An expansion theory of spherical cavities in strain-softening materials with different moduli of tension and com-pression was presented. For geomaterials,two controlling parameters were introduced to take into account...An expansion theory of spherical cavities in strain-softening materials with different moduli of tension and com-pression was presented. For geomaterials,two controlling parameters were introduced to take into account the different moduli and strain-softening properties. By means of elastic theory with different moduli and stress-softening models,general solutions cal-culating Tresca and Mohr-Coulomb materials' stress and displacement fields of expansion of spherical cavity were derived. The effects caused by different elastic moduli in tensile and compression and strain-softening rates on stress and displacement fields and development of plastic zone of expansion of cavity were analyzed. The results show that the ultimate expansion pressure,stress and displacement fields and development of plastic zone vary with the different elastic moduli and strain-softening prop-erties. If classical elastic theory is adopted and strain-softening properties are neglected,rather large errors may be the result.展开更多
This is the first one that applies the Zisman critical surface tension technique successfully to textile materials. It was accomplished by carefully determination of the contact angle of fabric. The deviation caused b...This is the first one that applies the Zisman critical surface tension technique successfully to textile materials. It was accomplished by carefully determination of the contact angle of fabric. The deviation caused by the porous structure of the fabric will be taken into account. To do so, a Jens equation is applied, and the measured contact angles can be corrected. The surface porosity was determined by measurement and approximate calculation, and the chemical composition of the surface was characterized by means of attenuated total reflection Fourier-transform infrared(FTIR/ATR).展开更多
A new bionic approach is presented to find the optimal topologies of a structure with tension-only or compression-onlymaterial based on bone remodelling theory.By traditional methods,the computational cost of topology...A new bionic approach is presented to find the optimal topologies of a structure with tension-only or compression-onlymaterial based on bone remodelling theory.By traditional methods,the computational cost of topology optimization of thestructure is high due to material nonlinearity.To improve the efficiency of optimization,the reference-interval with material-replacement method is presented.In the method,firstly,the optimization process of a structure is considered as bone remodellingprocess under the same loading conditions.A reference interval of Strain Energy Density (SED),corresponding to thedead zone or lazy zone in bone mechanics,is adopted to control the update of the design variables.Secondly,a material-replacement scheme is used to simplify the Finite Element Analysis (FEA) of structure in optimization.In the operation ofmaterial-replacement,the original tension-only or compression-only material in design domain is replaced with a new isotropicmaterial and the Effective Strain Energy Density (ESED) of each element can be obtained.Finally,the update of design variablesis determined by comparing the local ESED and the current reference interval of SED,e.g.,the increment of a relativedensity is nonzero if the local ESED is out of the current reference interval.Numerical results validate the method.展开更多
A shear-lag model is used to study the mechanical properties of bone-like hierarchical materials. The relationship between the overall effective modulus and the number of hierarchy level is obtained. The result is com...A shear-lag model is used to study the mechanical properties of bone-like hierarchical materials. The relationship between the overall effective modulus and the number of hierarchy level is obtained. The result is compared with that based on the tension-shear chain model and finite element simulation, respectively. It is shown that all three models can be used to describe the mechanical behavior of the hierarchical material when the number of hierarchy levels is small. By increasing the number of hierarchy level, the shear-lag result is consistent with the finite element result. However the tension-shear chain model leads to an opposite trend. The transition point position depends on the fraction of hard phase, aspect ratio and modulus ratio of hard phase to soft phase. Further discussion is performed on the flaw tolerance size and strength of hierarchical materials based on the shear-lag analysis.展开更多
Surface active ionic liquids (SAILs) are considered as prominent materials in enhanced oil recovery thanks to their high interfacial activity. This study reports the preparation and applications of a nanostructure Tri...Surface active ionic liquids (SAILs) are considered as prominent materials in enhanced oil recovery thanks to their high interfacial activity. This study reports the preparation and applications of a nanostructure Tripodal imidazolium SAIL as an environmentally-friendly substitute to the conventional surfactants. The product has a star-like molecular structure centered by a triazine spacer, namely [(C_(4)im)_(3)TA][Cl_(3)], prepared by a one-step synthesis method and characterized with FT-IR, NMR, XRD, and SEM analysis methods. The interfacial tension of the system was decreased to about 78% at critical micelle concentration of less than 0.08 mol·dm^(−3). Increasing temperature, from 298.2 to 323.2 K, improved this capability. The solid surface wettability was changed from oil-wet to water-wet and 80% and 77% stable emulsions of crude oil–aqueous solutions were created after one day and one week, respectively. Compared to the Gemini kind homologous SAILs, the superior effects of the Tripodal SAIL were revealed and attributed to the strong hydrophobic branches in the molecule. The Frumkin adsorption isotherm precisely reproduced the generated IFT data, and accordingly, the adsorption and thermodynamic parameters were determined.展开更多
A new kind of material used in liquid cryogen cooler has been found and investigated in our group It is anticipated that the materials can be applied in the conditions of launching, rotation in any orientation and wei...A new kind of material used in liquid cryogen cooler has been found and investigated in our group It is anticipated that the materials can be applied in the conditions of launching, rotation in any orientation and weightlessness. The mechanism on which the material relies is similar to 'sponge' trapping the liquid cryogens within its micro-pores with surface tension. Preliminary tests have been performed on wicking. Also,we apply the materials to the cryogenic optical cooler whjch needs to be maintained within the temperuture range of 80-100 K. The results are satisfactory.展开更多
Different material properties leads to different metal fracture behaviors. Even if the powder material is composed of plastic metal, the fracture still does not show macroscopic plastic deformation characteristics if ...Different material properties leads to different metal fracture behaviors. Even if the powder material is composed of plastic metal, the fracture still does not show macroscopic plastic deformation characteristics if the material contains a large number of voids. Eight node isoparametric elastic plastic finite element method was used to simulate the tensile process of sintered powder material. By setting a number of voids in the analyzed metal cuboid, the initial density was taken into consideration. The material properties of the three dimensional solid for the tensile simulation were defined with reference to the known pure iron material parameters. The load displacement curves during elongation were obtained with a universal testing machine, and then the simulated curves were compared with the experimental results. The factors that cause the stress concentration and strength decrease were analyzed according to the simulated equivalent von Mises stress distribution.展开更多
JH2模型广泛应用于模拟脆性材料的动态力学行为,但是其强度准则和损伤定义存在一定不足,因此本文针对爆炸冲击荷载作用下的岩石材料提出了一个改进JH2模型.首先为强度模型增加了初始屈服面和非线性损伤尺度因子,对拉伸和压缩损伤分别进...JH2模型广泛应用于模拟脆性材料的动态力学行为,但是其强度准则和损伤定义存在一定不足,因此本文针对爆炸冲击荷载作用下的岩石材料提出了一个改进JH2模型.首先为强度模型增加了初始屈服面和非线性损伤尺度因子,对拉伸和压缩损伤分别进行拉压不对称处理,并将体积塑性应变引入到压缩损伤中.将该模型嵌入LS-DYNA材料子程序后,开展一系列单元测试、分离式霍普金森压杆(Split Hopkinson Pressure Bar, SHPB)动态劈裂试验和岩石爆破试验的数值模拟.数值模拟结果表明:改进后的JH2模型克服了原始JH2模型在损伤演化的拉压不对称特性、非线性应变硬化行为、洛德角效应和体积行为等方面的不足,证明了本文所提改进JH2模型的预测精度和应用潜力.展开更多
Based on the elastic theory of cylindrical shells and the theory of composite laminates,a prediction model for the residual prestress of the simplified round composite barrel for railgun is established.Only the fibre ...Based on the elastic theory of cylindrical shells and the theory of composite laminates,a prediction model for the residual prestress of the simplified round composite barrel for railgun is established.Only the fibre pretension is considered in this model.A three dimensional numerical simulation for the residual prestress in the railgun barrel is carried out,by combining the temperature differential method with the element birth and death technology.The results obtained by the two methods are compared.It reveals that the distribution trends of residual prestress are consistent.And the difference for residual prestress in the filament wound composite housing of barrel is relatively small.The same finite element method is used to analysis the residual prestress in the non-simplified composite barrels for railgun,which are under different control modes of winding tension.The results mean that the residual prestress in barrel will increase while the taper coefficient for winding is decreasing.Therefore,the sealing performance in bore is improved,but the strength of the filament wound composite housing drops.In addition,the axial and circumferential residual prestress in the filament wound composite housing with constant torque winding are close to the ones in iso-stress design for barrel.展开更多
The stress-strain curve of bending bar and the stress relax curve of AZ31 was obtained by a tension test using Gleeble-1500.The tension straightening process mainly consisted of the elastic loading-I and unloading sta...The stress-strain curve of bending bar and the stress relax curve of AZ31 was obtained by a tension test using Gleeble-1500.The tension straightening process mainly consisted of the elastic loading-I and unloading stage,the elastic loading-II and unloading stage,and the elastic-plastic loading stage,which were based on the stretch force change during straightening.The circular bar straightening under one-dimensional bending was investigated and assumed to be linear strain-hardening elastic-plastic material.According to the elastic-plastic mechanics theory,the mathematical displacement-force model of a tension straightening process established,on which was based,the predicted displacement of tension straightening for various original deflection was calculated.The tension straightening experiment for AZ31 magnesium was conducted under the guidance of the predicted displacement.The experiment results present good straightness when there is a stress relaxation phenomenon or the temperature of tension straightening is 25℃.展开更多
WEDM is used in machining conductive materials where it is required to obtained complicated and intricate shapes with high accuracy.Various applications are in the field of automobile,medical industries,aerospace etc....WEDM is used in machining conductive materials where it is required to obtained complicated and intricate shapes with high accuracy.Various applications are in the field of automobile,medical industries,aerospace etc.WEDM is an economical machining option with short product development cycle.Surface roughness,kerf width,Material removal rate,Recast layer hardness and surface microhardness in WEDM are most important responses.In this paper,effect of varied Wire tension on SR,KW,MRR,RCL hardness and surface microhardness on AISI 304 have been investigated.Pulse on time,pulse off time,current and dielectric fluid are taken as fixed parameter.Results show that Wire tension influences the SR,MRR and Surface microhardness and has no effect on kerf width in case of Stainless steel304.展开更多
In this paper the results of a high-speed tension experiment of the SiC_w/Al composite have been reported and a simplified theoretical model has been developed to study the fracture mechanism of composites in high-spe...In this paper the results of a high-speed tension experiment of the SiC_w/Al composite have been reported and a simplified theoretical model has been developed to study the fracture mechanism of composites in high-speed tension. This theoretical model provides a new explanation for the increase of dynamic fracture strength of composites in high-speed tension.展开更多
基金Project supported by the National Postdoctoral Science Foundation of China (No.20060400317)the Education Foundation of Zhejiang Province (No.20061459)the Young Foundation of Zhejiang Province (No.0202303005),China
文摘An expansion theory of spherical cavities in strain-softening materials with different moduli of tension and com-pression was presented. For geomaterials,two controlling parameters were introduced to take into account the different moduli and strain-softening properties. By means of elastic theory with different moduli and stress-softening models,general solutions cal-culating Tresca and Mohr-Coulomb materials' stress and displacement fields of expansion of spherical cavity were derived. The effects caused by different elastic moduli in tensile and compression and strain-softening rates on stress and displacement fields and development of plastic zone of expansion of cavity were analyzed. The results show that the ultimate expansion pressure,stress and displacement fields and development of plastic zone vary with the different elastic moduli and strain-softening prop-erties. If classical elastic theory is adopted and strain-softening properties are neglected,rather large errors may be the result.
文摘This is the first one that applies the Zisman critical surface tension technique successfully to textile materials. It was accomplished by carefully determination of the contact angle of fabric. The deviation caused by the porous structure of the fabric will be taken into account. To do so, a Jens equation is applied, and the measured contact angles can be corrected. The surface porosity was determined by measurement and approximate calculation, and the chemical composition of the surface was characterized by means of attenuated total reflection Fourier-transform infrared(FTIR/ATR).
基金the National Natural Science Foundation of China(Grant No.50908190)the Human Resources Foundation of Northwest A&F University(Grant No.Z111020903)
文摘A new bionic approach is presented to find the optimal topologies of a structure with tension-only or compression-onlymaterial based on bone remodelling theory.By traditional methods,the computational cost of topology optimization of thestructure is high due to material nonlinearity.To improve the efficiency of optimization,the reference-interval with material-replacement method is presented.In the method,firstly,the optimization process of a structure is considered as bone remodellingprocess under the same loading conditions.A reference interval of Strain Energy Density (SED),corresponding to thedead zone or lazy zone in bone mechanics,is adopted to control the update of the design variables.Secondly,a material-replacement scheme is used to simplify the Finite Element Analysis (FEA) of structure in optimization.In the operation ofmaterial-replacement,the original tension-only or compression-only material in design domain is replaced with a new isotropicmaterial and the Effective Strain Energy Density (ESED) of each element can be obtained.Finally,the update of design variablesis determined by comparing the local ESED and the current reference interval of SED,e.g.,the increment of a relativedensity is nonzero if the local ESED is out of the current reference interval.Numerical results validate the method.
基金Project supported by the National Natural Science Foundation of China(Nos.10432050,10428207 and 10672163)the Chinese Academy of Sciences through Grant KJCX-YW-M04.
文摘A shear-lag model is used to study the mechanical properties of bone-like hierarchical materials. The relationship between the overall effective modulus and the number of hierarchy level is obtained. The result is compared with that based on the tension-shear chain model and finite element simulation, respectively. It is shown that all three models can be used to describe the mechanical behavior of the hierarchical material when the number of hierarchy levels is small. By increasing the number of hierarchy level, the shear-lag result is consistent with the finite element result. However the tension-shear chain model leads to an opposite trend. The transition point position depends on the fraction of hard phase, aspect ratio and modulus ratio of hard phase to soft phase. Further discussion is performed on the flaw tolerance size and strength of hierarchical materials based on the shear-lag analysis.
基金The authors would like to acknowledge the Bu Ali Sina University and the Iran National Science Foundation:INSF,under Grant number of 99031559,for their financial supports.
文摘Surface active ionic liquids (SAILs) are considered as prominent materials in enhanced oil recovery thanks to their high interfacial activity. This study reports the preparation and applications of a nanostructure Tripodal imidazolium SAIL as an environmentally-friendly substitute to the conventional surfactants. The product has a star-like molecular structure centered by a triazine spacer, namely [(C_(4)im)_(3)TA][Cl_(3)], prepared by a one-step synthesis method and characterized with FT-IR, NMR, XRD, and SEM analysis methods. The interfacial tension of the system was decreased to about 78% at critical micelle concentration of less than 0.08 mol·dm^(−3). Increasing temperature, from 298.2 to 323.2 K, improved this capability. The solid surface wettability was changed from oil-wet to water-wet and 80% and 77% stable emulsions of crude oil–aqueous solutions were created after one day and one week, respectively. Compared to the Gemini kind homologous SAILs, the superior effects of the Tripodal SAIL were revealed and attributed to the strong hydrophobic branches in the molecule. The Frumkin adsorption isotherm precisely reproduced the generated IFT data, and accordingly, the adsorption and thermodynamic parameters were determined.
文摘A new kind of material used in liquid cryogen cooler has been found and investigated in our group It is anticipated that the materials can be applied in the conditions of launching, rotation in any orientation and weightlessness. The mechanism on which the material relies is similar to 'sponge' trapping the liquid cryogens within its micro-pores with surface tension. Preliminary tests have been performed on wicking. Also,we apply the materials to the cryogenic optical cooler whjch needs to be maintained within the temperuture range of 80-100 K. The results are satisfactory.
文摘Different material properties leads to different metal fracture behaviors. Even if the powder material is composed of plastic metal, the fracture still does not show macroscopic plastic deformation characteristics if the material contains a large number of voids. Eight node isoparametric elastic plastic finite element method was used to simulate the tensile process of sintered powder material. By setting a number of voids in the analyzed metal cuboid, the initial density was taken into consideration. The material properties of the three dimensional solid for the tensile simulation were defined with reference to the known pure iron material parameters. The load displacement curves during elongation were obtained with a universal testing machine, and then the simulated curves were compared with the experimental results. The factors that cause the stress concentration and strength decrease were analyzed according to the simulated equivalent von Mises stress distribution.
文摘JH2模型广泛应用于模拟脆性材料的动态力学行为,但是其强度准则和损伤定义存在一定不足,因此本文针对爆炸冲击荷载作用下的岩石材料提出了一个改进JH2模型.首先为强度模型增加了初始屈服面和非线性损伤尺度因子,对拉伸和压缩损伤分别进行拉压不对称处理,并将体积塑性应变引入到压缩损伤中.将该模型嵌入LS-DYNA材料子程序后,开展一系列单元测试、分离式霍普金森压杆(Split Hopkinson Pressure Bar, SHPB)动态劈裂试验和岩石爆破试验的数值模拟.数值模拟结果表明:改进后的JH2模型克服了原始JH2模型在损伤演化的拉压不对称特性、非线性应变硬化行为、洛德角效应和体积行为等方面的不足,证明了本文所提改进JH2模型的预测精度和应用潜力.
文摘Based on the elastic theory of cylindrical shells and the theory of composite laminates,a prediction model for the residual prestress of the simplified round composite barrel for railgun is established.Only the fibre pretension is considered in this model.A three dimensional numerical simulation for the residual prestress in the railgun barrel is carried out,by combining the temperature differential method with the element birth and death technology.The results obtained by the two methods are compared.It reveals that the distribution trends of residual prestress are consistent.And the difference for residual prestress in the filament wound composite housing of barrel is relatively small.The same finite element method is used to analysis the residual prestress in the non-simplified composite barrels for railgun,which are under different control modes of winding tension.The results mean that the residual prestress in barrel will increase while the taper coefficient for winding is decreasing.Therefore,the sealing performance in bore is improved,but the strength of the filament wound composite housing drops.In addition,the axial and circumferential residual prestress in the filament wound composite housing with constant torque winding are close to the ones in iso-stress design for barrel.
基金Sponsored by National Great Theoretic Research Project(2013CB632200)National Sci&Tech Support Project(2011BAE22B01-3)International Cooperation Project(2010DFR50010).
文摘The stress-strain curve of bending bar and the stress relax curve of AZ31 was obtained by a tension test using Gleeble-1500.The tension straightening process mainly consisted of the elastic loading-I and unloading stage,the elastic loading-II and unloading stage,and the elastic-plastic loading stage,which were based on the stretch force change during straightening.The circular bar straightening under one-dimensional bending was investigated and assumed to be linear strain-hardening elastic-plastic material.According to the elastic-plastic mechanics theory,the mathematical displacement-force model of a tension straightening process established,on which was based,the predicted displacement of tension straightening for various original deflection was calculated.The tension straightening experiment for AZ31 magnesium was conducted under the guidance of the predicted displacement.The experiment results present good straightness when there is a stress relaxation phenomenon or the temperature of tension straightening is 25℃.
文摘WEDM is used in machining conductive materials where it is required to obtained complicated and intricate shapes with high accuracy.Various applications are in the field of automobile,medical industries,aerospace etc.WEDM is an economical machining option with short product development cycle.Surface roughness,kerf width,Material removal rate,Recast layer hardness and surface microhardness in WEDM are most important responses.In this paper,effect of varied Wire tension on SR,KW,MRR,RCL hardness and surface microhardness on AISI 304 have been investigated.Pulse on time,pulse off time,current and dielectric fluid are taken as fixed parameter.Results show that Wire tension influences the SR,MRR and Surface microhardness and has no effect on kerf width in case of Stainless steel304.
文摘In this paper the results of a high-speed tension experiment of the SiC_w/Al composite have been reported and a simplified theoretical model has been developed to study the fracture mechanism of composites in high-speed tension. This theoretical model provides a new explanation for the increase of dynamic fracture strength of composites in high-speed tension.