 ℃,the ... Tensile properties of a Re-containing single crystal superalloy were determined within the temperature range from 20 to 1 100 ℃with a constant strain rate of 1.67 ×10^-4 s^-1.From room temperature to 600 ℃,the yield strength increases slightly with increasing temperature.The yield strength decreases to aminimum at 760 ℃,while a maximum is reached dramatically at 800 ℃.The elongation and area reduction decrease gradually from room temperature to 800 ℃.Above 800 ℃,the yield strength decreases significantly with increasing temperature.The γ' phase is sheared by antiphase boundary (APB) below 600 ℃while elongated SSF (superlattice stacking fault) is left in γ' as debris.At 760 ℃the γ' phase is sheared by a/3 112 superpartial dislocation,which causes decrease of yield strength due to low energy of SSF.Above 800 ℃dislocations overcome γ' through by-passing mechanism. 展开更多
关键词 single crystal superalloy tensile behavior yield strength MICROSTRUCTURE
下载PDF
Quasi-static and dynamic tensile behaviors in electron beam welded Ti-6Al-4V alloy
2
作者 张静 谭成文 +2 位作者 任宇 王富耻 才鸿年 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第1期39-44,共6页
The quasi-static and dynamic tensile behaviors in electron beam welded(EBW) Ti-6Al-4V alloy were investigated at strain rates of 10-3 and 103 s-1,respectively,by materials test system(MTS) and reconstructive Hopki... The quasi-static and dynamic tensile behaviors in electron beam welded(EBW) Ti-6Al-4V alloy were investigated at strain rates of 10-3 and 103 s-1,respectively,by materials test system(MTS) and reconstructive Hopkinson bars apparatus.The microstructures of the base metal(BM) and the welded metal(WM) were observed with optical microscope.The fracture characteristics of the BM and WM were characterized with scanning electronic microscope.In Ti-6Al-4V alloy joint,the flow stress of WM is higher than that of BM,while the fracture strain of WM is less than that of BM at strain rates of 103 and 10-3 s-1,respectively.The fracture strain of WM has apparent improvement when the strain rate rises from 10-3 to 103 s-1,while the fracture strain of BM almost has no change.At the same time,the fracture mode of WM alters from brittle to ductile fracture,which causes improvement of the fracture strain of WM. 展开更多
关键词 Ti-6Al-4V alloy electron beam welding quasi-static tensile behavior dynamic behavior fracture mode
下载PDF
Microstructure and tensile behavior of hot extruded AZ91 alloys at room temperature 被引量:10
3
作者 Yuanyuan Li, Datong Zhang, Ying Liu, Yan Long, and Weiping ChenCollege of Mechanical Engineering, South China University of Technology Guangzhou 510640, China 《Journal of University of Science and Technology Beijing》 CSCD 2002年第5期352-355,共4页
AZ91 alloys were prepared by hot extrusion and its microstructure and tensile behavior at room temperature were investigated. Compared to as-cast ingot, the grain size of hot-extruded material is more refined, the int... AZ91 alloys were prepared by hot extrusion and its microstructure and tensile behavior at room temperature were investigated. Compared to as-cast ingot, the grain size of hot-extruded material is more refined, the intermetallic phase MgnAl12 is broken and dispersed discontinuously. Both strength and elongation of AZ91 are improved by hot extrusion. Tensile behavior and fracture surface of the experimental material were studied. Due to the change in microstructure, the fracture mechanism of extruded material is different from that of as-cast ingot, the latter is mainly a brittle fracture. Ductile fracture plays a role in hot-extruded AZ91 failure at room temperature. 展开更多
关键词 magnesium alloy hot extrusion MICROSTRUCTURE tensile behavior
下载PDF
Preparation and Dynamic Tensile Behavior of C200 Green Reactive Powder Concrete 被引量:3
4
作者 ZHANG Yunsheng SUN Wei LIU Sifeng JIAO Chujie LAI Jianzhong 《Transactions of Tianjin University》 EI CAS 2006年第B09期258-263,共6页
A new type of green reactive powder concrete (GRPC) with compressive strength of 200 MPa is prepared by utilizing composite mineral admixtures, natural fine aggregates, and short and fine steel fibers. The quasi-stati... A new type of green reactive powder concrete (GRPC) with compressive strength of 200 MPa is prepared by utilizing composite mineral admixtures, natural fine aggregates, and short and fine steel fibers. The quasi-static mechanical properties (mechanical strength, toughness, fracture energy and interfacial bonding strength) of GRPC specimens, cured in three different types of regimes, are investigated. The experimental results show that the mechanical properties of the C200 GRPC made with the powder binders that is composed of 40% of Portland cement, 25% of ultra fine slag, 25% of ultra fine fly ash and 10% of silica fume are better than the others'. The corresponding compressive strength, flexural strength and fracture energy are more than 200 MPa, and 30 000 J/ m2 respectively. The dynamic tensile behavior of the C200 GRPC is also investigated through the split Hopkinson pressure bar (SHPB) according to the spalling phenomenon. The dynamic testing results demonstrate that strain rate has an important effect on the dynamic tensile behavior of GRPC. With the increase of strain rate, its peak stress and relevant strain increase. The GRPC exhibits an excellent strain ratio stiffening effect under the dynamic tensile load with high strain ratio, resulting in a significant change of the fracture pattern. 展开更多
关键词 C200 green reactive powder concrete(GRPC) dynamic tensile behavior
下载PDF
Experimental Study on Tensile Behavior of Cement Paste, Mortar and Concrete under High Strain Rates 被引量:4
5
作者 陈徐东 SHAO Yu +1 位作者 XU Lingyu CHEN Chen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第6期1268-1273,共6页
Effects of the strain rate on cement paste, mortar and concrete were studied. A modified SHPB testing technique with fl attened Brazilian disc(FBD) specimen was developed to measure the dynamic tensile stress-strain... Effects of the strain rate on cement paste, mortar and concrete were studied. A modified SHPB testing technique with fl attened Brazilian disc(FBD) specimen was developed to measure the dynamic tensile stress-strain curve of materials. A pulse-shaped split Hopkinson pressure bar(SHPB) was employed to determine the dynamic tensile mechanical responses and failure behavior of materials under valid dynamic testing conditions. Quasi-static experiments were conducted to study material strain rate sensitivity. Strain rate sensitivity of the materials was measured in terms of the stress-strain curve, elastic modulus, tensile strength and critical strain at peak stress. Empirical relations between dynamic increase factor(DIF) and the material properties were derived and presented. 展开更多
关键词 tensile behavior cement-based materials experimental study split Hopkinson pressure bar
下载PDF
Effect of Rare Earths on Tensile Behavior of Hot Roller Steel 60CrMnMo and Estimation of Roll′s Fatigue Life 被引量:1
6
作者 杨庆祥 朱广荣 +1 位作者 廖波 姚枚 《Journal of Rare Earths》 SCIE EI CAS CSCD 1997年第4期51-54,共4页
The effect of rare earth(RE) on tensile behavior of hot roller steel 60CrMnMo was investigated at the temperature when roll served The roll′s fatigue at 500 ℃ was estimated The results show that elongation δ ... The effect of rare earth(RE) on tensile behavior of hot roller steel 60CrMnMo was investigated at the temperature when roll served The roll′s fatigue at 500 ℃ was estimated The results show that elongation δ of hot roller steel 60CrMnMo can be increased by adding RE It is possible to estimate the fatigue life with tensile behavior of hot roller steel 60CrMnMo 展开更多
关键词 Rare earths Steel 60CrMnMo tensile behavior Fatigue life
下载PDF
High-temperature Tensile Behavior of Laser Welded Ti-22Al-25Nb Joints at Different Temperatures 被引量:1
7
作者 ZHANG Kezhao LEI Zhenglong +3 位作者 CHEN Yanbin YAN Chunyan FU Qiang BAO Yefeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第6期1116-1121,共6页
The high-temperature tensile behavior of laser welded Ti-22Al-25Nb (at%) joints was investigated at 500,650,800,and 1 000 ℃.The temperatures for tensile tests were selected according to the phase transformation seque... The high-temperature tensile behavior of laser welded Ti-22Al-25Nb (at%) joints was investigated at 500,650,800,and 1 000 ℃.The temperatures for tensile tests were selected according to the phase transformation sequence of Ti2AlNb-based alloys.At temperatures lower than the B2+O phase field (500 ℃) and higher than the B2+O phase field (1 000 ℃),the joints fracture in the base metal in ductile fracture mode.By contrast,the joints exhibit obvious high-temperature brittleness in the B2+O phase field (650 °C and 800 ℃).Heat treatments were conducted with respect to the thermal history of tensile specimens.Intergranular microcracks along the grain boundary of B2 phase are found in the fusion zone after the heat treatments at 650 ℃ and 800 ℃.The high-temperature brittleness at 650 ℃ and 800 ℃ is attributed to the B2→O transformation along the grain boundary.The stress concentration caused by the volume change of B2→O transformation also contributes to the high-temperature brittleness of laser welded Ti-22Al-25Nb joints. 展开更多
关键词 high-temperature tensile behavior laser welding Ti2AlNb-based alloys phase transformation
下载PDF
Monotonic tensile behavior analysis of three-dimensional needle-punched woven C/SiC composites by acoustic emission 被引量:1
8
作者 Peng Fang Laifei Cheng Litong Zhang Jingjiang Nie 《Journal of University of Science and Technology Beijing》 CSCD 2008年第3期302-306,共5页
High toughness and reliable three-dimensional needled C/SiC composites were fabricated by chemical vapor infiltration (CVI). An approach to analyze the tensile behaviors at room temperature and the damage accumulati... High toughness and reliable three-dimensional needled C/SiC composites were fabricated by chemical vapor infiltration (CVI). An approach to analyze the tensile behaviors at room temperature and the damage accumulation of the composites by means of acoustic emission was researched. Also the fracture morphology was examined by S-4700 SEM after tensile tests to prove the damage mechanism. The results indicate that the cumulative energy of acoustic emission (AE) signals can be used to monitor and evaluate the damage evolution in ceramic-matrix composites. The initiation of room-temperature tensile damage in C/SiC composites occurred with the growth of micro-cracks in the matrix at the stress level about 40% of the ultimate fracture stress. The level 70% of the fracture stress could be defined as the critical damage strength. 展开更多
关键词 C/SiC composites tensile behavior DAMAGE damage mechanism acoustic emission
下载PDF
Tensile Behavior of Strain Hardening Cementitious Composites (SHCC) Containing Reactive Recycled Powder from Various C&D Waste 被引量:1
9
作者 Ruixue Wu Tiejun Zhao +3 位作者 Peng Zhang Dingyi Yang Miao Liu Zhiming Ma 《Journal of Renewable Materials》 SCIE EI 2021年第4期743-765,共23页
This work investigates the feasibility of utilizing reactive recycled powder(RP)from construction and demolition(C&D)waste as supplementary cementitious material(SCM)to achieve a ductile strain hardening cementiti... This work investigates the feasibility of utilizing reactive recycled powder(RP)from construction and demolition(C&D)waste as supplementary cementitious material(SCM)to achieve a ductile strain hardening cementitious composites(SHCC).The recycled mortar powder(RMP)from mortar waste,recycled concrete powder(RCP)from concrete waste and recycled brick powder(RBP)from clay brick waste were first prepared,and the micro-properties and tensile behavior of SHCC containing various types and replacement ratios of RPs were determined.The incorporated RP promotes pozzolanic and filler effects,while the hydration products in cementitious materials decrease with RP incorporation;therefore,the incorporated RP decreases the compressive strength of SHCC.Attributed to the reduction in the matrix strength,the incorporated RP increases the crack-bridging extent and ductility of SHCC;the irregular micro-structure and high reactivity of RP also help the strain-hardening performance of the prepared SHCC.In addition,the strainhardening performance of SHCC containing RMP and RBP is surperior to that of SHCC with RCP and is slightly lower than that of SHCC with fly ash(FA);for instance,the ultimate strain of SHCC containing 54%FA,RMP,RCP and RBP is 3.67%,3.61%,2.52%and 3.53%,respectively.In addition,the strain-hardening behavior of an SHCC doubled mix with FA and RMP or RBP has a similar ultimate strain and a higher ultimate stress than SHCC containing only FA. 展开更多
关键词 Construction and demolition waste recycled powder strain hardening cementitious composites tensile behavior
下载PDF
In-plane Tensile Behaviors of Bi-axial Warp-Knitted Composites under Quasi-static and High Strain Rate Loading 被引量:1
10
作者 董凯 彭晓 +5 位作者 安若达 张威 张佳锦 金利民 顾伯洪 孙宝忠 《Journal of Donghua University(English Edition)》 EI CAS 2017年第4期487-491,共5页
The in-plane tensile behaviors of bi-axial warp-knitted(BWK) composites under quasi-static and high strain rates loading were experimentally analyzed in this article. The tensile tests were conducted along warp direct... The in-plane tensile behaviors of bi-axial warp-knitted(BWK) composites under quasi-static and high strain rates loading were experimentally analyzed in this article. The tensile tests were conducted along warp direction( 0°) and weft direction( 90°) at quasi-static rate of 0. 001 s^(-1) and high strain rates ranging from 1 450 to 2 540 s^(-1),respectively. It is found that the significant strain rate sensitivity can be observed in the stress-strain curves of BWK composites. The fracture morphologies of BWK composites demonstrate that the tensile failure modes are shear failure and fiber breakage under the quasi-static testing condition while interface failure and fibers pullout are at high strain rates. 展开更多
关键词 bi-axial warp-knitted(BWK) composite in-plane tensile behavior strain rate split Hopkinson tension bar(SHTB)
下载PDF
Material Properties and Tensile Behaviors of Polypropylene Geogrid and Geonet for Reinforcement of Soil Structures
11
作者 张季如 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2002年第3期83-86,共4页
The properties and tensile behaviors of polypropylene (PP) geogrids and geonets for reinforcement of soil structures are investigated.Mass per unit area of the geogrids and geonets was weighed using an electronic bala... The properties and tensile behaviors of polypropylene (PP) geogrids and geonets for reinforcement of soil structures are investigated.Mass per unit area of the geogrids and geonets was weighed using an electronic balance and aperture sizes of the geonets were exactly measured using a computer.Laboratory tests were performed using a small tensile machine capable of monitoring tensile force and displacement.Tensile failure behaviors were described,and tensile index properties such as tensile strength,maximum tensile strain,tensile forces corresponding to different strains in the geogrids and gronets were obtained.The characterization of these indexes is discussed. 展开更多
关键词 material property tensile behavior POLYPROPYLENE GEOGRID GEONET reinforcement of soil structure
下载PDF
Tensile Behavior of NiAL-9Mo Eutectic Alloy around Brittle to Ductile Transition Temperature
12
作者 WeiliREN JiantingGUO +1 位作者 GusongLI JiyangZHOU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第3期253-256,共4页
The influence of strain rate and temperature on the tensile behavior of as-cast and HIPed NiAI-9Mo eutectic alloy was investigated in the temperature range of 700-950℃ and over a strain rate range from 2.08×10-4... The influence of strain rate and temperature on the tensile behavior of as-cast and HIPed NiAI-9Mo eutectic alloy was investigated in the temperature range of 700-950℃ and over a strain rate range from 2.08×10-4 s-1 to 2.08×10-2 s-1. The results indicate that HIP process causes an enhancement in ductility and a decrease in ultimate tensile strength (UTS), yield strength (YS), average strain hardening rate as well as a drop in brittle to ductile transition temperature(BDTT) under the same condition. It is noticed that the BDTT of as-cast NiAI-9Mo is more dependent on strain rate than that of HIPed one. The brittle to ductile transition process of the alloy is related to a sharp drop in strain hardening rate. Regardless of strain rate, the fracture morphology changes from cleavage in NiAl phase and debonding along NiAI/Mo interface below the BDTT to microvoid coalescence above BDTT. The apparent activation energy of the BDT of HIPed and as-cast material are calculated to be 327 and 263 kJ/mol, respectively, suggesting that the mechanism is associated with lattice diffusion in NiAl phase. 展开更多
关键词 NiAl-9Mo Eutectic alloy BDT tensile behavior
下载PDF
Effects of Strain Rate and Texture on the Tensile Behavior of Pre-strained NiCr Microwires
13
作者 周秀文 QI Yidong +6 位作者 LIU Xudong NIU Gao YANG Bo YANG Yi ZHU Ye YU Bin 吴卫东 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第2期459-465,共7页
The stress–strain behavior and strain rate sensitivity of pre-strained Ni80Cr20(Ni20Cr) were studied at strain rates from 4.8×10^(–4)s^(–1) to 1.1×10^(–1)s^(–1). Specimens were prepared throug... The stress–strain behavior and strain rate sensitivity of pre-strained Ni80Cr20(Ni20Cr) were studied at strain rates from 4.8×10^(–4)s^(–1) to 1.1×10^(–1)s^(–1). Specimens were prepared through cold drawing with abnormal plastic deformation. The texture of the specimen was characterized using electron backscatter diffraction. Results revealed that the ultimate tensile strength and ductility of the pre-strained Ni20Cr microwires simultaneously increased with increasing strain rate. Twinning-induced negative strain rate sensitivity was discovered. Positive strain rate sensitivity was present in fracture flow stress, whereas negative strain rate sensitivity was detected in flow stress values of σ_(0.5%) and σ_(1%). Tensile test of the pre-strained Ni20Cr showed that twinning deformation predominated, whereas dislocation slip deformation dominated when twinning deformation reached saturation. The trends observed in the fractions of 2°-5°, 5°-15°, and 15°-180° grain boundaries confirmed that twinning deformation dominated the first stage. 展开更多
关键词 tensile behavior strain rate sensitivity Ni20Cr microstructure characterization microwire
下载PDF
Effect of Ta on Tensile Behavior and Deformation Mechanism of a Nickel-Based Single Crystal Superalloy
14
作者 Mingtao Ge Xinguang Wang +8 位作者 Yongmei Li Zihao Tan Xipeng Tao Yanhong Yang Liang Wang Chunhua Zhang Song Zhang Yizhou Zhou Xiaofeng Sun 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第11期1921-1934,共14页
The effects of Ta on the tensile behavior and deformation mechanisms of a Ni-based single crystal superalloy were investigated in this study from room temperature to elevated temperature.The findings demonstrated that... The effects of Ta on the tensile behavior and deformation mechanisms of a Ni-based single crystal superalloy were investigated in this study from room temperature to elevated temperature.The findings demonstrated that the higher content of Ta could improve the tensile properties of the alloy at different temperatures.Due to the different deformation mechanisms at various temperatures,the influence of Ta on tensile deformation varied.At room temperature,the higher content of Ta enhanced the solid solution strengthening,which would enhance the tensile strength of 6.5Ta alloy.After standard heat treatment of 6.5Ta alloy,precipitation of the secondaryγʹphase would hinder the movement of dislocations.When the temperature was elevated to 760℃,the higher content of Ta not only promoted the interaction of stacking faults to form Lomer-Cottrell(L-C)locks that impeded dislocation motion,but also reduced the occurrence of dislocation pile-up groups,thus enhancing the yield strength.At 1120℃,due to the narrowerγchannels and higher APB energy inγʹphase of the alloy with higher Ta addition,the processes of bypassing and shearing of dislocations were hindered,respectively.Meanwhile,the denser and more regular dislocation networks were formed in 6.5Ta alloy;and thus,the tensile strength of 6.5Ta alloy was enhanced.This study systematically investigated the effect of Ta on the tensile behavior at three different temperatures,which provided an important theoretical basis for the design of nickel-based single crystal superalloys in the future. 展开更多
关键词 TA Single crystal superalloy tensile behavior Stacking fault Deformation mechanism
原文传递
Microstructural evolution and hot tensile behavior of Mg−3Zn−0.5Zr alloy subjected to multi-pass friction stir processing
15
作者 Ji WANG Rui-dong FU +5 位作者 Tian-xiang HU Yi-jun LI Yue LIU Zhi-hua ZHU Shi-de LI Zhe-feng XU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS 2024年第11期3615-3628,共14页
The microstructures and hot tensile behaviors of ZK30 alloys subjected to single-and multi-pass friction stir processing(FSP)were systematically investigated.Following single-pass FSP(S-FSP),coarse grains underwent re... The microstructures and hot tensile behaviors of ZK30 alloys subjected to single-and multi-pass friction stir processing(FSP)were systematically investigated.Following single-pass FSP(S-FSP),coarse grains underwent refinement to 1−2μm,with a distinct basal texture emerging in the stir zone(SZ).Additionally,second-phase particles were fragmented,dispersed,and partially dissolved.Multi-pass FSP(M-FSP)further enhanced the homogeneity of the microstructure,reduced texture intensity differences,and decreased the fraction of second-phase particles by 50%.Both S-FSP and M-FSP SZs demonstrated superplasticity at strain rates below 1×10^(−3)s^(−1)and at temperatures of 250−350℃.The S-FSP SZ exhibited an elongation of 390%at 250℃and 1×10^(−4)s^(−1),while the M-FSP SZ achieved an elongation of 406%at 350℃and 1×10^(−3)s^(−1).The superplastic deformation of SZ was co-dominated by grain boundary sliding(GBS)and the solute-drag mechanism in S-FSP and mainly by GBS in M-FSP. 展开更多
关键词 ZK30 alloys multi-pass friction stir processing superplasticity microstructure hot tensile behavior
下载PDF
Microstructure evolution and tensile behavior of balanced Al−Mg−Si alloy with various homogenization parameters
16
作者 Dong JIN Hong-ying LI +5 位作者 Zhi-xiang ZHU Chang-long YANG Yao-jun MIAO Chao XU Bao-an CHEN Zhen LIU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS 2024年第11期3536-3553,共18页
The effects of homogenization parameters on the microstructure evolution and tensile behavior of a balanced Al−Mg−Si alloy were investigated using the optical microscope,scanning electron microscope,X-ray diffraction,... The effects of homogenization parameters on the microstructure evolution and tensile behavior of a balanced Al−Mg−Si alloy were investigated using the optical microscope,scanning electron microscope,X-ray diffraction,electron probe microanalyzer,differential scanning calorimetry,electrical conductivity test,and tensile test.The results show that Mg_(2)Si andβ-AlFeSi are the main intermetallic compounds in the as-cast structure,and Mg solute microsegregation is predominant inside the dendrite cell.The prediction of the full dissolution time of Mg_(2)Si by a kinetic model is consistent with the experiment.Theβ-AlFeSi in the alloy exhibits high thermal stability and mainly undergoes dissolution and coarsening during homogenization at 560℃,and only a small portion is converted toα-AlFeSi.The optimal homogenization parameters are determined as 560℃and 360 min,when considering the evolution of microstructure and resource savings.Both the strength and ductility of the alloy increased after homogenization. 展开更多
关键词 Al−Mg−Si alloy homogenization kinetic model Fe-bearing phase tensile behavior
下载PDF
Effect of hygrothermal aging on moisture diffusion and tensile behavior of CFRP composite laminates 被引量:1
17
作者 Yong DU Yu’e MA +1 位作者 Wenbo SUN Zhenhai WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第3期382-392,共11页
Carbon Fiber Reinforced Polymer(CFRP)composites are widely used in aircraft structures,because of their superior mechanical and lightweight properties.CFRP composites are often exposed to hygrothermal environments in ... Carbon Fiber Reinforced Polymer(CFRP)composites are widely used in aircraft structures,because of their superior mechanical and lightweight properties.CFRP composites are often exposed to hygrothermal environments in service.Temperature and moisture can affect the material properties of composites.In order to make clear the moisture diffusion behavior and the properties degradation of composites,the TG800/E207 composite laminates with four stacking sequences[0]16,[90]16,[±45]4s,and[(+45/0/0/-45)s]sare designed and manufactured.Moisture absorption tests are carried out at 80℃,90%RH.It is shown that the moisture absorption curves of composite laminates present a three-stage.A modified Fickian model was proposed to capture the diffusion behavior of TG800/E207 composite laminates.The relationships among the non-Fickian parameters,the environmental parameters and the stacking sequences of CFRP were correlated and compared.Results showed that the modified Fickian curve is sensitive to the diffusivity of Stage Ⅰ and Stage Ⅱ.Compared with unaged specimens,the maximum tensile stress for[0]16,[90]16,[±45]4s,and[(+45/0/0/-45)s]sdecreased by 14.94%,28.15%,11.96%,and 26.36%,respectively.The strains at failure for[0]16,[90]16,[±45]4s,and[(+45/0/0/-45)s]sdecreased by 55.38%,62.65%,46.41%,and31.71%,respectively.The elastic modulus for[0]16,[90]16,[±45]4s,and[(+45/0/0/-45)s]sincreased by 90.93%,94.57%,49.22%,and 8.22%,respectively.[90]16sample has the minimum saturated moisture content and the maximum strength degeneration. 展开更多
关键词 CFRP Hygrothermal aging Moisture diffusion Stacking sequence tensile behavior
原文传递
Determination of local constitutive behavior and simulation on tensile test of 2219-T87 aluminum alloy GTAW joints 被引量:6
18
作者 李艳军 李权 +5 位作者 吴爱萍 麻宁绪 王国庆 Hidekazu MURAKAWA 鄢东洋 吴会强 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第9期3072-3079,共8页
The local and global mechanical responses of gas tungsten arc welds(GTAW) of a 2219-T87 aluminum alloy were investigated with experiment and numerical simulation.Digital image correlation(DIC) was used to access t... The local and global mechanical responses of gas tungsten arc welds(GTAW) of a 2219-T87 aluminum alloy were investigated with experiment and numerical simulation.Digital image correlation(DIC) was used to access the local strain fields in transversely loaded welds and to determine the local stress-strain curves of various regions in the joint.The results show that the DIC method is efficient to acquire the local stress-strain curves but the curves of harder regions are incomplete because the stress and strain ranges are limited by the weakest region.With appropriate extrapolation,the complete local stress-strain curves were acquired and proved to be effective to predict the tensile behavior of the welded joint.During the tensile process,the fracture initiates from the weld toes owing to their plastic strain concentrations and then propagates along the fusion line,finally propagates into the partially melted zone(PMZ). 展开更多
关键词 aluminum alloy tensile behavior digital image correlation constitutive behavior welded joint
下载PDF
High temperature tensile deformation behavior of AZ80 magnesium alloy 被引量:4
19
作者 乔军 边福勃 +1 位作者 何敏 王瑜 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第10期2857-2862,共6页
Tensile behaviors of an AZS0 alloy were investigated by elongation-to-failure tensile tests at 300, 350, 400 and 450 ℃, and strain rates of 10-2 and 10-3 s 1. Strain-rate-change tests from 5×10-5 s-1 to 2x10-2 s... Tensile behaviors of an AZS0 alloy were investigated by elongation-to-failure tensile tests at 300, 350, 400 and 450 ℃, and strain rates of 10-2 and 10-3 s 1. Strain-rate-change tests from 5×10-5 s-1 to 2x10-2 s-1 were applied to study deformation mechanisms. The experimental data show that the material exhibits enhanced tensile ductilities of over 100% at 400 and 450 ℃ with stress exponent of 4.29 and activation energy of 149.60 kJ/mol, and initial fine grains preserve in evenly deformed gauge based on microstructure studies. The enhanced tensile ductilities are rate controlled by a competitive mechanism of grain boundary sliding and dislocation climb creep, based on which a model can successfully simulate the deformation behavior. 展开更多
关键词 AZ80 magnesium alloy tensile behavior SUPERPLASTICITY CREEP stress exponent
下载PDF
Quasi-static tensile behavior of large-diameter thin-walled Ti–6Al–4V tubes at elevated temperature 被引量:7
20
作者 Tao Zhijun Yang He +1 位作者 Li Heng Fan Xiaoguang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第2期542-553,共12页
As promising light-weight and high-performance structure components, large-diameter thin-walled (LDTW) Ti 6Al^4V titanium alloy (TC4) bent tubes are needed most urgently in many industries such as aviation and aer... As promising light-weight and high-performance structure components, large-diameter thin-walled (LDTW) Ti 6Al^4V titanium alloy (TC4) bent tubes are needed most urgently in many industries such as aviation and aerospace. Warm bending may be a feasible way for manufacturing these components. Understanding their temperature and strain rate dependent tensile behavior is the foundation for formability improvement and warm bending design. In this paper, uniaxial ten- sile tests were conducted at elevated temperatures ranging from 298 K to 873 K at tensile velocities of 2, 10, 15 mm/min. The main results show that the tensile behavior of LDTW TC4 tubes is dif- ferent from that of TC4 sheets. The typical elongation of TC4 tubes at room temperature is 10% lower than that of TC4 sheets. The flow stress of TC4 tubes decreases greatly by about 50% with the temperature rising to 873 K. At temperatures of 573-673 K, the hardening exponent is at its highest value, which means the deformation mechanism changes from twining to more dislocation movement by slipping. The fracture elongation of TC4 tubes fluctuates with increasing temperature, which is associated with changes in the deformation mechanism and with the blue brittleness. The fractography of TC4 tubes at various temperatures, especially at 673 K, shows that second phases and impurities significantly influence fracture elongation. By considering the characteristics of the tensile behavior and by properly choosing the die material, the warm bending for TC4 tubes can be achieved at temperatures of 723-823 K. 展开更多
关键词 FRACTOGRAPHY LDTW TC4 tube Strain rate tensile behavior Warm bending
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部