期刊文献+
共找到22,468篇文章
< 1 2 250 >
每页显示 20 50 100
Tensile strength and failure behavior of rock-mortar interfaces: Direct and indirect measurements 被引量:1
1
作者 Ghasem Shams Patrice Rivard Omid Moradian 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期41-55,共15页
The tensile strength at the rock-concrete interface is one of the crucial factors controlling the failure mechanisms of structures,such as concrete gravity dams.Despite the critical importance of the failure mechanism... The tensile strength at the rock-concrete interface is one of the crucial factors controlling the failure mechanisms of structures,such as concrete gravity dams.Despite the critical importance of the failure mechanism and tensile strength of rock-concrete interfaces,understanding of these factors remains very limited.This study investigated the tensile strength and fracturing processes at rock-mortar interfaces subjected to direct and indirect tensile loadings.Digital image correlation(DIC)and acoustic emission(AE)techniques were used to monitor the failure mechanisms of specimens subjected to direct tension and indirect loading(Brazilian tests).The results indicated that the direct tensile strength of the rock-mortar specimens was lower than their indirect tensile strength,with a direct/indirect tensile strength ratio of 65%.DIC strain field data and moment tensor inversions(MTI)of AE events indicated that a significant number of shear microcracks occurred in the specimens subjected to the Brazilian test.The presence of these shear microcracks,which require more energy to break,resulted in a higher tensile strength during the Brazilian tests.In contrast,microcracks were predominantly tensile in specimens subjected to direct tension,leading to a lower tensile strength.Spatiotemporal monitoring of the cracking processes in the rock-mortar interfaces revealed that they show AE precursors before failure under the Brazilian test,whereas they show a minimal number of AE events before failure under direct tension.Due to different microcracking mechanisms,specimens tested under Brazilian tests showed lower roughness with flatter fracture surfaces than those tested under direct tension with jagged and rough fracture surfaces.The results of this study shed light on better understanding the micromechanics of damage in the rock-concrete interfaces for a safer design of engineering structures. 展开更多
关键词 Rock-mortar Rock-concrete Moment tensor inversion(MTI) Acoustic emission(AE) Digital image correlation(DIC) tensile strength Direct tensile test Brazilian test
下载PDF
Pyridinic-N doping carbon layers coupled with tensile strain of FeNi alloy for activating water and urea oxidation 被引量:1
2
作者 Guangfu Qian Wei Chen +5 位作者 Jinli Chen Li Yong Gan Tianqi Yu Miaojing Pan Xiaoyan Zhuo Shibin Yin 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第4期684-694,共11页
Exploitation of oxygen evolution reaction(OER)and urea oxidation reaction(UOR)catalysts with high activity and stability at large current density is a major challenge for energy-saving H_(2) production in water electr... Exploitation of oxygen evolution reaction(OER)and urea oxidation reaction(UOR)catalysts with high activity and stability at large current density is a major challenge for energy-saving H_(2) production in water electrolysis.Herein,we use the pyridinic-N doping carbon layers coupled with tensile strain of FeNi alloy activated by NiFe_(2)O_(4)(FeNi/NiFe_(2)O_(4)@NC)for efficiently increasing the performance of water and urea oxidation.Due to the tensile strain effect on FeNi/NiFe_(2)O_(4)@NC,it provides a favorable modulation on the electronic properties of the active center,thus enabling amazing OER(η_(100)=196 mV)and UOR(E_(10)=1.32 V)intrinsic activity.Besides,the carbon-coated layers can be used as armor to prevent FeNi alloy from being corroded by the electrolyte for enhancing the OER/UOR stability at large current density,showing high industrial practicability.This work thus provides a simple way to prepare high-efficiency catalyst for activating water and urea oxidation. 展开更多
关键词 Carbon-encapsulated tensile strain Catalyst Oxygen evolution reaction Urea oxidation reaction
下载PDF
Tensile Shock Physics in Compressible Thermoviscoelastic Solid Medium
3
作者 Karan S. Surana Elie Abboud 《Applied Mathematics》 2024年第10期719-744,共26页
This paper addresses tensile shock physics in thermoviscoelastic (TVE) solids without memory. The mathematical model is derived using conservation and balance laws (CBL) of classical continuum mechanics (CCM), incorpo... This paper addresses tensile shock physics in thermoviscoelastic (TVE) solids without memory. The mathematical model is derived using conservation and balance laws (CBL) of classical continuum mechanics (CCM), incorporating the contravariant second Piola-Kirchhoff stress tensor, the covariant Green’s strain tensor, and its rates up to order n. This mathematical model permits the study of finite deformation and finite strain compressible deformation physics with an ordered rate dissipation mechanism. Constitutive theories are derived using conjugate pairs in entropy inequality and the representation theorem. The resulting mathematical model is both thermodynamically and mathematically consistent and has closure. The solution of the initial value problems (IVPs) describing evolutions is obtained using a variationally consistent space-time coupled finite element method, derived using space-time residual functional in which the local approximations are in hpk higher-order scalar product spaces. This permits accurate description problem physics over the discretization and also permits precise a posteriori computation of the space-time residual functional, an accurate measure of the accuracy of the computed solution. Model problem studies are presented to demonstrate tensile shock formation, propagation, reflection, and interaction. A unique feature of this research is that tensile shocks can only exist in solid matter, as their existence requires a medium to be elastic (presence of strain), which is only possible in a solid medium. In tensile shock physics, a decrease in the density of the medium caused by tensile waves leads to shock formation ahead of the wave. In contrast, in compressive shocks, an increase in density and the corresponding compressive waves result in the formation of compression shocks behind of the wave. Although these are two similar phenomena, they are inherently different in nature. To our knowledge, this work has not been reported in the published literature. 展开更多
关键词 tensile Shock Physics tensile Waves Elastic Viscoelastic Solids Variationally Consistent Space-Time Coupled Space-Time Residual Functional A Posteriori Finite Element Method Wave Speed Conservation and Balance Laws
下载PDF
Strengthening effect of prefabrication(10-12)tensile twinning on AZ80+0.4%Ce magnesium alloy and inhibition mechanism of discontinuous precipitation
4
作者 Zhen Wang Xi Zhao +5 位作者 Zhimin Zhang Yaojin Wu Kai Chen Xianwei Ren Dengkui Wang Wei Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期1918-1930,共13页
This paper provided an effective method to further improve the mechanical properties of the AZ80+0.4%Ce magnesium alloy wheel spoke.The effect of high strength and ductility was obtained with a yield strength of 295.3... This paper provided an effective method to further improve the mechanical properties of the AZ80+0.4%Ce magnesium alloy wheel spoke.The effect of high strength and ductility was obtained with a yield strength of 295.36 MPa,an elongation of 10%,by the combination of pre-deformation(7%deformation)and two-stage aging treatment(120℃/9 h+175℃/24 h).The evolution of the microstructure and properties of the alloy was explored under the coupling conditions of different pre-deformation degrees and multi-stage aging.The results show that,pre-deformation introduced a large number of(1012)tensile twinning and dislocations,which greatly promoted the probability of continuous precipitates(CPs)appearing.On the contrary,the discontinuous precipitates(DPs)were limited by the vertical and horizontal twin structure.As a result,the pre-nucleation method of two-stage aging increased the proportion of CPs by 34%-38%.Owing to the DPs was effectively suppressed,the alloy's yield strength has been greatly improved.Besides,under multi-stage aging,the twin boundaries induce protruding nucleation to form static recrystallization by hindering the migration of dislocations,and the matrix swallows the twins,then the texture gradually tilts from the two poles to the basal plane.As an important supplement,the grain refinement and oblique texture promoted the improvement of the yield strength of the component. 展开更多
关键词 Magnesium alloy Pre-deformed Two-stage aging tensile twinning Continuous precipitates Texture
下载PDF
Effect of brazing temperature on microstructure and tensile strength ofγ-TiAl joint vacuum brazed with micro-nano Ti−Cu−Ni−Nb−Al−Hf filler
5
作者 Li LI Yu-tong CHEN +3 位作者 Lei-xin YUAN Fen LUO Zhi-xue FENG Xiao-qiang LI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第8期2563-2574,共12页
A novel micro-nano Ti−10Cu−10Ni−8Al−8Nb−4Zr−1.5Hf filler was used to vacuum braze Ti−47Al−2Nb−2Cr−0.15B alloy at 1160−1220℃ for 30 min.The interfacial microstructure and formation mechanism of TiAl joints and the rel... A novel micro-nano Ti−10Cu−10Ni−8Al−8Nb−4Zr−1.5Hf filler was used to vacuum braze Ti−47Al−2Nb−2Cr−0.15B alloy at 1160−1220℃ for 30 min.The interfacial microstructure and formation mechanism of TiAl joints and the relationships among brazing temperature,interfacial microstructure and joint strength were emphatically investigated.Results show that the TiAl joints brazed at 1160 and 1180℃ possess three interfacial layers and mainly consist of α_(2)-Ti_(3)Al,τ_(3)-Al_(3)NiTi_(2) and Ti_(2)Ni,but the brazing seams are no longer layered and Ti_(2)Ni is completely replaced by the uniformly distributed τ_(3)-Al_(3)NiTi_(2) at 1200 and 1220℃ due to the destruction of α_(2)-Ti_(3)Al barrier layer.This transformation at 1200℃ obviously improves the tensile strength of the joint and obtains a maximum of 343 MPa.Notably,the outward diffusion of Al atoms from the dissolution of TiAl substrate dominates the microstructure evolution and tensile strength of the TiAl joint at different brazing temperatures. 展开更多
关键词 γ-TiAl alloy micro-nano filler vacuum brazing interfacial microstructure tensile strength
下载PDF
Tensile Strain Capacity Prediction of Engineered Cementitious Composites (ECC) Using Soft Computing Techniques
6
作者 Rabar H.Faraj Hemn Unis Ahmed +2 位作者 Hardi Saadullah Fathullah Alan Saeed Abdulrahman Farid Abed 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2925-2954,共30页
Plain concrete is strong in compression but brittle in tension,having a low tensile strain capacity that can significantly degrade the long-term performance of concrete structures,even when steel reinforcing is presen... Plain concrete is strong in compression but brittle in tension,having a low tensile strain capacity that can significantly degrade the long-term performance of concrete structures,even when steel reinforcing is present.In order to address these challenges,short polymer fibers are randomly dispersed in a cement-based matrix to forma highly ductile engineered cementitious composite(ECC).Thismaterial exhibits high ductility under tensile forces,with its tensile strain being several hundred times greater than conventional concrete.Since concrete is inherently weak in tension,the tensile strain capacity(TSC)has become one of the most extensively researched properties.As a result,developing a model to predict the TSC of the ECC and to optimize the mixture proportions becomes challenging.Meanwhile,the effort required for laboratory trial batches to determine the TSC is reduced.To achieve the research objectives,five distinct models,artificial neural network(ANN),nonlinear model(NLR),linear relationship model(LR),multi-logistic model(MLR),and M5P-tree model(M5P),are investigated and employed to predict the TSCof ECCmixtures containing fly ash.Data from115 mixtures are gathered and analyzed to develop a new model.The input variables include mixture proportions,fiber length and diameter,and the time required for curing the various mixtures.The model’s effectiveness is evaluated and verified based on statistical parameters such as R2,mean absolute error(MAE),scatter index(SI),root mean squared error(RMSE),and objective function(OBJ)value.Consequently,the ANN model outperforms the others in predicting the TSC of the ECC,with RMSE,MAE,OBJ,SI,and R2 values of 0.42%,0.3%,0.33%,0.135%,and 0.98,respectively. 展开更多
关键词 Engineered cementitious composites fly ash curing time tensile strain capacity MODELING
下载PDF
Effect of hot isostatic pressure on the microstructure and tensile properties of γ'-strengthened superalloy fabricated through induction-assisted directed energy deposition
7
作者 Jianjun Xu Hanlin Ding +1 位作者 Xin Lin Feng Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1089-1097,共9页
The microstructure characteristics and strengthening mechanism of Inconel738LC(IN-738LC) alloy prepared by using induction-assisted directed energy deposition(IDED) were elucidated through the investigation of samples... The microstructure characteristics and strengthening mechanism of Inconel738LC(IN-738LC) alloy prepared by using induction-assisted directed energy deposition(IDED) were elucidated through the investigation of samples subjected to IDED under 1050℃ preheating with and without hot isostatic pressing(HIP,1190℃,105 MPa,and 3 h).Results show that the as-deposited sample mainly consisted of epitaxial columnar crystals and inhomogeneously distributed γ’ phases in interdendritic and dendritic core regions.After HIP,grain morphology changed negligibly,whereas the size of the γ’ phase became increasingly even.After further heat treatment(HT,1070℃,2 h + 845℃,24 h),the γ’ phase in the as-deposited and HIPed samples presented a bimodal size distribution,whereas that in the as-deposited sample showed a size that remained uneven.The comparison of tensile properties revealed that the tensile strength and uniform elongation of the HIP + HTed sample increased by 5% and 46%,respectively,due to the synergistic deformation of bimodal γ’phases,especially large cubic γ’ phases.Finally,the relationship between phase transformations and plastic deformations in the IDEDed sample was discussed on the basis of generalized stability theory in terms of the trade-off between thermodynamics and kinetics. 展开更多
关键词 directed energy deposition Ni-based superalloys high-temperature preheating hot isostatic pressing MICROSTRUCTURE tensile properties
下载PDF
Effect of slow shot speed on externally solidified crystal,porosity and tensile property in a newly developed high-pressure die-cast Al-Si alloy
8
作者 Wen-ning Liu Wei Zhang +6 位作者 Peng-yue Wang Yi-xian Liu Xiang-yi Jiao Ao-xiang Wan Cheng-gang Wang Guo-dong Tong Shou-mei Xiong 《China Foundry》 SCIE EI CAS CSCD 2024年第1期11-19,共9页
The effect of slow shot speed on externally solidified crystal(ESC),porosity and tensile property in a newly developed high-pressure die-cast Al-Si alloy was investigated by optical microscopy(OM),scanning electron mi... The effect of slow shot speed on externally solidified crystal(ESC),porosity and tensile property in a newly developed high-pressure die-cast Al-Si alloy was investigated by optical microscopy(OM),scanning electron microscopy(SEM)and laboratory computed tomography(CT).Results showed that the newly developed AlSi9MnMoV alloy exhibited improved mechanical properties when compared to the AlSi10MnMg alloy.The AlSi9MnMoV alloy,which was designed with trace multicomponent additions,displays a notable grain refining effect in comparison to the AlSi10MnMg alloy.Refining elements Ti,Zr,V,Nb,B promote heterogeneous nucleation and reduce the grain size of primaryα-Al.At a lower slow shot speed,the large ESCs are easier to form and gather,developing into the dendrite net and net-shrinkage.With an increase in slow shot speed,the size and number of ESCs and porosities significantly reduce.In addition,the distribution of ESCs is more dispersed and the net-shrinkage disappears.The tensile property is greatly improved by adopting a higher slow shot speed.The ultimate tensile strength is enhanced from 260.31 MPa to 290.31 MPa(increased by 11.52%),and the elongation is enhanced from 3.72%to 6.34%(increased by 70.52%). 展开更多
关键词 hypoeutectic Al-Si alloy high pressure die casting POROSITY externally solidified crystal tensile property
下载PDF
Effect of heat treatment on microstructure and tensile properties of A356 alloys 被引量:27
9
作者 彭继华 唐小龙 +1 位作者 何健亭 许德英 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第9期1950-1956,共7页
Two heat treatments of A356 alloys with combined addition of rare earth and strontium were conducted.T6 treatment is a long time treatment(solution at 535 ℃ for 4 h + aging at 150 ℃ for 15 h).The other treatment ... Two heat treatments of A356 alloys with combined addition of rare earth and strontium were conducted.T6 treatment is a long time treatment(solution at 535 ℃ for 4 h + aging at 150 ℃ for 15 h).The other treatment is a short time treatment(solution at 550 ℃ for 2 h + aging at 170 ℃ for 2 h).The effects of heat treatment on microstructure and tensile properties of the Al-7%Si-0.3%Mg alloys were investigated by optical microscopy,scanning electronic microscopy and tension test.It is found that a 2 h solution at 550 ℃ is sufficient to make homogenization and saturation of magnesium and silicon in α(Al) phase,spheroid of eutectic Si phase.Followed by solution,a 2 h artificial aging at 170 ℃ is almost enough to produce hardening precipitates.Those samples treated with T6 achieve the maximum tensile strength and fracture elongation.With short time treatment(ST),samples can reach 90% of the maximum yield strength,95% of the maximum strength,and 80% of the maximum elongation. 展开更多
关键词 Al-Si casting alloys heat treatment tensile property microstructural evolution
下载PDF
Influence of temperature on tensile behavior and deformation mechanism of Re-containing single crystal superalloy 被引量:5
10
作者 刘金来 于金江 +3 位作者 金涛 孙晓峰 管恒荣 胡壮麒 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第7期1518-1523,共6页
Tensile properties of a Re-containing single crystal superalloy were determined within the temperature range from 20 to 1 100 ℃with a constant strain rate of 1.67 ×10^-4 s^-1.From room temperature to 600 ℃,the ... Tensile properties of a Re-containing single crystal superalloy were determined within the temperature range from 20 to 1 100 ℃with a constant strain rate of 1.67 ×10^-4 s^-1.From room temperature to 600 ℃,the yield strength increases slightly with increasing temperature.The yield strength decreases to aminimum at 760 ℃,while a maximum is reached dramatically at 800 ℃.The elongation and area reduction decrease gradually from room temperature to 800 ℃.Above 800 ℃,the yield strength decreases significantly with increasing temperature.The γ' phase is sheared by antiphase boundary (APB) below 600 ℃while elongated SSF (superlattice stacking fault) is left in γ' as debris.At 760 ℃the γ' phase is sheared by a/3 112 superpartial dislocation,which causes decrease of yield strength due to low energy of SSF.Above 800 ℃dislocations overcome γ' through by-passing mechanism. 展开更多
关键词 single crystal superalloy tensile behavior yield strength MICROSTRUCTURE
下载PDF
Determination of local constitutive behavior and simulation on tensile test of 2219-T87 aluminum alloy GTAW joints 被引量:6
11
作者 李艳军 李权 +5 位作者 吴爱萍 麻宁绪 王国庆 Hidekazu MURAKAWA 鄢东洋 吴会强 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第9期3072-3079,共8页
The local and global mechanical responses of gas tungsten arc welds(GTAW) of a 2219-T87 aluminum alloy were investigated with experiment and numerical simulation.Digital image correlation(DIC) was used to access t... The local and global mechanical responses of gas tungsten arc welds(GTAW) of a 2219-T87 aluminum alloy were investigated with experiment and numerical simulation.Digital image correlation(DIC) was used to access the local strain fields in transversely loaded welds and to determine the local stress-strain curves of various regions in the joint.The results show that the DIC method is efficient to acquire the local stress-strain curves but the curves of harder regions are incomplete because the stress and strain ranges are limited by the weakest region.With appropriate extrapolation,the complete local stress-strain curves were acquired and proved to be effective to predict the tensile behavior of the welded joint.During the tensile process,the fracture initiates from the weld toes owing to their plastic strain concentrations and then propagates along the fusion line,finally propagates into the partially melted zone(PMZ). 展开更多
关键词 aluminum alloy tensile behavior digital image correlation constitutive behavior welded joint
下载PDF
Microstructure and tensile properties of containerless near-isothermally forged TiAl alloys 被引量:4
12
作者 贺卫卫 汤慧萍 +3 位作者 刘海彦 贾文鹏 刘咏 杨鑫 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第12期2605-2609,共5页
Ti-47Al-2Nb-2Cr-0.4(W, Mo) (mole fraction, %) alloy ingot fabricated using vacuum consumable melting was containerless near-isothermally forged, and the high temperature forgeability, microstructure and tensile pr... Ti-47Al-2Nb-2Cr-0.4(W, Mo) (mole fraction, %) alloy ingot fabricated using vacuum consumable melting was containerless near-isothermally forged, and the high temperature forgeability, microstructure and tensile properties were investigated. The results show that the TiAl ingot exhibits good heat workability during containerless near-isothermally forging process, and there are not evident cracks on the surface of as-forged TiAl pancake with a total deformation degree of 60%. The microstructure of the TiAl ingot appears to be typical nearly-lamellar(NL), comprising a great amount of lamellar colonies (α2+γ) and a few equiaxed γ grains. After near-isothermally forging, the as-forged pancake shows primarily fine equiaxed γ grains with an average grain size of 20 μm and some broken lamellar pieces, and some bent lamellas still exist in the hard-deformation zone. Tensile tests at room temperature show that ultimate tensile strength increases from 433 MPa to 573 MPa after forging due to grain refinement effect. 展开更多
关键词 TiAl alloy MICROSTRUCTURE tensile property containerless near-isothermal forging grain refinement
下载PDF
Effects of plastic deformation on precipitation behavior and tensile fracture behavior of Mg-Gd-Y-Zr alloy 被引量:4
13
作者 林丹 王磊 +2 位作者 刘杨 崔建忠 乐启炽 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第10期2160-2167,共8页
The effects of plastic deformation on precipitation behavior and tensile fracture behavior of Mg-10Gd-3Y-0.6Zr alloy were investigated.The results indicate that more precipitation cores can be provided by the crystal ... The effects of plastic deformation on precipitation behavior and tensile fracture behavior of Mg-10Gd-3Y-0.6Zr alloy were investigated.The results indicate that more precipitation cores can be provided by the crystal defects caused by the plastic deformation,as well as increasing the amount of β' phases,and the formation of precipitations at grain boundaries and interfaces between the twins and matrix.Because of an increase in precipitations,the dislocation slipping during deformation process is effectively hindered and the matrix is strengthened,especially for the 2% deformed alloy which can achieve a good combination of strength and ductility.With increasing the plastic deformation,the microcracks occur at the interface between grain boundary precipitations and matrix,and then propagate intergranularly.When intergranular fracture combines with the formation of smoothing facets on the fracture surface,the tensile properties decrease. 展开更多
关键词 Mg-Gd-Y-Zr alloy plastic deformation fracture behavior tensile property MICROSTRUCTURE
下载PDF
Static and dynamic tensile failure characteristics of rock based on splitting test of circular ring 被引量:9
14
作者 李地元 王涛 +1 位作者 成腾蛟 孙小磊 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第7期1912-1918,共7页
Static and dynamic splitting tests were conducted on ring marble specimens with different internal diameters to study the tensile strength and failure modes with the change of the ratio of internal radius to external ... Static and dynamic splitting tests were conducted on ring marble specimens with different internal diameters to study the tensile strength and failure modes with the change of the ratio of internal radius to external radius (ρ) under different loading rates. The results show that the dynamic tensile strength of disc rock specimen is approximately five times its static tensile strength. The failure modes of ring specimens are related to the dimension of the internal hole and loading rate. Under static loading tests, when the ratio of internal radius to external radius of the rock ring is small enough (ρ〈0.3), specimens mostly split along the diametral loading line. With the increase of the ratio, the secondary cracks are formed in the direction perpendicular to the loading line. Under dynamic loading tests, specimens usually break up into four pieces. When the ratio ρreaches 0.5, the secondary cracks are formed near the input bar. The tensile strength calculated by Hobbs’ formula is greater than the Brazilian splitting strength. The peak load and the radius ratio show a negative exponential relationship under static test. Using ring specimen to determine tensile strength of rock material is more like a test indicator rather than the material properties. 展开更多
关键词 ROCK circular ring Brazilian splitting test tensile strength split Hopkinson pressure bar failure pattern
下载PDF
High temperature tensile deformation behavior of AZ80 magnesium alloy 被引量:4
15
作者 乔军 边福勃 +1 位作者 何敏 王瑜 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第10期2857-2862,共6页
Tensile behaviors of an AZS0 alloy were investigated by elongation-to-failure tensile tests at 300, 350, 400 and 450 ℃, and strain rates of 10-2 and 10-3 s 1. Strain-rate-change tests from 5×10-5 s-1 to 2x10-2 s... Tensile behaviors of an AZS0 alloy were investigated by elongation-to-failure tensile tests at 300, 350, 400 and 450 ℃, and strain rates of 10-2 and 10-3 s 1. Strain-rate-change tests from 5×10-5 s-1 to 2x10-2 s-1 were applied to study deformation mechanisms. The experimental data show that the material exhibits enhanced tensile ductilities of over 100% at 400 and 450 ℃ with stress exponent of 4.29 and activation energy of 149.60 kJ/mol, and initial fine grains preserve in evenly deformed gauge based on microstructure studies. The enhanced tensile ductilities are rate controlled by a competitive mechanism of grain boundary sliding and dislocation climb creep, based on which a model can successfully simulate the deformation behavior. 展开更多
关键词 AZ80 magnesium alloy tensile behavior SUPERPLASTICITY CREEP stress exponent
下载PDF
Effects of weld reinforcement on tensile behavior and mechanical properties of 2219-T87 aluminum alloy TIG welded joints 被引量:6
16
作者 王国庆 李权 +4 位作者 李艳军 吴爱萍 麻宁绪 鄢东洋 吴会强 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第1期10-16,共7页
Tungsten inert gas (TIG) welded joints for 2219-T87 aluminum alloy are often used in the fuel tanks of large launch vehicles. Because of the massive loads these vehicles carry, dealing with weld reinforcement on TIG... Tungsten inert gas (TIG) welded joints for 2219-T87 aluminum alloy are often used in the fuel tanks of large launch vehicles. Because of the massive loads these vehicles carry, dealing with weld reinforcement on TIG joints represents an important issue in their manufacturing and strength evaluation. Experimental and numerical simulation methods were used to investigate the effects of weld toe shape and weld toe position on the tensile behavior and mechanical properties of these joints. The simulation results indicated that the relative difference in elongation could be as large as 96.9% caused by the difference in weld toe shape. The joints with weld toes located in the weld metal or in the partially melted zone (PMZ) exhibited larger elongation than joints with weld toes located at the juncture of the weld metal and the PMZ. 展开更多
关键词 tensile strength weld reinforcement 2219-T87 aluminum alloy TIG welding digital image correlation (DIC) technique
下载PDF
Role of tensile forces in hot tearing formation of cast Al-Si alloy 被引量:4
17
作者 许荣福 郑洪亮 +3 位作者 罗杰 丁苏沛 张三平 田学雷 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第7期2203-2207,共5页
The instrumented applied rod casting apparatus (ARCA) was developed to investigate the effects of tensile forces in the hot tearing formation of cast AI-Si alloys. The obtained data of tensile forces/temperature was... The instrumented applied rod casting apparatus (ARCA) was developed to investigate the effects of tensile forces in the hot tearing formation of cast AI-Si alloys. The obtained data of tensile forces/temperature was used to identify hot tearing initiation and propagation and the fracture surface of samples was also investigated. The result shows that the applied tensile forces have a complex effect on load onset for the hot tearing initiation and propagation. During the casting solidification, the tensile forces are gradually increased with the increase of solid fraction. Under the action of tensile forces, there will appear hot tearing and crack propagation on the surface of the sample. When the tensile forces exceed the inherent strength of alloys, there will be fractures on the sample. As for the A356 alloy, the critical fracture stress is about 0.1 MPa. The hot tearing surface morphology shows that the remaining intergranular bridge and liquid films are thick enough to allow the formation of dendrite-tip bumps on the fracture surface. 展开更多
关键词 hot tearing tensile force A356 alloy aluminum alloy liquid film solid fraction
下载PDF
Microstructure and tensile properties of AE42-based magnesium alloys with calcium addition 被引量:2
18
作者 白晶 孙扬善 +2 位作者 丁绍松 薛烽 汪黎 《Journal of Southeast University(English Edition)》 EI CAS 2004年第1期43-48,共6页
The as-cast microstructure of AE42 was of typical dendritic and composed of the a matrix and some needle-shaped interphases Al11RE3. A small mount of Ca addition results in significant microstructural refinement and f... The as-cast microstructure of AE42 was of typical dendritic and composed of the a matrix and some needle-shaped interphases Al11RE3. A small mount of Ca addition results in significant microstructural refinement and formation of a Al2Ca phase, which showed two kinds of morphologies, lamellar and tiny granular. The former distributes on grain boundaries and the later is within the matrix grains. With the increase of Ca addition the volume fraction of Al-RE compound (Al11RE3) decreases, but Al2Ca increases. Addition of Ca causes a significant increase of yield strength of the alloy both at ambient and elevated temperatures, but a little decrease of the ductility. With calcium addition the ultimate strength decreases at ambient temperature and 150°t, but increases at 175°C and 200°C. 展开更多
关键词 ADDITIVES Aluminum compounds CALCIUM DUCTILITY Grain boundaries Metallographic microstructure Morphology tensile properties Volume fraction
下载PDF
Tensile and wear properties of TiC reinforced 420 stainless steel fabricated by in situ synthesis 被引量:2
19
作者 汪黎 孙扬善 +2 位作者 樊泉 薛烽 段志超 《Journal of Southeast University(English Edition)》 EI CAS 2004年第4期486-491,共6页
TiC particle reinforced 420 stainless steel matrix composites were fabricated, and the microstructure, tensile properties and wear resistance of the composites were studied. The experimental results indicate that the ... TiC particle reinforced 420 stainless steel matrix composites were fabricated, and the microstructure, tensile properties and wear resistance of the composites were studied. The experimental results indicate that the distribution of TiC particles with size of 5 to 10 μm in diameter is uniform if the volume fraction of TiC is lower than 6%. However, slight agglomeration can be observed when the TiC content exceeds 6%. With the increase of TiC content the tensile and yield strength of the composites prepared increases and reaches the maximum when the volume fraction of TiC increases to 5%. Further increase of TiC content causes reductions of yield and tensile strength. The ductility of the composites shows a monotone decrease with the increase of TiC addition. The introduction of TiC into 420 stainless steel results in significant improvement on wear resistance, which reaches a steady level when the volume fraction of TiC increases to 11% and does not show obvious variation if the TiC content is further increased. 展开更多
关键词 AGGLOMERATION Composite materials In situ processing Microstructure Stainless steel tensile properties Wear resistance
下载PDF
Molecular dynamics study on temperature and strain rate dependences of mechanical tensile properties of ultrathin nickel nanowires 被引量:3
20
作者 王卫东 易成龙 樊康旗 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第11期3353-3361,共9页
Based on the EAM potential, a molecular dynamics study on the tensile properties of ultrathin nickel nanowires in the (100〉 orientation with diameters of 3.94, 4.95 and 5.99 nm was presented at different temperature... Based on the EAM potential, a molecular dynamics study on the tensile properties of ultrathin nickel nanowires in the (100〉 orientation with diameters of 3.94, 4.95 and 5.99 nm was presented at different temperatures and strain rates. The temperature and strain rate dependences of tensile properties were investigated. The simulation results show that the elastic modulus and the yield strength are gradually decreasing with the increase of temperature, while with the increase of the strain rate, the stress--strain curves fluctuate more intensely and the ultrathin nickel nanowires rupture at one smaller and smaller strain. At an ideal temperature of 0.01 K, the yield strength of the nanowires drops rapidly with the increase of strain rate, and at other temperatures the strain rate has a little influence on the elastic modulus and the yield strength. Finally, the effects of size on the tensile properties of ultrathin nickel nanowires were briefly discussed. 展开更多
关键词 ultrathin nickel nanowires temperature dependence strain rate dependence tensile properties molecular dynamics simulation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部