The Jiama porphyry copper deposit in Tibet is one of the proven supergiant copper deposits in the Qinghai-Tibet Plateau at present,with the reserves of geological resources equivalent to nearly 20×10^(6) t.Howeve...The Jiama porphyry copper deposit in Tibet is one of the proven supergiant copper deposits in the Qinghai-Tibet Plateau at present,with the reserves of geological resources equivalent to nearly 20×10^(6) t.However,it features wavy and steep terrain,leading to extremely difficult field operation and heavy interference.This study attempts to determine the effects of the tensor controlled-source audiomagnetotellurics(CSAMT)with high-power orthogonal signal sources(also referred to as the high-power tensor CSAMT)when it is applied to the deep geophysical exploration in plateaus with complex terrain and mining areas with strong interference.The test results show that the high current provided by the highpower tensor CSAMT not only greatly improved the signal-to-noise ratio but also guaranteed that effective signals were received in the case of a long transmitter-receiver distance.Meanwhile,the tensor data better described the anisotropy of deep geologic bodies.In addition,the tests also show that when the transmitting current reaches 60 A,it is still guaranteed that strong enough signals can be received in the case of the transmitter-receiver distance of about 25 km,sounding curves show no near field effect,and effective exploration depth can reach 3 km.The 2D inversion results are roughly consistent with drilling results,indicating that the high-power tensor CSAMT can be used to achieve nearly actual characteristics of underground electrical structures.Therefore,this method has great potential for application in deep geophysical exploration in plateaus and mining areas with complex terrain and strong interference,respectively.This study not only serves as important guidance on the prospecting in the Qinghai-Tibet Plateau but also can be used as positive references for deep mineral exploration in other areas.展开更多
We investigate the accuracy and robustness of moment tensor(MT)and stress inversion solutions derived from acoustic emissions(AEs)during the laboratory fracturing of prismatic Barre granite specimens.Pre-cut flaws in ...We investigate the accuracy and robustness of moment tensor(MT)and stress inversion solutions derived from acoustic emissions(AEs)during the laboratory fracturing of prismatic Barre granite specimens.Pre-cut flaws in the specimens introduce a complex stress field,resulting in a spatial and temporal variation of focal mechanisms.Specifically,we consider two experimental setups:(1)where the rock is loaded in compression to generate primarily shear-type fractures and(2)where the material is loaded in indirect tension to generate predominantly tensile-type fractures.In each test,we first decompose AE moment tensors into double-couple(DC)and non-DC terms and then derive unambiguous normal and slip vectors using k-means clustering and an unstructured damped stress inversion algorithm.We explore temporal and spatial distributions of DC and non-DC events at different loading levels.The majority of the DC and the tensile non-DC events cluster around the pre-cut flaws,where macro-cracks later develop.Results of stress inversion are verified against the stress field from finite element(FE)modeling.A good agreement is found between the experimentally derived and numerically simulated stress orientations.To the best of the authors’knowledge,this work presents the first case where stress inversion methodologies are validated by numerical simulations at laboratory scale and under highly heterogeneous stress distributions.展开更多
Considering the uncertainty of the electrical axis for two-dimensional audo-magnetotelluric(AMT) data processing, an AMT inversion method with the Central impedance tensor was presented. First, we present a calculatio...Considering the uncertainty of the electrical axis for two-dimensional audo-magnetotelluric(AMT) data processing, an AMT inversion method with the Central impedance tensor was presented. First, we present a calculation expression of the Central impedance tensor in AMT, which can be considered as the arithmetic mean of TE-polarization mode and TM-polarization mode in the twodimensional geo-electrical model. Second, a least-squares iterative inversion algorithm is established, based on a smoothnessconstrained model, and an improved L-curve method is adopted to determine the best regularization parameters. We then test the above inversion method with synthetic data and field data. The test results show that this two-dimensional AMT inversion scheme for the responses of Central impedance is effective and can reconstruct reasonable two-dimensional subsurface resistivity structures. We conclude that the Central impedance tensor is a useful tool for two-dimensional inversion of AMT data.展开更多
We apply reweighted inversion focusing to full tensor gravity gradiometry data using message-passing interface (MPI) and compute unified device architecture (CUDA) parallel computing algorithms, and then combine M...We apply reweighted inversion focusing to full tensor gravity gradiometry data using message-passing interface (MPI) and compute unified device architecture (CUDA) parallel computing algorithms, and then combine MPI with CUDA to formulate a hybrid algorithm. Parallel computing performance metrics are introduced to analyze and compare the performance of the algorithms. We summarize the rules for the performance evaluation of parallel algorithms. We use model and real data from the Vinton salt dome to test the algorithms. We find good match between model efficiency and feasibility of parallel computing gravity gradiometry data. and real density data, and verify the high algorithms in the inversion of full tensor展开更多
Moment tensor inversion was carried out to myert the source mechanism and source time function of the Ms=7.6November 6. 1988, Lancang-Gengma. Yunnan Province, Chin4 earthquake. Waveforms of long-period bodywaves recor...Moment tensor inversion was carried out to myert the source mechanism and source time function of the Ms=7.6November 6. 1988, Lancang-Gengma. Yunnan Province, Chin4 earthquake. Waveforms of long-period bodywaves recorded by China Digital Seismograph Network (CDSN) were used in the inversion. The inverted resultshows one nodal plane of right-lateral strike-slip faulting and another of left-lateral strike-slip faulting and a simplesource time function of a duration of about 15 s and scalar seismic moment of 6.4x 102oN-N-m From the geologicaldata and tectonic settings and also from field observations and epicentral distribution of aftershocks, the nodalplane striking in the azimuth of 313° is preferred as the fault plane. The pressure axis lies almost horizontally innorth-south direction.展开更多
Moment tensor inversion for the focal mechanism of the 12 earthquakes of the Dongfang (Hainan) earthquakeswarm occurred from June to August 1992 with near-source broadband data recorded by a temporal small-aperturenet...Moment tensor inversion for the focal mechanism of the 12 earthquakes of the Dongfang (Hainan) earthquakeswarm occurred from June to August 1992 with near-source broadband data recorded by a temporal small-aperturenetwork consisting of DCS-302 digital three-component accelerographs. The results inverted indicate that thepredominant components of sources of all these 12 earthqualles were shear dislocations. The principal pressureaxis and the principal tension axis are in NW-SE direction and in NE-SW direction, respectively, and their dips arealmost horizontal. It could infer that these earthquakes occurred within the same ambient stress field.展开更多
Geological structures often exhibit smooth characteristics away from sharp discontinuities. One aim of geophysical inversion is to recover information about the smooth structures as well as about the sharp discontinui...Geological structures often exhibit smooth characteristics away from sharp discontinuities. One aim of geophysical inversion is to recover information about the smooth structures as well as about the sharp discontinuities. Because no specific operator can provide a perfect sparse representation of complicated geological models, hyper-parameter regularization inversion based on the iterative split Bregman method was used to recover the features of both smooth and sharp geological structures. A novel preconditioned matrix was proposed, which counteracted the natural decay of the sensitivity matrix and its inverse matrix was calculated easily. Application of the algorithm to synthetic data produces density models that are good representations of the designed models. The results show that the algorithm proposed is feasible and effective.展开更多
Using the technique of seismic moment tensor inversion, the source mechanisms of 10 earthquakes with Ms5.2that occurred in China from November 1996 to January 1998 were determined rapidly. The determined resultswere s...Using the technique of seismic moment tensor inversion, the source mechanisms of 10 earthquakes with Ms5.2that occurred in China from November 1996 to January 1998 were determined rapidly. The determined resultswere sent as 'Bulletins of Source Mechanism Parameters of Earthquakes' to the Seismic Regime Guards' Office,China Seismological Bureau, and the relevant provincial seismological bureaus. These bulletins have played rolein the fast response to large earthquakes.展开更多
Short period surface waves generated by a local earthquake recorded by broadband seismometers at distances of about 186 to 778 km from the earthquake’s epicenter located in Cameroon (Central Africa) were processed fo...Short period surface waves generated by a local earthquake recorded by broadband seismometers at distances of about 186 to 778 km from the earthquake’s epicenter located in Cameroon (Central Africa) were processed for group velocity maps and dispersion waveforms using the frequency time analysis (FTAN) method. The resulting group velocity fundamental modes of the extracted Rayleigh and Love waves were used for a joint amplitude spectral and P polarity inversion using moment tensor inversion. The corresponding group velocity dispersion curves, the residual as a function of depth, the amplitude spectra and the moment tensor solutions of the regions from the epicenter to the different stations up to a depth of about 10 km were obtained.展开更多
The moment tensor solutions of 51 small to moderate earthquakes occurred in the Capital Region in the year of 2004 are obtained by inverting the broadband waveform data. Accordingly, other source parameters, such as s...The moment tensor solutions of 51 small to moderate earthquakes occurred in the Capital Region in the year of 2004 are obtained by inverting the broadband waveform data. Accordingly, other source parameters, such as scalar seismic moments, moment magnitudes, double-couple (DC) components and compensated-linear-vector-dipole (CLVD) components, are determined as well as fault parameters and stress-axis parameters. The inverted results are evaluated by groups of numerical tests.展开更多
Two earthquakes of Ms=6.0 and Ms=6. 1 consecutively occurred on December 31, 1994 and January 10, 1995 in Beibuwan region, China. By using the generalized reflection-transmission coefficient matrix and the discrete sl...Two earthquakes of Ms=6.0 and Ms=6. 1 consecutively occurred on December 31, 1994 and January 10, 1995 in Beibuwan region, China. By using the generalized reflection-transmission coefficient matrix and the discrete slowness integration method in the calculation of Green's functions, we obtained the focal mechanisms of these earthquakes using long-period waveforms of regional body waves recorded by the China Digital Seismograph Network (CDSN) by means of moment tensor inversion method in frequency domain. The results inverted indicate that the focal mechanisms of these two earthquakes were similar to each other. Their principal compressional stresses are in NW-SE direction and principal tensional stresses are in NE-SW direction. It turns out that the occurrence of the two earthquakes was controlled by the same tectonic environment related to the collision of the Philippine Plate and the Eurasian Plates. On the other hand, the results imply that the stress field in the seismogenic region has a significant change after the Ms=6.0 earthquake. It may be proposed that the occurrence of the Ms=6. 1 earthquake could be related to the stress field adjustment caused by the Ms=6.0 earthquake.展开更多
In the determination of focal mechanism and rupture process of earthquake sources by using moment tensor inversion technique, it is difficult to guarantee the focal depth used in calculating the Green′s functions (th...In the determination of focal mechanism and rupture process of earthquake sources by using moment tensor inversion technique, it is difficult to guarantee the focal depth used in calculating the Green′s functions (theoretical focal depth) is exactly equal to the real focal depth. The difference between the theoretical and real focal depths, i.e., the focal depth error, will affect the moment tensor inversion to some extent. Using synthetic seismograms , the effect of the focal depth error on moment tensor inversion for three basic types of faults is discussed systematically. For the normal and thrust fault, the focal depth error mainly affects the explosive ( EP ) component and the compensated linear vector dipole ( CLVD ) component. In the case that the theoretical focal depth is greater than the real focal depth, the focal depth error causes a false positive EP component and a false negative CLVD component for the normal fault. However, it produces a false negative EP component and a false positive CLVD component for the thrust fault. The absolute values of the false EP and CLVD components for both normal fault and thrust fault cases increase with increasing focal depth error. In the case that the theoretical focal depth is smaller than the real focal depth, the focal depth error causes a false negative EP component and a false positive CLVD component for the normal fault. However, it produces a false positive EP component and a false negative CLVD component for the thrust fault. Similarly, the absolute values of the false EP and CLVD components for both normal fault and thrust fault cases increase with increasing focal depth error. For a pure strike slip fault the focal depth error mainly affects the shape of source time function, unlike for the normal and thrust faults. The source time functions have artificially extended tails when either the theoretical focal depth is greater or smaller than the real focal depth. The numerical experiments show that the focal depth error less than 20 km has no significant effect on the overall focal mechanism of the earthquake. In addition, the effect of the focal depth error on the inversion result is slighter in case that the theoretical focal depth is greater than the real focal depth than in the case that the theoretical focal depth is smaller than the real focal depth.展开更多
Using the moment tensor inversion method, we calculate the focal mechanisms of the aftershock sequence of the Ms=6.1 Lulong earthquake occurred on October 19, 1982 in Hebei Province. We found that the pressure axis in...Using the moment tensor inversion method, we calculate the focal mechanisms of the aftershock sequence of the Ms=6.1 Lulong earthquake occurred on October 19, 1982 in Hebei Province. We found that the pressure axis in Lulong basin is nearly in the east-west direction with an azimuth of N74°E. However, in the north of the basin the stress axis changes to N43°E; and in some places near the center of the basin it changes to the northwest that is almost perpendicular to the P axis obtained by us from those events around the basin. This feature illuminates that in Lulong earthquake sequence, the stress direction is different in different parts of crustal structure, which shows that the tectonic movement in Lulong region is complex. This is because that Lulong is located in the eastern part of Chinese mainland and is subject to the compression of Japanese Sea Basin driven by the Pacific Plate. On the other hand, nipped by the Yanshan and North China blocks, Lulong is obviously restricted by the block boundaries.展开更多
The inversion of TEM data, using the observed magnetic fields instead of that of apparent resistivities data in this paper, avoids the errors caused by the definition of the apparent resistivity. The inversed results...The inversion of TEM data, using the observed magnetic fields instead of that of apparent resistivities data in this paper, avoids the errors caused by the definition of the apparent resistivity. The inversed results by fitting the magnetic fields of the transmitter source's image with the observed magnetic fields are relatively less affected by the conductivity inhomogeneity. The MT apparent curve is calculated on the basis of the conductivity model constructed from the TEM inversion results. This curve is used as a reference curve for the correction of MT static shift, which makes the correction more reliable. Meanwhile, the domain transformation is also achieved from time to frequency between the two kinds of electromagnetic data. Therefore, the correction of the MT static shift is actualized using TEM inversion method. The corresponding application research shows that this method is very effective for the identification and correction of the MT static shift.展开更多
With dense seismic arrays and advanced imaging methods, regional three-dimensional (3D) Earth models have become more accurate. It is now increasingly feasible and advantageous to use a 3D Earth model to better loca...With dense seismic arrays and advanced imaging methods, regional three-dimensional (3D) Earth models have become more accurate. It is now increasingly feasible and advantageous to use a 3D Earth model to better locate earthquakes and invert their source mechanisms by fitting synthetics to observed waveforms. In this study, we develop an approach to determine both the earthquake location and source mechanism from waveform information. The observed waveforms are filtered in different frequency bands and separated into windows for the individual phases. Instead of picking the arrival times, the traveltime differences are measured by cross-correlation between synthetic waveforms based on the 3D Earth model and observed waveforms. The earthquake location is determined by minimizing the cross-correlation traveltime differences. We then fix the horizontal location of the earthquake and perform a grid search in depth to determine the source mechanism at each point by fitting the synthetic and observed waveforms. This new method is verified by a synthetic test with noise added to the synthetic waveforms and a realistic station distribution. We apply this method to a series of Mw3.4-5.6 earthquakes in the Longmenshan fault (LMSF) zone, a region with rugged topography between the eastern margin of the Tibetan plateau and the western part of the Sichuan basin. The results show that our solutions result in improved waveform fits compared to the source parameters from the catalogs we used and the location can be better constrained than the amplitude-only approach. Furthermore, the source solutions with realistic topography provide a better fit to the observed waveforms than those without the topography, indicating the need to take the topography into account in regions with rugged topography.展开更多
plane with the strike of 127°, the dip of 79° and the rake of 171°. The rupture process inversion result of MS=7.9 earthquake shows that the total rupture duration is about 37 s, the scalar moment tenso...plane with the strike of 127°, the dip of 79° and the rake of 171°. The rupture process inversion result of MS=7.9 earthquake shows that the total rupture duration is about 37 s, the scalar moment tensor is M0=0.97 × 1020 N·m. Rupture mainly occurred on the shallow area with 110 km long and 30 km wide, the location in which the rupture initiated is not where the main rupture took place, and the area with slip greater than 0.5 m basically lies within 35 km deep middle-crust under the earth surface. The maximum static slip is 3.6 m. There are two distinct areas with slip larger than 2.0 m. We noticed that when the rupture propagated towards northwest and closed to the area around the MS=7.3 hypocenter, the slip decreased rapidly, which may indicate that the rupture process was stopped by barriers. The consistence of spatial distribution of slip on the fault plane with the distribution of aftershocks also supports that the rupture is a heterogeneous process owing to the presence of barriers.展开更多
The conductivity anisotropy behaviour is described for certain environment in the Earths crust and the MT inversion method for a layered symmetrically anisotropic model is presented. The inversion interpretations of t...The conductivity anisotropy behaviour is described for certain environment in the Earths crust and the MT inversion method for a layered symmetrically anisotropic model is presented. The inversion interpretations of the anisotropic model from the observational data are helpful to identify the earthquake precusors as indicated by the deep conductivity anisotropic variations, and also provide some useful information to investigate the stress states and deformation bands in the deep crust of the Earth.展开更多
In this study,we propose a new method to determine full moment tensor solution for induced seismicity.This method generalizes the full waveform matching algorithm we have developed to determine the double-couple(DC)fo...In this study,we propose a new method to determine full moment tensor solution for induced seismicity.This method generalizes the full waveform matching algorithm we have developed to determine the double-couple(DC)focal mechanism based on the neighbourhood algorithm.One major difference between the new method and the former one is that we adopt a new misfit function to constrain the candidate moment tensor solutions with respect to a reference DC solution in addition to other misfit terms characterizing the waveform matching.Through synthetic tests using a real passive seismic survey geometry,the results show the new constraint can help better recover the DC components of inverted moment tensors.We further investigate how errors in the velocity model and source location affect the moment tensor solution.The synthetic test results indicate that the constrained inversion is robust in recovering both the DC and non-DC components.We also test the proposed method on several real induced events in an oil/gas field in Oman using the same observation system as synthetic tests.While it is found that the full moment tensor solutions without using the DC constraints have much larger non-DC components than solutions with the DC constraints,both solutions are able to fit the observed waveforms at similar levels.The synthetic and real test results suggest the proposed DC constrained inversion method can reliably retrieve full moment tensor solutions for the induced seismicity.展开更多
As is well known, Greece has a significant number of earthquakes each year. Ιn recent years, several earthquakes have occurred in Greece. For this scope, a methodology was used to determine the source parameters. Thi...As is well known, Greece has a significant number of earthquakes each year. Ιn recent years, several earthquakes have occurred in Greece. For this scope, a methodology was used to determine the source parameters. This methodology is based on minimizing the difference between the observed and the synthetic waveforms, using the method Source Parameters Calculation—SPCa <a href="#ref1" target="_blank">[1]</a>. The source parameters, using the proposed methodology, are calculated by comparing observed seismograms and synthetic by inverting data. The synthetics are calculated using the reflectivity method (Kennett, 1983) as implemented by Randall et al. (1994) for a given earth structure. This study includes inversion results for the strongest events that occurred in Greece from 2008 to 2014. For the same events calculated the main fault plane, using the method of Hypocenter Centroid-plot (HC-plot) <a href="#ref2" target="_blank">[2]</a> <a href="#ref3" target="_blank">[3]</a>. This methodology is a simple geometrical method based on the combination between the hypocentral position and the two possible fault planes.展开更多
基金supported by the National Key Research and Development Program of China(2018YFC0604102)the project of China Geological Survey(DD20190015)。
文摘The Jiama porphyry copper deposit in Tibet is one of the proven supergiant copper deposits in the Qinghai-Tibet Plateau at present,with the reserves of geological resources equivalent to nearly 20×10^(6) t.However,it features wavy and steep terrain,leading to extremely difficult field operation and heavy interference.This study attempts to determine the effects of the tensor controlled-source audiomagnetotellurics(CSAMT)with high-power orthogonal signal sources(also referred to as the high-power tensor CSAMT)when it is applied to the deep geophysical exploration in plateaus with complex terrain and mining areas with strong interference.The test results show that the high current provided by the highpower tensor CSAMT not only greatly improved the signal-to-noise ratio but also guaranteed that effective signals were received in the case of a long transmitter-receiver distance.Meanwhile,the tensor data better described the anisotropy of deep geologic bodies.In addition,the tests also show that when the transmitting current reaches 60 A,it is still guaranteed that strong enough signals can be received in the case of the transmitter-receiver distance of about 25 km,sounding curves show no near field effect,and effective exploration depth can reach 3 km.The 2D inversion results are roughly consistent with drilling results,indicating that the high-power tensor CSAMT can be used to achieve nearly actual characteristics of underground electrical structures.Therefore,this method has great potential for application in deep geophysical exploration in plateaus and mining areas with complex terrain and strong interference,respectively.This study not only serves as important guidance on the prospecting in the Qinghai-Tibet Plateau but also can be used as positive references for deep mineral exploration in other areas.
文摘We investigate the accuracy and robustness of moment tensor(MT)and stress inversion solutions derived from acoustic emissions(AEs)during the laboratory fracturing of prismatic Barre granite specimens.Pre-cut flaws in the specimens introduce a complex stress field,resulting in a spatial and temporal variation of focal mechanisms.Specifically,we consider two experimental setups:(1)where the rock is loaded in compression to generate primarily shear-type fractures and(2)where the material is loaded in indirect tension to generate predominantly tensile-type fractures.In each test,we first decompose AE moment tensors into double-couple(DC)and non-DC terms and then derive unambiguous normal and slip vectors using k-means clustering and an unstructured damped stress inversion algorithm.We explore temporal and spatial distributions of DC and non-DC events at different loading levels.The majority of the DC and the tensile non-DC events cluster around the pre-cut flaws,where macro-cracks later develop.Results of stress inversion are verified against the stress field from finite element(FE)modeling.A good agreement is found between the experimentally derived and numerically simulated stress orientations.To the best of the authors’knowledge,this work presents the first case where stress inversion methodologies are validated by numerical simulations at laboratory scale and under highly heterogeneous stress distributions.
基金supported by National Natural Science Foundation of China (grant 41674080)Higher School Doctor Subject Special Scientific Research Foundation (grant 20110162120064)
文摘Considering the uncertainty of the electrical axis for two-dimensional audo-magnetotelluric(AMT) data processing, an AMT inversion method with the Central impedance tensor was presented. First, we present a calculation expression of the Central impedance tensor in AMT, which can be considered as the arithmetic mean of TE-polarization mode and TM-polarization mode in the twodimensional geo-electrical model. Second, a least-squares iterative inversion algorithm is established, based on a smoothnessconstrained model, and an improved L-curve method is adopted to determine the best regularization parameters. We then test the above inversion method with synthetic data and field data. The test results show that this two-dimensional AMT inversion scheme for the responses of Central impedance is effective and can reconstruct reasonable two-dimensional subsurface resistivity structures. We conclude that the Central impedance tensor is a useful tool for two-dimensional inversion of AMT data.
基金supported by the Sino-Probe09(No.201011078)National High-tech R&D Program(No.863 and2014AA06A613)
文摘We apply reweighted inversion focusing to full tensor gravity gradiometry data using message-passing interface (MPI) and compute unified device architecture (CUDA) parallel computing algorithms, and then combine MPI with CUDA to formulate a hybrid algorithm. Parallel computing performance metrics are introduced to analyze and compare the performance of the algorithms. We summarize the rules for the performance evaluation of parallel algorithms. We use model and real data from the Vinton salt dome to test the algorithms. We find good match between model efficiency and feasibility of parallel computing gravity gradiometry data. and real density data, and verify the high algorithms in the inversion of full tensor
文摘Moment tensor inversion was carried out to myert the source mechanism and source time function of the Ms=7.6November 6. 1988, Lancang-Gengma. Yunnan Province, Chin4 earthquake. Waveforms of long-period bodywaves recorded by China Digital Seismograph Network (CDSN) were used in the inversion. The inverted resultshows one nodal plane of right-lateral strike-slip faulting and another of left-lateral strike-slip faulting and a simplesource time function of a duration of about 15 s and scalar seismic moment of 6.4x 102oN-N-m From the geologicaldata and tectonic settings and also from field observations and epicentral distribution of aftershocks, the nodalplane striking in the azimuth of 313° is preferred as the fault plane. The pressure axis lies almost horizontally innorth-south direction.
文摘Moment tensor inversion for the focal mechanism of the 12 earthquakes of the Dongfang (Hainan) earthquakeswarm occurred from June to August 1992 with near-source broadband data recorded by a temporal small-aperturenetwork consisting of DCS-302 digital three-component accelerographs. The results inverted indicate that thepredominant components of sources of all these 12 earthqualles were shear dislocations. The principal pressureaxis and the principal tension axis are in NW-SE direction and in NE-SW direction, respectively, and their dips arealmost horizontal. It could infer that these earthquakes occurred within the same ambient stress field.
基金Projects(41174061,41374120)supported by the National Natural Science Foundation of China
文摘Geological structures often exhibit smooth characteristics away from sharp discontinuities. One aim of geophysical inversion is to recover information about the smooth structures as well as about the sharp discontinuities. Because no specific operator can provide a perfect sparse representation of complicated geological models, hyper-parameter regularization inversion based on the iterative split Bregman method was used to recover the features of both smooth and sharp geological structures. A novel preconditioned matrix was proposed, which counteracted the natural decay of the sensitivity matrix and its inverse matrix was calculated easily. Application of the algorithm to synthetic data produces density models that are good representations of the designed models. The results show that the algorithm proposed is feasible and effective.
文摘Using the technique of seismic moment tensor inversion, the source mechanisms of 10 earthquakes with Ms5.2that occurred in China from November 1996 to January 1998 were determined rapidly. The determined resultswere sent as 'Bulletins of Source Mechanism Parameters of Earthquakes' to the Seismic Regime Guards' Office,China Seismological Bureau, and the relevant provincial seismological bureaus. These bulletins have played rolein the fast response to large earthquakes.
文摘Short period surface waves generated by a local earthquake recorded by broadband seismometers at distances of about 186 to 778 km from the earthquake’s epicenter located in Cameroon (Central Africa) were processed for group velocity maps and dispersion waveforms using the frequency time analysis (FTAN) method. The resulting group velocity fundamental modes of the extracted Rayleigh and Love waves were used for a joint amplitude spectral and P polarity inversion using moment tensor inversion. The corresponding group velocity dispersion curves, the residual as a function of depth, the amplitude spectra and the moment tensor solutions of the regions from the epicenter to the different stations up to a depth of about 10 km were obtained.
基金The International 973 Programs (2001CB711005 and 2004DFA06000) the Special Program of China Earthquake Administration (2004BA601B)
文摘The moment tensor solutions of 51 small to moderate earthquakes occurred in the Capital Region in the year of 2004 are obtained by inverting the broadband waveform data. Accordingly, other source parameters, such as scalar seismic moments, moment magnitudes, double-couple (DC) components and compensated-linear-vector-dipole (CLVD) components, are determined as well as fault parameters and stress-axis parameters. The inverted results are evaluated by groups of numerical tests.
文摘Two earthquakes of Ms=6.0 and Ms=6. 1 consecutively occurred on December 31, 1994 and January 10, 1995 in Beibuwan region, China. By using the generalized reflection-transmission coefficient matrix and the discrete slowness integration method in the calculation of Green's functions, we obtained the focal mechanisms of these earthquakes using long-period waveforms of regional body waves recorded by the China Digital Seismograph Network (CDSN) by means of moment tensor inversion method in frequency domain. The results inverted indicate that the focal mechanisms of these two earthquakes were similar to each other. Their principal compressional stresses are in NW-SE direction and principal tensional stresses are in NE-SW direction. It turns out that the occurrence of the two earthquakes was controlled by the same tectonic environment related to the collision of the Philippine Plate and the Eurasian Plates. On the other hand, the results imply that the stress field in the seismogenic region has a significant change after the Ms=6.0 earthquake. It may be proposed that the occurrence of the Ms=6. 1 earthquake could be related to the stress field adjustment caused by the Ms=6.0 earthquake.
文摘In the determination of focal mechanism and rupture process of earthquake sources by using moment tensor inversion technique, it is difficult to guarantee the focal depth used in calculating the Green′s functions (theoretical focal depth) is exactly equal to the real focal depth. The difference between the theoretical and real focal depths, i.e., the focal depth error, will affect the moment tensor inversion to some extent. Using synthetic seismograms , the effect of the focal depth error on moment tensor inversion for three basic types of faults is discussed systematically. For the normal and thrust fault, the focal depth error mainly affects the explosive ( EP ) component and the compensated linear vector dipole ( CLVD ) component. In the case that the theoretical focal depth is greater than the real focal depth, the focal depth error causes a false positive EP component and a false negative CLVD component for the normal fault. However, it produces a false negative EP component and a false positive CLVD component for the thrust fault. The absolute values of the false EP and CLVD components for both normal fault and thrust fault cases increase with increasing focal depth error. In the case that the theoretical focal depth is smaller than the real focal depth, the focal depth error causes a false negative EP component and a false positive CLVD component for the normal fault. However, it produces a false positive EP component and a false negative CLVD component for the thrust fault. Similarly, the absolute values of the false EP and CLVD components for both normal fault and thrust fault cases increase with increasing focal depth error. For a pure strike slip fault the focal depth error mainly affects the shape of source time function, unlike for the normal and thrust faults. The source time functions have artificially extended tails when either the theoretical focal depth is greater or smaller than the real focal depth. The numerical experiments show that the focal depth error less than 20 km has no significant effect on the overall focal mechanism of the earthquake. In addition, the effect of the focal depth error on the inversion result is slighter in case that the theoretical focal depth is greater than the real focal depth than in the case that the theoretical focal depth is smaller than the real focal depth.
基金National Natural Science Foundation of China(40234038)
文摘Using the moment tensor inversion method, we calculate the focal mechanisms of the aftershock sequence of the Ms=6.1 Lulong earthquake occurred on October 19, 1982 in Hebei Province. We found that the pressure axis in Lulong basin is nearly in the east-west direction with an azimuth of N74°E. However, in the north of the basin the stress axis changes to N43°E; and in some places near the center of the basin it changes to the northwest that is almost perpendicular to the P axis obtained by us from those events around the basin. This feature illuminates that in Lulong earthquake sequence, the stress direction is different in different parts of crustal structure, which shows that the tectonic movement in Lulong region is complex. This is because that Lulong is located in the eastern part of Chinese mainland and is subject to the compression of Japanese Sea Basin driven by the Pacific Plate. On the other hand, nipped by the Yanshan and North China blocks, Lulong is obviously restricted by the block boundaries.
文摘The inversion of TEM data, using the observed magnetic fields instead of that of apparent resistivities data in this paper, avoids the errors caused by the definition of the apparent resistivity. The inversed results by fitting the magnetic fields of the transmitter source's image with the observed magnetic fields are relatively less affected by the conductivity inhomogeneity. The MT apparent curve is calculated on the basis of the conductivity model constructed from the TEM inversion results. This curve is used as a reference curve for the correction of MT static shift, which makes the correction more reliable. Meanwhile, the domain transformation is also achieved from time to frequency between the two kinds of electromagnetic data. Therefore, the correction of the MT static shift is actualized using TEM inversion method. The corresponding application research shows that this method is very effective for the identification and correction of the MT static shift.
基金supported by National Natural Science Foundation of China (Grants No.41374056)the Fundamental Research Funds for the Central Universities (WK2080000053)
文摘With dense seismic arrays and advanced imaging methods, regional three-dimensional (3D) Earth models have become more accurate. It is now increasingly feasible and advantageous to use a 3D Earth model to better locate earthquakes and invert their source mechanisms by fitting synthetics to observed waveforms. In this study, we develop an approach to determine both the earthquake location and source mechanism from waveform information. The observed waveforms are filtered in different frequency bands and separated into windows for the individual phases. Instead of picking the arrival times, the traveltime differences are measured by cross-correlation between synthetic waveforms based on the 3D Earth model and observed waveforms. The earthquake location is determined by minimizing the cross-correlation traveltime differences. We then fix the horizontal location of the earthquake and perform a grid search in depth to determine the source mechanism at each point by fitting the synthetic and observed waveforms. This new method is verified by a synthetic test with noise added to the synthetic waveforms and a realistic station distribution. We apply this method to a series of Mw3.4-5.6 earthquakes in the Longmenshan fault (LMSF) zone, a region with rugged topography between the eastern margin of the Tibetan plateau and the western part of the Sichuan basin. The results show that our solutions result in improved waveform fits compared to the source parameters from the catalogs we used and the location can be better constrained than the amplitude-only approach. Furthermore, the source solutions with realistic topography provide a better fit to the observed waveforms than those without the topography, indicating the need to take the topography into account in regions with rugged topography.
基金The Specialized Funds for National Key Basic Study (G1998040704), the Dual Project of China Earthquake Admini-stration (9691309020301) and National Natural Science Foundation of China (46764010).
文摘plane with the strike of 127°, the dip of 79° and the rake of 171°. The rupture process inversion result of MS=7.9 earthquake shows that the total rupture duration is about 37 s, the scalar moment tensor is M0=0.97 × 1020 N·m. Rupture mainly occurred on the shallow area with 110 km long and 30 km wide, the location in which the rupture initiated is not where the main rupture took place, and the area with slip greater than 0.5 m basically lies within 35 km deep middle-crust under the earth surface. The maximum static slip is 3.6 m. There are two distinct areas with slip larger than 2.0 m. We noticed that when the rupture propagated towards northwest and closed to the area around the MS=7.3 hypocenter, the slip decreased rapidly, which may indicate that the rupture process was stopped by barriers. The consistence of spatial distribution of slip on the fault plane with the distribution of aftershocks also supports that the rupture is a heterogeneous process owing to the presence of barriers.
文摘The conductivity anisotropy behaviour is described for certain environment in the Earths crust and the MT inversion method for a layered symmetrically anisotropic model is presented. The inversion interpretations of the anisotropic model from the observational data are helpful to identify the earthquake precusors as indicated by the deep conductivity anisotropic variations, and also provide some useful information to investigate the stress states and deformation bands in the deep crust of the Earth.
基金We want to thank the reviewers for their valuable comments about this manuscript.This study is funded by the National Science and Technology Major Project of China(No.2016ZX05023004)the National Natural Science Foundation of China(Nos.41804040 and 41861134009).
文摘In this study,we propose a new method to determine full moment tensor solution for induced seismicity.This method generalizes the full waveform matching algorithm we have developed to determine the double-couple(DC)focal mechanism based on the neighbourhood algorithm.One major difference between the new method and the former one is that we adopt a new misfit function to constrain the candidate moment tensor solutions with respect to a reference DC solution in addition to other misfit terms characterizing the waveform matching.Through synthetic tests using a real passive seismic survey geometry,the results show the new constraint can help better recover the DC components of inverted moment tensors.We further investigate how errors in the velocity model and source location affect the moment tensor solution.The synthetic test results indicate that the constrained inversion is robust in recovering both the DC and non-DC components.We also test the proposed method on several real induced events in an oil/gas field in Oman using the same observation system as synthetic tests.While it is found that the full moment tensor solutions without using the DC constraints have much larger non-DC components than solutions with the DC constraints,both solutions are able to fit the observed waveforms at similar levels.The synthetic and real test results suggest the proposed DC constrained inversion method can reliably retrieve full moment tensor solutions for the induced seismicity.
文摘As is well known, Greece has a significant number of earthquakes each year. Ιn recent years, several earthquakes have occurred in Greece. For this scope, a methodology was used to determine the source parameters. This methodology is based on minimizing the difference between the observed and the synthetic waveforms, using the method Source Parameters Calculation—SPCa <a href="#ref1" target="_blank">[1]</a>. The source parameters, using the proposed methodology, are calculated by comparing observed seismograms and synthetic by inverting data. The synthetics are calculated using the reflectivity method (Kennett, 1983) as implemented by Randall et al. (1994) for a given earth structure. This study includes inversion results for the strongest events that occurred in Greece from 2008 to 2014. For the same events calculated the main fault plane, using the method of Hypocenter Centroid-plot (HC-plot) <a href="#ref2" target="_blank">[2]</a> <a href="#ref3" target="_blank">[3]</a>. This methodology is a simple geometrical method based on the combination between the hypocentral position and the two possible fault planes.