Here, using the Scale-Symmetric Theory (SST) we explain the cosmological tension and the origin of the largest cosmic structures. We show that a change in value of strong coupling constant for cold baryonic matter lea...Here, using the Scale-Symmetric Theory (SST) we explain the cosmological tension and the origin of the largest cosmic structures. We show that a change in value of strong coupling constant for cold baryonic matter leads to the disagreement in the galaxy clustering amplitude, quantified by the parameter S8. Within the same model we described the Hubble tension. We described also the mechanism that transforms the gravitational collapse into an explosion—it concerns the dynamics of virtual fields that lead to dark energy. Our calculations concern the Type Ia supernovae and the core-collapse supernovae. We calculated the quantized masses of the progenitors of supernovae, emitted total energy during explosion, and we calculated how much of the released energy was transferred to neutrinos. Value of the speed of sound in the strongly interacting matter measured at the LHC confirms that presented here model is correct. Our calculations show that the Universe is cyclic.展开更多
Tension leg platform (TLP) for offshore wind turbine support is a new type structure in wind energy utilization. The strong-interaction method is used in analyzing the coupled model, and the dynamic characteristics ...Tension leg platform (TLP) for offshore wind turbine support is a new type structure in wind energy utilization. The strong-interaction method is used in analyzing the coupled model, and the dynamic characteristics of the TLP for offshore wind turbine support are recognized. As shown by the calculated results: for the lower modes, the shapes are water's vibration, and the vibration of water induces the structure's swing; the mode shapes of the structure are complex, and can largely change among different members; the mode shapes of the platform are related to the tower's. The frequencies of the structure do not change much after adjusting the length of the tension cables and the depth of the platform; the TLP has good adaptability for the water depths and the environment loads. The change of the size and parameters of TLP can improve the dynamic characteristics, which can reduce the vibration of the TLP caused by the loads. Through the vibration analysis, the natural vibration frequencies of TLP can be distinguished from the frequencies of condition loads, and thus the resonance vibration can be avoided, therefore the offshore wind turbine can work normally in the complex conditions.展开更多
A new form function involving parameters Pi is presented. On the basis of the form function, an initial form of tension structure was Sound by interpolating through the control points on boundary of the structure. The...A new form function involving parameters Pi is presented. On the basis of the form function, an initial form of tension structure was Sound by interpolating through the control points on boundary of the structure. The form function can be controlled by changing beta (1) according to the pre-tension and the boundary of the structure. The final form of a tension structure should be an equilibrium system under the pretension. To examine the nature of the initial form, the FEM was used. Many examples show that the initial form gives a very ideal result for equal or unequal pre-tension in two directions of the structure. In general cases, there is little difference between the initial form and the final one.展开更多
Factors such as errors during the fabrication or construction of structural components and errors of calculation as- sumption or calculation methods, are very likely to cause serious deviation of many strings’ actual...Factors such as errors during the fabrication or construction of structural components and errors of calculation as- sumption or calculation methods, are very likely to cause serious deviation of many strings’ actual prestressing forces from the designed values during tension structure construction or service period, and further to threaten the safety and reliability of the structure. Aiming at relatively large errors of the prestressing force of strings in a tension structure construction or service period, this paper proposes a new finite element method (FEM), the "tensile force correction calculation method". Based on the measured prestressing forces of the strings, this new method applies the structure from the zero prestressing force status approach to the measured prestressing force status for the first phase, and from the measured prestressing force status approach to the designed prestressing force status for the second phase. The construction tensile force correction value for each string can be obtained by multi-iteration with FEM. Using the results of calculation, the strings’ tensile force correction by group and in batch will be methodic, simple and accurate. This new calculation method can be applied to the prestressed correction construction simulation analysis for tension structures.展开更多
This paper deals with new and innovative case studies of application of post-tensioning for restoration of structures for buildings, bridges and rock stabilization in India. In earlier situations for these types of ca...This paper deals with new and innovative case studies of application of post-tensioning for restoration of structures for buildings, bridges and rock stabilization in India. In earlier situations for these types of cases conventional method of repair and rehabilitation has been used. These innovative approaches for restoration have led to enormous saving of cost and time. The advantages of post tensioning are well known in the civil industry and are being used for the last 40 to 50 years. Post tensioning is one of the best methods to induce stresses in the concrete before application of live load and this technique can also be widely used for restoration and rehabilitation of structures. Unlike the use of post-tensioning in new structures there are no definite methods or codes for application in restoration and rehabilitation of structures. For restoration and rehabilitation of structures, PT (post tensioned) technique can be applied in combination with other techniques and materials available. Bridge lifting is a tricky and risky job especially when the superstructure is displaced appreciably by a natural calamity, etc.. Not only the present state of structure needs proper study before commencement of restoration and rehabilitation but also calls for careful execution. This paper deals with case studies of innovative applications of post tensioning in restoration and rehabilitation of structures and restoration of bridge structure in Andaman & Nicobar Island, India affected by Sumatra quake.展开更多
“Push-and-pull”efficient structures have been inconceivable between XVIII centuries.It is because of the incapacity of obtain an efficient behaviour of tensioned material.Since XVIII centuries,architecture developed...“Push-and-pull”efficient structures have been inconceivable between XVIII centuries.It is because of the incapacity of obtain an efficient behaviour of tensioned material.Since XVIII centuries,architecture developed some structural knowledge generating novel structural forms in the architecture and engineering that were not known before.Tensegrities and tensioned structures were studied due to the knowledge of geometry and tension.Some investigations about tensegrities and tensioned structures have been developed since that moment.Tensegrities are bar and cable structures that work only in compression or tension efforts.Bars and cables are balanced,but in appearance the growth is disorderly.Most of deployable structures are based on tensegrity systems.The research is focused in presenting a summary of tensegrities and tensioned architectures that have been used in the structural design of novel patterns.The research of adequate materials to tension efforts will be crucial in this study.The investigation presents an important state of the art that provides technical solutions to apply on novel architectures based on tensegrities and tensioned structures.The research is useful to produce the current constructive solutions based on these constructive systems.展开更多
A quantitative structure-property relationship (QSPR) study has been made for the prediction of the surface tension of nonionic surfactants in aqueous solution. The regressed model includes a topological descriptor, ...A quantitative structure-property relationship (QSPR) study has been made for the prediction of the surface tension of nonionic surfactants in aqueous solution. The regressed model includes a topological descriptor, the Kier & Hall index of zero order (KH0) of the hydrophobic segment of surfactant and a quantum chemical one, the heat of formation (fHD) of surfactant molecules. The established general QSPR between the surface tension and the descriptors produces a correlation coefficient of multiple determination, 2r=0.9877, for 30 studied nonionic surfactants.展开更多
The human rights white paper has in it the basic concepts of human rights,the form of the human rights system,and the mode of human rights practice in modern China.It is based on the tension balance structure between ...The human rights white paper has in it the basic concepts of human rights,the form of the human rights system,and the mode of human rights practice in modern China.It is based on the tension balance structure between the historical feature and rationality,the cultural feature and similarity,the realistic feature and the common feature of human rights.Adhering to the historical nature of human rights rather than abstract rationality,and the cultural diversity and equality of human rights rather than one dominant model,and the particularity of human rights rather than universality is the pillar of China’s human rights philosophy,system,and practice.The human rights development path that combines the top-down leadership of China’s ruling party,the capability of the Chinese government in taking a holistic approach and the bottom-up driving force of the people is very different from the natural evolution path of the West.展开更多
To study the effect of atmospheric pressure on the properties of fresh and hardened airentrained concrete, three kinds of air entraining agents were used for preparing air-entrained concrete in the plateaus(Lhasa, 61 ...To study the effect of atmospheric pressure on the properties of fresh and hardened airentrained concrete, three kinds of air entraining agents were used for preparing air-entrained concrete in the plateaus(Lhasa, 61 kPa) and the plains(Beijing, 101 kPa). Air content, slump, compressive strength and pore structure of the three air-entrained concretes were tested in these two places. It is found that the air content of concrete under low atmospheric pressure(LAP) is 4%-36% lower than that of concrete under normal atmospheric pressure(NAP), which explaines the decrease of slump for air-entrained concrete under LAP. Pore number of hardened concrete under LAP is reduced by 48%-69%. While, the proportion of big pores(pore diameter >1 200 μm) and air void spacing factor are increased by 1.5%-7.3% and 51%-92%, respectively. The deterioration of pore structure results in a 3%-9% reduction in the compressive strength of concrete. From the results we have obtained, it can be concluded that the increase of critical nucleation energy of air bubbles and the decrease of volumetric compressibility coefficient of air in the concrete are responsible for the variation of air content and pore structure of concrete under LAP.展开更多
The innovative Subsurface Tension Leg Platform(STLP), which is designed to be located below Mean Water Level(M.W.L) to minimize direct wave loading and mitigate the effect of strong surface currents, is considered as ...The innovative Subsurface Tension Leg Platform(STLP), which is designed to be located below Mean Water Level(M.W.L) to minimize direct wave loading and mitigate the effect of strong surface currents, is considered as a competitive alternative system to support shallow-water rated well completion equipment and rigid risers for large ultra-deep water oil field development. A detailed description of the design philosophy of STLP has been published in the series of papers and patents. Nonetheless, design uncertainties arise as limited understanding of various parameters effects on the structural response of STLP, pertaining to the environmental loading, structural properties and hydrodynamic characteristics. This paper focuses on providing quantitative methodology on how each parameter affects the structural response of STLP, which will facilitate establishing the unique design criteria as regards to STLP. Firstly, the entire list of dimensionless groups of input and output parameters is proposed based on VaschyBuckingham theory. Then, numerical models are built and a series of numerical tests are carried out for validating the obtained dimensionless groups. On this basis, the calculation results of a great quantity of parametric studies on the structural response of STLP are presented and discussed in detail. Further, empirical formulae for predicting STLP response are derived through nonlinear regression analysis. Finally, conclusions and discussions are made. It has been demonstrated that the study provides a methodology for better control of key parameters and lays the foundation for optimal design of STLP. The obtained conclusions also have wide ranging applicability in reference to the engineering design and design analysis aspects of deepwater buoy supporting installations, such as Grouped SLOR or TLR system.展开更多
For statically indeterminate structure, the internal force will be changed with the translation of the supports, because the internal force is related to the absolute value of the stiffness EI. When the tension is dif...For statically indeterminate structure, the internal force will be changed with the translation of the supports, because the internal force is related to the absolute value of the stiffness EI. When the tension is different with the compression modulus, EI is the function of internal force and is not constant any more that is different from classic mechanics. In the other words, it is a nonlinear problem to calculate the internal force. The expression for neutral axis of the statically indeterminate structure was derived in the paper. The iterative program for nonlinear internal force was compiled. One case study was presented to illustrate the difference between the results using the different modulus theory and the single modulus theory as in classical mechanics. Finally, some reasonable suggestions were made for the different modulus structures.展开更多
Based on the nonlinear geometric relation between strain and displacement for flexible cable, the equilibrium equation under self-weight and influence of temperature was established and an analytical solution of displ...Based on the nonlinear geometric relation between strain and displacement for flexible cable, the equilibrium equation under self-weight and influence of temperature was established and an analytical solution of displacement and tension distribution defined in Eulerian coordinate system was accurately obtained. The nonlinear algebraic equations caused by cable structure were solved directly using the modified Powell hybrid algorithm with high precision routine DNEQNE of Fortran. For example, a cable structure consisting of three cables jointly supported by a vertical spring and all the other ends fixed was calculated and compared with various methods by other scholars.展开更多
Cable roof structures?have?only become widespread in large span structures in the latter part of the twentieth century. However,?they?still represent a relatively new form of roof construction, especially as in the pr...Cable roof structures?have?only become widespread in large span structures in the latter part of the twentieth century. However,?they?still represent a relatively new form of roof construction, especially as in the present case of a small span innovative structural solution. The contribution of this text to the structural engineering community lies in the increased interest in building simple cable roof structures. Since its completion in September 1996, this small cable roof structure has been recognized as an interesting architectural and structural example. The text describes aspects of the design and construction of a small cable roof that was designed as a roof for an open-air theater stage for the city of Sao Jose do Rio Pardo, Sao Paulo, Brazil. A cable network, in the shape of a hyperbolic paraboloid surface, is anchored in a reinforced concrete edge ring. The projection of the ring’s axis onto the ground plane is an ellipse. Workers with specialized training were employed in the various stages of the construction, which was completed in September 1996.展开更多
The cable-strut structural system is statically and kinematically indeterminate. The initial pre-stress is a key factor for determining the shape and load carrying capacity. A new numerical algorithm is presented here...The cable-strut structural system is statically and kinematically indeterminate. The initial pre-stress is a key factor for determining the shape and load carrying capacity. A new numerical algorithm is presented herein for the initial pre-stress finding procedure of complete cable-strut assembly. This method is based on the linear adjustment theory and does not take into account the material behavior. By using this method,the initial pre-stress of the multi self-stress modes can be found easily and the cal-culation process is simplified and efficient also. Finally,the initial pre-stress and structural performances of a particular Levy cable dome are analyzed comprehensively. The algorithm has proven to be efficient and correct,and the numerical results are valuable for practical design of Levy cable dome.展开更多
The development of deepwater oil fields has reached a new stage with the dramatic increase in water depth and the recent increasing demands of the economic development in the filed. The use of a Tension Leg Platform ...The development of deepwater oil fields has reached a new stage with the dramatic increase in water depth and the recent increasing demands of the economic development in the filed. The use of a Tension Leg Platform (TIP) combined with other systems, such as Floating Production Storage and Offloading (FPSO) system, Floating Production Unit (FPU) system, Tender Assisted Drilling (TAD) system, etc., has drawn the industry attention and increased significantly in the past few years. For the areas lacking of pipeline system, the use of TIP(s) combined with FPSO has been chosen to efficiently develop the deepwater fields. The TIP with a Tender Assisted Drilling system significantly reduces the payload of the platform and reduces the investment in the TIP system substantially. This opens the door for many new deepwater field developments to use the tension leg platform. The advantage of the TIP combined with a TAD system is more significant when several TIPs are used for the continuous development of the field. One of the applications for the TIP with a tender assisted drilling system can be in the development of an offshore marginal field. Owing to the increase of water depth, the conventional fixed platform model for the exploration of those fields becomes uneconomical. It also would be too expensive to use a large TIP structure for those marginal fields due to the large amount of initial investment. The TIP system with tender assisted drilling can be used to develop those fields economically. There are many marginal fields in China offshore, especially in shelf areas. The application of this field developing model, combined with the existing field developing experience in China, will open the door for many marginal field developments. This paper will review the application of the combined TIP system through some examples of completed/ongoing projects, and major technical issues encountered in those practices. The potential application of this technology in China deepwater development will be discussed in the end.展开更多
The reinforcement corrosion is the pitting corrosion of chloride corrosion.Hence,in this study,the variations of reinforcement tensile strength due to stress concentration of pitting corrosion are analyzed.The stress ...The reinforcement corrosion is the pitting corrosion of chloride corrosion.Hence,in this study,the variations of reinforcement tensile strength due to stress concentration of pitting corrosion are analyzed.The stress concentration consequence of corrosion on the reinforcement tensile capacity is studied utilizing tension tests and creating different ABAQUS software models.According to the modelling in various corrosion depths,strength reduction is less than 5%in corrosion with pit radius to reinforcement diameter ratio up to 0.3 and for corrosions higher than 0.4,the measure of capacity reduction is increased more to 30%.展开更多
Transportation of tension leg platform (TLP) structures for a long distance has always been associated with the use of a heavy semi-transport vessel. The requirements of this type of vessel are always special, and t...Transportation of tension leg platform (TLP) structures for a long distance has always been associated with the use of a heavy semi-transport vessel. The requirements of this type of vessel are always special, and their availability is limited. To prepare for the future development of South China Sea deepwater projects, the China Offshore Oil Engineering Corporation has recently built a heavy lift transport vessel-Hai Yang Shi You 278. This semi-submersible vessel has a displacement capacity of 50k DWT, and a breath of 42 meters. Understanding the vessel's applicability and preparing it for use in future deepwater projects are becoming imminent needs. This paper reviews the current critical issues associated with TLP transportation and performs detailed analysis of the designed TLP during load-out and transportation. The newly built COOEC transportation vessel HYSY 278 was applied to dry transport of the TLP structure from the COOEC fabrication yard in Qingdao to an oil field in South China Sea. The entire process included the load-out of the TLP structure from the landsite of the fabrication yard, the offloading and float-on of the platform from the vessel, the dry transport of the TLP over a long distance, and the final offloading of the platform. Both hydrodynamic and structure analysis were performed to evaluate the behavior of the transport vessel and TLP structure. Special attention was paid to critical areas associated with the use of this new vessel, along with any potential limitations. The results demonstrate that HYSY 278 can effectively be used for transporting the structure with proper arrangement and well-prepared operation. The procedure and details were presented on the basis of the study results. Special attention was also given to discussion on future use based on the results from the analysis.展开更多
In recent years, profound and complex transformations in the world order have emerged on the global landscape, which are marked by the following attributes. First, strategic tension between the major powers,namely Chi...In recent years, profound and complex transformations in the world order have emerged on the global landscape, which are marked by the following attributes. First, strategic tension between the major powers,namely China and the US, is unfolding in a more notable way than ever before. Second, conflicts between the public and private enterprises in the economic sector are deepening. Third, globalization is at the crossroad,featuring contradictions between nationalism and globalism. Last,uncertainties of the future world reflect also in the debates over conflicting concepts and ideologies.展开更多
The description of the received new results of field geological (teсtonophysical) study of massifs of rocks is provided: tectonic jointing, explosive and folded deformations, mirrors of slidings, tectonic motions of ...The description of the received new results of field geological (teсtonophysical) study of massifs of rocks is provided: tectonic jointing, explosive and folded deformations, mirrors of slidings, tectonic motions of blocks of breeds. Reconstruction of fields of tension according to geological data of the certain massif of the Chatkalo-Kurama mountain area (Tien-Shan)—a coastal zone of the Charvak reservoir and the Almalyk mining industrial region is executed. The multidirectional motions of blocks of rocks in the massif of a coastal zone of the Charvak reservoir connected with tectonic and technogenic factors are revealed. The scheme of kinematics and the intense deformed condition of blocks of the Almalyk district is received. Here the regional field of tension with horizontal and submeridional orientation of an axis of the main normal tension of compression at the inclined provision of two other axes are observed. The received results testify to opportunities field the tectonophysical of methods for obtaining important data on kinematics and dynamics of massifs of rocks, tectonic blocks, and features of their deformation. Such studying of the massif of rocks before the beginning and in the course of performance of work on objects of the national economy is important for the choice of design and optimum parameters of laying of excavations, control of a condition of their boards and walls, definition of strategy of safety of conducting mining operations and also seismic stability of constructions.展开更多
We have investigated the morphology of dimyristoyl phosphatidyl choline (DMPC)—cholesterol mixed monolayer formed on the water surface by dropping method using surface tension measurement (STm), Brewster angle micros...We have investigated the morphology of dimyristoyl phosphatidyl choline (DMPC)—cholesterol mixed monolayer formed on the water surface by dropping method using surface tension measurement (STm), Brewster angle microscopy (BAM), and infrared external reflection spectroscopy (IERS). STm results showed negative deviation of the limiting molecular area (A0) of cholesterol occurred when cholesterol was added to the DMPC monolayer. BAM images showed the expandable DMPC monolayer changed to the condensed rigid monolayer at more than cholesterol mole fraction (xChol) 0.4. IERS recordings showed that the addition of cholesterol at xChol = 0.4 occurred structural change from gauche- to trans- conformation of two DMPC molecule alkyl chains. From these results, it is found that cholesterol molecule has specific properties that cause structural transition of DMPC molecule alkyl chains.展开更多
文摘Here, using the Scale-Symmetric Theory (SST) we explain the cosmological tension and the origin of the largest cosmic structures. We show that a change in value of strong coupling constant for cold baryonic matter leads to the disagreement in the galaxy clustering amplitude, quantified by the parameter S8. Within the same model we described the Hubble tension. We described also the mechanism that transforms the gravitational collapse into an explosion—it concerns the dynamics of virtual fields that lead to dark energy. Our calculations concern the Type Ia supernovae and the core-collapse supernovae. We calculated the quantized masses of the progenitors of supernovae, emitted total energy during explosion, and we calculated how much of the released energy was transferred to neutrinos. Value of the speed of sound in the strongly interacting matter measured at the LHC confirms that presented here model is correct. Our calculations show that the Universe is cyclic.
文摘Tension leg platform (TLP) for offshore wind turbine support is a new type structure in wind energy utilization. The strong-interaction method is used in analyzing the coupled model, and the dynamic characteristics of the TLP for offshore wind turbine support are recognized. As shown by the calculated results: for the lower modes, the shapes are water's vibration, and the vibration of water induces the structure's swing; the mode shapes of the structure are complex, and can largely change among different members; the mode shapes of the platform are related to the tower's. The frequencies of the structure do not change much after adjusting the length of the tension cables and the depth of the platform; the TLP has good adaptability for the water depths and the environment loads. The change of the size and parameters of TLP can improve the dynamic characteristics, which can reduce the vibration of the TLP caused by the loads. Through the vibration analysis, the natural vibration frequencies of TLP can be distinguished from the frequencies of condition loads, and thus the resonance vibration can be avoided, therefore the offshore wind turbine can work normally in the complex conditions.
文摘A new form function involving parameters Pi is presented. On the basis of the form function, an initial form of tension structure was Sound by interpolating through the control points on boundary of the structure. The form function can be controlled by changing beta (1) according to the pre-tension and the boundary of the structure. The final form of a tension structure should be an equilibrium system under the pretension. To examine the nature of the initial form, the FEM was used. Many examples show that the initial form gives a very ideal result for equal or unequal pre-tension in two directions of the structure. In general cases, there is little difference between the initial form and the final one.
基金Project (No. 50678157) supported by the National Natural ScienceFoundation of China
文摘Factors such as errors during the fabrication or construction of structural components and errors of calculation as- sumption or calculation methods, are very likely to cause serious deviation of many strings’ actual prestressing forces from the designed values during tension structure construction or service period, and further to threaten the safety and reliability of the structure. Aiming at relatively large errors of the prestressing force of strings in a tension structure construction or service period, this paper proposes a new finite element method (FEM), the "tensile force correction calculation method". Based on the measured prestressing forces of the strings, this new method applies the structure from the zero prestressing force status approach to the measured prestressing force status for the first phase, and from the measured prestressing force status approach to the designed prestressing force status for the second phase. The construction tensile force correction value for each string can be obtained by multi-iteration with FEM. Using the results of calculation, the strings’ tensile force correction by group and in batch will be methodic, simple and accurate. This new calculation method can be applied to the prestressed correction construction simulation analysis for tension structures.
文摘This paper deals with new and innovative case studies of application of post-tensioning for restoration of structures for buildings, bridges and rock stabilization in India. In earlier situations for these types of cases conventional method of repair and rehabilitation has been used. These innovative approaches for restoration have led to enormous saving of cost and time. The advantages of post tensioning are well known in the civil industry and are being used for the last 40 to 50 years. Post tensioning is one of the best methods to induce stresses in the concrete before application of live load and this technique can also be widely used for restoration and rehabilitation of structures. Unlike the use of post-tensioning in new structures there are no definite methods or codes for application in restoration and rehabilitation of structures. For restoration and rehabilitation of structures, PT (post tensioned) technique can be applied in combination with other techniques and materials available. Bridge lifting is a tricky and risky job especially when the superstructure is displaced appreciably by a natural calamity, etc.. Not only the present state of structure needs proper study before commencement of restoration and rehabilitation but also calls for careful execution. This paper deals with case studies of innovative applications of post tensioning in restoration and rehabilitation of structures and restoration of bridge structure in Andaman & Nicobar Island, India affected by Sumatra quake.
文摘“Push-and-pull”efficient structures have been inconceivable between XVIII centuries.It is because of the incapacity of obtain an efficient behaviour of tensioned material.Since XVIII centuries,architecture developed some structural knowledge generating novel structural forms in the architecture and engineering that were not known before.Tensegrities and tensioned structures were studied due to the knowledge of geometry and tension.Some investigations about tensegrities and tensioned structures have been developed since that moment.Tensegrities are bar and cable structures that work only in compression or tension efforts.Bars and cables are balanced,but in appearance the growth is disorderly.Most of deployable structures are based on tensegrity systems.The research is focused in presenting a summary of tensegrities and tensioned architectures that have been used in the structural design of novel patterns.The research of adequate materials to tension efforts will be crucial in this study.The investigation presents an important state of the art that provides technical solutions to apply on novel architectures based on tensegrities and tensioned structures.The research is useful to produce the current constructive solutions based on these constructive systems.
基金the National Natural Science Foundation of China(to grant No.29903006 and 29973023)the Visiting Scholar Foundation of Key Laboratory in University of China for their financial support
文摘A quantitative structure-property relationship (QSPR) study has been made for the prediction of the surface tension of nonionic surfactants in aqueous solution. The regressed model includes a topological descriptor, the Kier & Hall index of zero order (KH0) of the hydrophobic segment of surfactant and a quantum chemical one, the heat of formation (fHD) of surfactant molecules. The established general QSPR between the surface tension and the descriptors produces a correlation coefficient of multiple determination, 2r=0.9877, for 30 studied nonionic surfactants.
基金the achievement of the Beijing Research Center for Xi Jinping Thought on Socialism with Chinese Characteristics for a New Erathe major project of the Beijing Social Science Fund“General Secretary Xi Jinping’s Important Statements on Human Rights”(21LFXA051)
文摘The human rights white paper has in it the basic concepts of human rights,the form of the human rights system,and the mode of human rights practice in modern China.It is based on the tension balance structure between the historical feature and rationality,the cultural feature and similarity,the realistic feature and the common feature of human rights.Adhering to the historical nature of human rights rather than abstract rationality,and the cultural diversity and equality of human rights rather than one dominant model,and the particularity of human rights rather than universality is the pillar of China’s human rights philosophy,system,and practice.The human rights development path that combines the top-down leadership of China’s ruling party,the capability of the Chinese government in taking a holistic approach and the bottom-up driving force of the people is very different from the natural evolution path of the West.
基金Funed by the National Key R&D Program of China(No.2017YFB0309903)
文摘To study the effect of atmospheric pressure on the properties of fresh and hardened airentrained concrete, three kinds of air entraining agents were used for preparing air-entrained concrete in the plateaus(Lhasa, 61 kPa) and the plains(Beijing, 101 kPa). Air content, slump, compressive strength and pore structure of the three air-entrained concretes were tested in these two places. It is found that the air content of concrete under low atmospheric pressure(LAP) is 4%-36% lower than that of concrete under normal atmospheric pressure(NAP), which explaines the decrease of slump for air-entrained concrete under LAP. Pore number of hardened concrete under LAP is reduced by 48%-69%. While, the proportion of big pores(pore diameter >1 200 μm) and air void spacing factor are increased by 1.5%-7.3% and 51%-92%, respectively. The deterioration of pore structure results in a 3%-9% reduction in the compressive strength of concrete. From the results we have obtained, it can be concluded that the increase of critical nucleation energy of air bubbles and the decrease of volumetric compressibility coefficient of air in the concrete are responsible for the variation of air content and pore structure of concrete under LAP.
基金financially supported by the National Natural Science Foundation of China(Grant No.51709041)China Postdoctoral Science Foundation(Grant Nos.2017M610178 and 2018T110224)the Fundamental Research Funds for the Central Universities(Grant No.DUT18RC(4)069)
文摘The innovative Subsurface Tension Leg Platform(STLP), which is designed to be located below Mean Water Level(M.W.L) to minimize direct wave loading and mitigate the effect of strong surface currents, is considered as a competitive alternative system to support shallow-water rated well completion equipment and rigid risers for large ultra-deep water oil field development. A detailed description of the design philosophy of STLP has been published in the series of papers and patents. Nonetheless, design uncertainties arise as limited understanding of various parameters effects on the structural response of STLP, pertaining to the environmental loading, structural properties and hydrodynamic characteristics. This paper focuses on providing quantitative methodology on how each parameter affects the structural response of STLP, which will facilitate establishing the unique design criteria as regards to STLP. Firstly, the entire list of dimensionless groups of input and output parameters is proposed based on VaschyBuckingham theory. Then, numerical models are built and a series of numerical tests are carried out for validating the obtained dimensionless groups. On this basis, the calculation results of a great quantity of parametric studies on the structural response of STLP are presented and discussed in detail. Further, empirical formulae for predicting STLP response are derived through nonlinear regression analysis. Finally, conclusions and discussions are made. It has been demonstrated that the study provides a methodology for better control of key parameters and lays the foundation for optimal design of STLP. The obtained conclusions also have wide ranging applicability in reference to the engineering design and design analysis aspects of deepwater buoy supporting installations, such as Grouped SLOR or TLR system.
文摘For statically indeterminate structure, the internal force will be changed with the translation of the supports, because the internal force is related to the absolute value of the stiffness EI. When the tension is different with the compression modulus, EI is the function of internal force and is not constant any more that is different from classic mechanics. In the other words, it is a nonlinear problem to calculate the internal force. The expression for neutral axis of the statically indeterminate structure was derived in the paper. The iterative program for nonlinear internal force was compiled. One case study was presented to illustrate the difference between the results using the different modulus theory and the single modulus theory as in classical mechanics. Finally, some reasonable suggestions were made for the different modulus structures.
基金Project supported by the National Natural Science Foundation of China (No. 19872076)
文摘Based on the nonlinear geometric relation between strain and displacement for flexible cable, the equilibrium equation under self-weight and influence of temperature was established and an analytical solution of displacement and tension distribution defined in Eulerian coordinate system was accurately obtained. The nonlinear algebraic equations caused by cable structure were solved directly using the modified Powell hybrid algorithm with high precision routine DNEQNE of Fortran. For example, a cable structure consisting of three cables jointly supported by a vertical spring and all the other ends fixed was calculated and compared with various methods by other scholars.
文摘Cable roof structures?have?only become widespread in large span structures in the latter part of the twentieth century. However,?they?still represent a relatively new form of roof construction, especially as in the present case of a small span innovative structural solution. The contribution of this text to the structural engineering community lies in the increased interest in building simple cable roof structures. Since its completion in September 1996, this small cable roof structure has been recognized as an interesting architectural and structural example. The text describes aspects of the design and construction of a small cable roof that was designed as a roof for an open-air theater stage for the city of Sao Jose do Rio Pardo, Sao Paulo, Brazil. A cable network, in the shape of a hyperbolic paraboloid surface, is anchored in a reinforced concrete edge ring. The projection of the ring’s axis onto the ground plane is an ellipse. Workers with specialized training were employed in the various stages of the construction, which was completed in September 1996.
基金Project (No.863-705-210) supported by the Hi-Tech Research and Development Program (863) of China
文摘The cable-strut structural system is statically and kinematically indeterminate. The initial pre-stress is a key factor for determining the shape and load carrying capacity. A new numerical algorithm is presented herein for the initial pre-stress finding procedure of complete cable-strut assembly. This method is based on the linear adjustment theory and does not take into account the material behavior. By using this method,the initial pre-stress of the multi self-stress modes can be found easily and the cal-culation process is simplified and efficient also. Finally,the initial pre-stress and structural performances of a particular Levy cable dome are analyzed comprehensively. The algorithm has proven to be efficient and correct,and the numerical results are valuable for practical design of Levy cable dome.
文摘The development of deepwater oil fields has reached a new stage with the dramatic increase in water depth and the recent increasing demands of the economic development in the filed. The use of a Tension Leg Platform (TIP) combined with other systems, such as Floating Production Storage and Offloading (FPSO) system, Floating Production Unit (FPU) system, Tender Assisted Drilling (TAD) system, etc., has drawn the industry attention and increased significantly in the past few years. For the areas lacking of pipeline system, the use of TIP(s) combined with FPSO has been chosen to efficiently develop the deepwater fields. The TIP with a Tender Assisted Drilling system significantly reduces the payload of the platform and reduces the investment in the TIP system substantially. This opens the door for many new deepwater field developments to use the tension leg platform. The advantage of the TIP combined with a TAD system is more significant when several TIPs are used for the continuous development of the field. One of the applications for the TIP with a tender assisted drilling system can be in the development of an offshore marginal field. Owing to the increase of water depth, the conventional fixed platform model for the exploration of those fields becomes uneconomical. It also would be too expensive to use a large TIP structure for those marginal fields due to the large amount of initial investment. The TIP system with tender assisted drilling can be used to develop those fields economically. There are many marginal fields in China offshore, especially in shelf areas. The application of this field developing model, combined with the existing field developing experience in China, will open the door for many marginal field developments. This paper will review the application of the combined TIP system through some examples of completed/ongoing projects, and major technical issues encountered in those practices. The potential application of this technology in China deepwater development will be discussed in the end.
文摘The reinforcement corrosion is the pitting corrosion of chloride corrosion.Hence,in this study,the variations of reinforcement tensile strength due to stress concentration of pitting corrosion are analyzed.The stress concentration consequence of corrosion on the reinforcement tensile capacity is studied utilizing tension tests and creating different ABAQUS software models.According to the modelling in various corrosion depths,strength reduction is less than 5%in corrosion with pit radius to reinforcement diameter ratio up to 0.3 and for corrosions higher than 0.4,the measure of capacity reduction is increased more to 30%.
基金Supported by the State Key Project "Installation Technical Study for Deepwater Floating Structures" under Grant No.2008ZX05026
文摘Transportation of tension leg platform (TLP) structures for a long distance has always been associated with the use of a heavy semi-transport vessel. The requirements of this type of vessel are always special, and their availability is limited. To prepare for the future development of South China Sea deepwater projects, the China Offshore Oil Engineering Corporation has recently built a heavy lift transport vessel-Hai Yang Shi You 278. This semi-submersible vessel has a displacement capacity of 50k DWT, and a breath of 42 meters. Understanding the vessel's applicability and preparing it for use in future deepwater projects are becoming imminent needs. This paper reviews the current critical issues associated with TLP transportation and performs detailed analysis of the designed TLP during load-out and transportation. The newly built COOEC transportation vessel HYSY 278 was applied to dry transport of the TLP structure from the COOEC fabrication yard in Qingdao to an oil field in South China Sea. The entire process included the load-out of the TLP structure from the landsite of the fabrication yard, the offloading and float-on of the platform from the vessel, the dry transport of the TLP over a long distance, and the final offloading of the platform. Both hydrodynamic and structure analysis were performed to evaluate the behavior of the transport vessel and TLP structure. Special attention was paid to critical areas associated with the use of this new vessel, along with any potential limitations. The results demonstrate that HYSY 278 can effectively be used for transporting the structure with proper arrangement and well-prepared operation. The procedure and details were presented on the basis of the study results. Special attention was also given to discussion on future use based on the results from the analysis.
文摘In recent years, profound and complex transformations in the world order have emerged on the global landscape, which are marked by the following attributes. First, strategic tension between the major powers,namely China and the US, is unfolding in a more notable way than ever before. Second, conflicts between the public and private enterprises in the economic sector are deepening. Third, globalization is at the crossroad,featuring contradictions between nationalism and globalism. Last,uncertainties of the future world reflect also in the debates over conflicting concepts and ideologies.
文摘The description of the received new results of field geological (teсtonophysical) study of massifs of rocks is provided: tectonic jointing, explosive and folded deformations, mirrors of slidings, tectonic motions of blocks of breeds. Reconstruction of fields of tension according to geological data of the certain massif of the Chatkalo-Kurama mountain area (Tien-Shan)—a coastal zone of the Charvak reservoir and the Almalyk mining industrial region is executed. The multidirectional motions of blocks of rocks in the massif of a coastal zone of the Charvak reservoir connected with tectonic and technogenic factors are revealed. The scheme of kinematics and the intense deformed condition of blocks of the Almalyk district is received. Here the regional field of tension with horizontal and submeridional orientation of an axis of the main normal tension of compression at the inclined provision of two other axes are observed. The received results testify to opportunities field the tectonophysical of methods for obtaining important data on kinematics and dynamics of massifs of rocks, tectonic blocks, and features of their deformation. Such studying of the massif of rocks before the beginning and in the course of performance of work on objects of the national economy is important for the choice of design and optimum parameters of laying of excavations, control of a condition of their boards and walls, definition of strategy of safety of conducting mining operations and also seismic stability of constructions.
文摘We have investigated the morphology of dimyristoyl phosphatidyl choline (DMPC)—cholesterol mixed monolayer formed on the water surface by dropping method using surface tension measurement (STm), Brewster angle microscopy (BAM), and infrared external reflection spectroscopy (IERS). STm results showed negative deviation of the limiting molecular area (A0) of cholesterol occurred when cholesterol was added to the DMPC monolayer. BAM images showed the expandable DMPC monolayer changed to the condensed rigid monolayer at more than cholesterol mole fraction (xChol) 0.4. IERS recordings showed that the addition of cholesterol at xChol = 0.4 occurred structural change from gauche- to trans- conformation of two DMPC molecule alkyl chains. From these results, it is found that cholesterol molecule has specific properties that cause structural transition of DMPC molecule alkyl chains.