期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Strength criterion for crystalline rocks considering grain size effect and tensile-compressive strength ratio
1
作者 ZHANG Cheng-han JI Hong-guang +3 位作者 JIANG Peng YOU Shuang GENG Qian-cheng JIAO Chen-jiang 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2365-2378,共14页
The macroscopic mechanical properties of rocks are significantly influenced by their microstructure.As a material bonded by mineral grains,the grain morphology of crystalline rock is the primary factor influencing the... The macroscopic mechanical properties of rocks are significantly influenced by their microstructure.As a material bonded by mineral grains,the grain morphology of crystalline rock is the primary factor influencing the strength.However,most strength criteria neglect the strength variations caused by different grain characteristics in rocks.Furthermore,the traditional linear criteria tend to overestimate tensile strength and exhibit apex singularity.To address these shortcomings,a piecewise strength criterion that considers the grain size effect has been proposed.A part of an ellipse was employed to construct the envelope of the tensive-shear region on the meridian plane,to accurately reproduce the low tensile-compressive strength ratio.Based on the analysis of experimental data,both linear and exponential modification functions that account for grain size effects were integrated into the proposed criterion.The corresponding finite element algorithm has been implemented.The accuracy and applicability of the proposed criterion were validated by comparing with the experimental data. 展开更多
关键词 crystalline rock grain size effect strength criterion tensile-compressive strength ratio finite element algorithm
下载PDF
Deformation behavior of Mg-Y-Ni alloys containing different volume fraction of LPSO phase during tension and compression through in-situ synchrotron diffraction
2
作者 S.Z.Wu Y.Q.Chi +4 位作者 G.Garces X.H.Zhou H.G.Brokmeier X.G.Qiao M.Y.Zheng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第9期3631-3645,共15页
The deformation behavior of the as-extruded Mg-Y-Ni alloys with different volume fraction of long period stacking ordered(LPSO)phase during tension and compression was investigated by in-situ synchrotron diffraction.T... The deformation behavior of the as-extruded Mg-Y-Ni alloys with different volume fraction of long period stacking ordered(LPSO)phase during tension and compression was investigated by in-situ synchrotron diffraction.The micro-yielding,macro-yielding,tension-compression asymmetry and strain hardening behavior of the alloys were explored by combining with deformation mechanisms.The micro-yielding is dominated by basal slip of dynamic recrystallized(DRXed)grains in tension,while it is dominated by extension twinning of non-dynamic recrystallized(non-DRXed)grains in compression.At macro-yielding,the non-DRXed grains are still elastic deformed in tension and the basal slip of DRXed grains in compression are activated.Meanwhile,the LPSO phase still retains elastic deformation,but can bear more load,so the higher the volume fraction of hard LPSO phase,the higher the tensile/compressive macro-yield strength of the alloys.Benefiting from the low volume fraction of the non-DRXed grains and the delay effect of LPSO andγphases on extension twinning,the as-extruded alloys exhibit excellent tension-compression symmetry.When the volume fraction of LPSO phase reaches∼50%,tension-compression asymmetry is reversed,which is due to the fact that the LPSO phase is stronger in compression than in tension.The tensile strain hardening behavior is dominated by dislocation slip,while the dominate mechanism for compressive strain hardening changes from twinning in theα-Mg grains to kinking of the LPSO phase with increasing volume fraction of LPSO phase.The activation of kinking leads to the constant compressive strain hardening rate of∼2500 MPa,which is significantly higher than the tensile strain hardening rate. 展开更多
关键词 Mg-Y-Ni alloys LPSO phase In-situ synchrotron diffraction Micro-yielding tensile-compression asymmetry Strain hardening
下载PDF
Using lanthanum to enhance the overall ignition, hardness, tensile and compressive strengths of Mg-0.5Zr alloy 被引量:6
3
作者 Ganesh Kumar Meenashisundaram Tiong Hou Damien Ong +3 位作者 Gururaj Parande Vyasaraj Manakari 向抒林 Manoj Gupta 《Journal of Rare Earths》 SCIE EI CAS CSCD 2017年第7期723-732,共10页
Near dense Mg 0.5 wt.% Zr(0,1,2.5 and 4) wt.% La alloys were successfully synthesized by disintegrated melt deposition technique followed by hot extrusion and were characterized for their microstructural, ignition, ... Near dense Mg 0.5 wt.% Zr(0,1,2.5 and 4) wt.% La alloys were successfully synthesized by disintegrated melt deposition technique followed by hot extrusion and were characterized for their microstructural, ignition, hardness, tensile and compression properties. Combined effects of Zr and La assisted in significant grain refinement of Mg and Mg 0.5 wt.% Zr 4 wt.% La exhibited an average grain size as low as ~2.75 μm. High ignition temperature of ~645 oC was realized with Mg 0.5 wt.% Zr(1,2.5 and 4) wt.% La alloys. Microhardness value as high as ~103 Hv was observed with Mg 0.5 wt.% Zr 4 wt.% La alloy. Under room temperature tensile and compression loading, significant improvements in the strength properties of pure Mg with the addition of 0.5 wt.% Zr(0, 1, 2.5 and 4) wt.% La was observed. Mg 0.5 wt.% Zr 4 wt.% La exhibited the maximum 0.2% tensile and compression yield strengths of ~283 MPa and ~264 MPa, respectively. The tensile and compression fracture strain values of synthesized pure Mg were found to be unaffected with the addition of 0.5 wt.% Zr. But the tensile fracture strain reduced with the addition of La while the compressive fracture strain was unaffected. Minimal tensile-compression asymmetry(~1) was exhibited by Mg 0.5 wt.% Zr(1 and 2.5) wt.% La alloys. 展开更多
关键词 Mg-Zr-La alloy ignition microhardness tensile properties compression properties tensile-compression asymmetry rare earths
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部