The strength of structural loess consists of the shear strength and tensile strength. In this study, the stress path, the failure envelope of principal stress ( Kf line), and the strength failure envelope of structu...The strength of structural loess consists of the shear strength and tensile strength. In this study, the stress path, the failure envelope of principal stress ( Kf line), and the strength failure envelope of structurally intact loess and remolded loess were analyzed through three kinds of tests: the tensile strength test, the uniaxial compressive strength test, and the conventional triaxial shear strength test. Then, in order to describe the tensile strength and shear strength of structural loess comprehensively and reasonably, a joint strength formula for structural loess was established. This formula comprehensively considers tensile and shear properties. Studies have shown that the tensile strength exhibits a decreasing trend with increasing water content. When the water content is constant, the tensile strength of the structurally intact soil is greater than that ofremolded soil. In the studies, no loss of the originally cured cohesion in the structurally intact soil samples was observed, given that the soil samples did not experience loading disturbance during the uniaxial compressive strength test, meaning there is a high initial structural strength. The results of the conventional triaxial shear strength test show that the water content is correlated with the strength of the structural loess. When the water content is low, the structural properties are strong, and when the water content is high, the structural properties are weak, which means that the water content and the ambient pressure have significant effects on the stress-strain relationship of structural loess. The established joint strength formula of structural loess effectively avoids overestimating the role of soil tensile strength in the traditional theory of Mohr-Coulomb strength.展开更多
首次提出了用于汽车生产中分瓣模压印连接接头强度和失效形式的预测方法。根据接头静力学测试中的颈部断裂失效和上下板拉脱失效两种失效形式分别建立了压印接头的两个强度预测公式,2pπ2N N NF A R t t()和2p pπt b s F R,公式以接头...首次提出了用于汽车生产中分瓣模压印连接接头强度和失效形式的预测方法。根据接头静力学测试中的颈部断裂失效和上下板拉脱失效两种失效形式分别建立了压印接头的两个强度预测公式,2pπ2N N NF A R t t()和2p pπt b s F R,公式以接头颈部厚度Nt和镶嵌量Ut为重要的中间变量。强度预测公式表明:对于颈部断裂的压印接头,颈部厚度值tN越大,接头强度越高;对于拉脱失效的压印接头,接头强度取决于颈部厚度tN和镶嵌量tU,两者之和越大,接头强度越高,并且镶嵌量对接头强度的影响与颈部厚度相比更大。对颈部厚度变化范围为0.35mm^0.56mm、镶嵌量变化范围为0.045mm^0.45mm的15种组合接头,根据强度预测公式计算了接头强度,并进行了拉伸-剪切试验。将计算结果与试验结果进行对比,结果表明二者吻合较好,最大接头强度误差为8.9%。这说明本文建立的接头强度预测公式能够准确地预测压印接头拉伸-剪切过程的强度和破坏形式。展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11072193)the Fundamental Research Funds for the Central Universities(Grant No.2013G1502009)the China Postdoctoral Science Foundation(Grant No.20100481354)
文摘The strength of structural loess consists of the shear strength and tensile strength. In this study, the stress path, the failure envelope of principal stress ( Kf line), and the strength failure envelope of structurally intact loess and remolded loess were analyzed through three kinds of tests: the tensile strength test, the uniaxial compressive strength test, and the conventional triaxial shear strength test. Then, in order to describe the tensile strength and shear strength of structural loess comprehensively and reasonably, a joint strength formula for structural loess was established. This formula comprehensively considers tensile and shear properties. Studies have shown that the tensile strength exhibits a decreasing trend with increasing water content. When the water content is constant, the tensile strength of the structurally intact soil is greater than that ofremolded soil. In the studies, no loss of the originally cured cohesion in the structurally intact soil samples was observed, given that the soil samples did not experience loading disturbance during the uniaxial compressive strength test, meaning there is a high initial structural strength. The results of the conventional triaxial shear strength test show that the water content is correlated with the strength of the structural loess. When the water content is low, the structural properties are strong, and when the water content is high, the structural properties are weak, which means that the water content and the ambient pressure have significant effects on the stress-strain relationship of structural loess. The established joint strength formula of structural loess effectively avoids overestimating the role of soil tensile strength in the traditional theory of Mohr-Coulomb strength.
文摘首次提出了用于汽车生产中分瓣模压印连接接头强度和失效形式的预测方法。根据接头静力学测试中的颈部断裂失效和上下板拉脱失效两种失效形式分别建立了压印接头的两个强度预测公式,2pπ2N N NF A R t t()和2p pπt b s F R,公式以接头颈部厚度Nt和镶嵌量Ut为重要的中间变量。强度预测公式表明:对于颈部断裂的压印接头,颈部厚度值tN越大,接头强度越高;对于拉脱失效的压印接头,接头强度取决于颈部厚度tN和镶嵌量tU,两者之和越大,接头强度越高,并且镶嵌量对接头强度的影响与颈部厚度相比更大。对颈部厚度变化范围为0.35mm^0.56mm、镶嵌量变化范围为0.045mm^0.45mm的15种组合接头,根据强度预测公式计算了接头强度,并进行了拉伸-剪切试验。将计算结果与试验结果进行对比,结果表明二者吻合较好,最大接头强度误差为8.9%。这说明本文建立的接头强度预测公式能够准确地预测压印接头拉伸-剪切过程的强度和破坏形式。