When the electronic temperature sensor was incorporated into a system of soil water tension and the insidetube temperature was monitored in real time, it is concluded that the inside temperature increased by 26.9 ℃ a...When the electronic temperature sensor was incorporated into a system of soil water tension and the insidetube temperature was monitored in real time, it is concluded that the inside temperature increased by 26.9 ℃ and the inside pressure changed about 14.6 Kpa, when the pottery soil was replaced by the sealing plug. When the soil water was relatively stable in the experimental salvers, the in-side pressure stil varied regularly with the temperature. When the inside temperature increased by 22.2 ℃, the inside pressure varied about 7.4 Kpa. Through com-pensation calculation of the inside tension, the temperature in the warming and cooling periods was compensated, which was useful to correct the tension measurement errors induced from the changing temperature. When the measuring interval was 4 hours and the temperature difference was 18.1 ℃, the tension difference of both points was only 0.278 Kpa, compared to the difference up to 6.5 Kpa before compensation.展开更多
[Objective] In order to better meet the requirement of crops on a more and more accurate water content under various planting environment of modern agri-culture, an automatic test system of soil water characteristic c...[Objective] In order to better meet the requirement of crops on a more and more accurate water content under various planting environment of modern agri-culture, an automatic test system of soil water characteristic curve was designed by combining the conceptions of soil moisture content and soil water potential. [Method] Electronic soil moisture tension meter was used to determine the real-time tension value of soil moisture in the tested container, and the electronic Weigh sensor was used to determine soil Weigh. Minusing method was used to calculate soil moisture content, based on which the soil water characteristic curve was plotted. [Result] Through the filed survey of 2 different kinds of soil in Jiangsu Province, the results were as fol ows: soil of different composition showed different trend in soil water characteristic curve that the soil water characteristic relation of the sandy soil in the old course of the Yel ow River in Xuzhou was Y=-0.000 2X3+0.027 7X2-1.644 5X+38.161, R2=0.991 9; while the soil water characteristic relation of the saline-alkali soil in Jinhai Farm of Dafeng was Y=-0.00 2X2-0.426X+39.905, R2=0.991 3. [Con-clusion] The automatic test system of soil water characteristic curve soil water char-acteristics curve could reflect soil moisture content and soil water potential, as wel as reflect the effectiveness of soil water to plant growth, providing basis for the sci-entific irrigation.展开更多
基金Supported by Jiangsu Agricultural Self-innovation Fund[CX(13)3031]~~
文摘When the electronic temperature sensor was incorporated into a system of soil water tension and the insidetube temperature was monitored in real time, it is concluded that the inside temperature increased by 26.9 ℃ and the inside pressure changed about 14.6 Kpa, when the pottery soil was replaced by the sealing plug. When the soil water was relatively stable in the experimental salvers, the in-side pressure stil varied regularly with the temperature. When the inside temperature increased by 22.2 ℃, the inside pressure varied about 7.4 Kpa. Through com-pensation calculation of the inside tension, the temperature in the warming and cooling periods was compensated, which was useful to correct the tension measurement errors induced from the changing temperature. When the measuring interval was 4 hours and the temperature difference was 18.1 ℃, the tension difference of both points was only 0.278 Kpa, compared to the difference up to 6.5 Kpa before compensation.
基金Supported by the Fund for Independent Innovation of Agricultural Sciences in Jiangsu Province(CX(13)3031)~~
文摘[Objective] In order to better meet the requirement of crops on a more and more accurate water content under various planting environment of modern agri-culture, an automatic test system of soil water characteristic curve was designed by combining the conceptions of soil moisture content and soil water potential. [Method] Electronic soil moisture tension meter was used to determine the real-time tension value of soil moisture in the tested container, and the electronic Weigh sensor was used to determine soil Weigh. Minusing method was used to calculate soil moisture content, based on which the soil water characteristic curve was plotted. [Result] Through the filed survey of 2 different kinds of soil in Jiangsu Province, the results were as fol ows: soil of different composition showed different trend in soil water characteristic curve that the soil water characteristic relation of the sandy soil in the old course of the Yel ow River in Xuzhou was Y=-0.000 2X3+0.027 7X2-1.644 5X+38.161, R2=0.991 9; while the soil water characteristic relation of the saline-alkali soil in Jinhai Farm of Dafeng was Y=-0.00 2X2-0.426X+39.905, R2=0.991 3. [Con-clusion] The automatic test system of soil water characteristic curve soil water char-acteristics curve could reflect soil moisture content and soil water potential, as wel as reflect the effectiveness of soil water to plant growth, providing basis for the sci-entific irrigation.