为了提高传统空间平滑算法对相干信号的估计精度,提出了一种张量域空间平滑多重信号分类(Multiple Signal Classification,MUSIC)解相干算法。首先,利用四元数的正交特性重新构造极化域导向矢量;其次,考虑阵列接收数据固有的多维结构特...为了提高传统空间平滑算法对相干信号的估计精度,提出了一种张量域空间平滑多重信号分类(Multiple Signal Classification,MUSIC)解相干算法。首先,利用四元数的正交特性重新构造极化域导向矢量;其次,考虑阵列接收数据固有的多维结构特征,构造三阶张量表示的阵列接收数据模型;接着,借鉴二维空间平滑算法的思想,在张量接收数据模型中构建三阶张量子阵块,再使该子阵块在张量域进行前向空间平滑,继而得到平滑后的张量协方差矩阵;最后,通过高阶奇异值分解(Higher-order Singular Value Decomposition,HOSVD)得到信号子空间,利用降维MUSIC算法对相干信号源的二维波达方向(Direction of Arrival,DOA)进行估计,并根据已经获得的DOA信息求解出相干信号的极化参数。仿真结果表明,在信噪比为0 dB以及快拍数为100的情况下,该算法的估计精度比空间平滑算法提高了约70%,成功分辨概率提高了约89%,且无需进行四维谱峰搜索,降低了算法的复杂度,对相干信号具有更高的估计精度和分辨能力。展开更多
Magnetic field gradient tensor technique provides abundant data for delicate inversion of subsurface magnetic susceptibility distribution. Large scale magnetic data inversion imaging requires high speed and accuracy f...Magnetic field gradient tensor technique provides abundant data for delicate inversion of subsurface magnetic susceptibility distribution. Large scale magnetic data inversion imaging requires high speed and accuracy for forward modeling. For arbitrarily distributed susceptibility data on an undulated surface, we propose a fast 3D forward modeling method in the wavenumber domain based on(1) the wavenumber-domain expression of the prism combination model and the Gauss–FFT algorithm and(2) cubic spline interpolation. We apply the proposed 3D forward modeling method to synthetic data and use weighting coefficients in the wavenumber domain to improve the modeling for multiple observation surfaces, and also demonstrate the accuracy and efficiency of the proposed method.展开更多
近年来,机器学习在计算机视觉中取得了许多突破性的研究进展.然而,已训练好的学习模型难以直接应用于相似但具有不同数据分布特征的其它学习任务中.域自适应技术通过抽取源域与目标域数据之间的公共特征,来实现把源域中学习到的知识迁...近年来,机器学习在计算机视觉中取得了许多突破性的研究进展.然而,已训练好的学习模型难以直接应用于相似但具有不同数据分布特征的其它学习任务中.域自适应技术通过抽取源域与目标域数据之间的公共特征,来实现把源域中学习到的知识迁移至目标域,从而避免针对目标域的训练数据收集和模型训练代价.但是,现有的视觉域自适应方法大都无法处理高阶的特征数据,一般都是通过简单的向量化操作将高阶张量特征转换成高维一阶向量特征.这不仅会破坏高阶特征数据内部的结构信息,而且还会增加算法的计算复杂度.为了解决上述问题,本文在保持原有张量特征结构不变的条件下,利用张量乘操作,将视觉域自适应问题抽象为求解源域和目标域的共同张量子空间以及源域和目标域特征在该共同张量子空间上投影的多变量优化问题.然后,利用张量奇异值分解和交替方向乘子法,提出一种基于张量奇异值分解的视觉域自适应方法(Visual domain Adaptation method based on TEnsor Singular value decomposition,VATES),以实现上述多变量优化问题的迭代求解.文中证明了正交张量子空间约束条件下源域与目标域表征误差最小化问题的可解性问题,并求得了相应的解析解.在公开数据集Office-Caltech-10、Office31、ImageNet-VOC2007上与17个基线模型进行对比实验.结果表明本文所提出的方法与经典的机器学习方法、非深度域自适应方法、深度域自适应方法以及张量域自适应方法相比,在无标签目标域上的图像分类精度分别提高了10.6%~43.9%、0.7%~31.1%、0.7%~24.8%以及5.7%~34.9.同时,算法的运行效率也提高了40.5%~74.3%,显著优于所对比的基线方法.实验分析也表明,VATES方法的目标域分类精度会随着所选用神经网络特征抽取能力的增强而逐渐提升.展开更多
从江苏省数字地震台网中选取16个宽频带台站的记录资料(震中距范围约为280~380km),利用滑动窗互相关叠加技术提取出sPn震相,并通过sPn与Pn的到时差准确地测定出2012年7月20日江苏高邮、宝应交界M4.9地震的震源深度为9.4km,总的误差小于...从江苏省数字地震台网中选取16个宽频带台站的记录资料(震中距范围约为280~380km),利用滑动窗互相关叠加技术提取出sPn震相,并通过sPn与Pn的到时差准确地测定出2012年7月20日江苏高邮、宝应交界M4.9地震的震源深度为9.4km,总的误差小于1.2km。为了验证计算结果,采用与震相走时无关的时域矩张量反演方法(Time-Domain Moment Tensor Inverse),通过反演不同震源深度(5~25km)模型下的矩张量解来进行逆向佐证。结果显示:在震源深度为9、10km时,反演结果的相关系数达到最大,分别约为0.93、0.92,表明9~10km是此次地震的最佳震源深度范围。另外,利用波形互相关的双差定位法得到的震源深度为10.2km,两者相差仅为0.8km。展开更多
文摘为了提高传统空间平滑算法对相干信号的估计精度,提出了一种张量域空间平滑多重信号分类(Multiple Signal Classification,MUSIC)解相干算法。首先,利用四元数的正交特性重新构造极化域导向矢量;其次,考虑阵列接收数据固有的多维结构特征,构造三阶张量表示的阵列接收数据模型;接着,借鉴二维空间平滑算法的思想,在张量接收数据模型中构建三阶张量子阵块,再使该子阵块在张量域进行前向空间平滑,继而得到平滑后的张量协方差矩阵;最后,通过高阶奇异值分解(Higher-order Singular Value Decomposition,HOSVD)得到信号子空间,利用降维MUSIC算法对相干信号源的二维波达方向(Direction of Arrival,DOA)进行估计,并根据已经获得的DOA信息求解出相干信号的极化参数。仿真结果表明,在信噪比为0 dB以及快拍数为100的情况下,该算法的估计精度比空间平滑算法提高了约70%,成功分辨概率提高了约89%,且无需进行四维谱峰搜索,降低了算法的复杂度,对相干信号具有更高的估计精度和分辨能力。
基金supported by the National Special Plan for the 13th Five-Year Plan of China(No.2017YFC0602204-10)Independent Exploration of the Innovation Project for Graduate Students at Central South University(No.2017zzts176)+3 种基金National Natural Science Foundation of China(Nos.41574127,41404106,and 41674075)Postdoctoral Fund Projects of China(No.2017M622608)National Key R&D Program of China(No.2018YFC0603602)Natural Science Youth Fund Project of the Hunan Province,China(No.2018JJ3642)
文摘Magnetic field gradient tensor technique provides abundant data for delicate inversion of subsurface magnetic susceptibility distribution. Large scale magnetic data inversion imaging requires high speed and accuracy for forward modeling. For arbitrarily distributed susceptibility data on an undulated surface, we propose a fast 3D forward modeling method in the wavenumber domain based on(1) the wavenumber-domain expression of the prism combination model and the Gauss–FFT algorithm and(2) cubic spline interpolation. We apply the proposed 3D forward modeling method to synthetic data and use weighting coefficients in the wavenumber domain to improve the modeling for multiple observation surfaces, and also demonstrate the accuracy and efficiency of the proposed method.
文摘近年来,机器学习在计算机视觉中取得了许多突破性的研究进展.然而,已训练好的学习模型难以直接应用于相似但具有不同数据分布特征的其它学习任务中.域自适应技术通过抽取源域与目标域数据之间的公共特征,来实现把源域中学习到的知识迁移至目标域,从而避免针对目标域的训练数据收集和模型训练代价.但是,现有的视觉域自适应方法大都无法处理高阶的特征数据,一般都是通过简单的向量化操作将高阶张量特征转换成高维一阶向量特征.这不仅会破坏高阶特征数据内部的结构信息,而且还会增加算法的计算复杂度.为了解决上述问题,本文在保持原有张量特征结构不变的条件下,利用张量乘操作,将视觉域自适应问题抽象为求解源域和目标域的共同张量子空间以及源域和目标域特征在该共同张量子空间上投影的多变量优化问题.然后,利用张量奇异值分解和交替方向乘子法,提出一种基于张量奇异值分解的视觉域自适应方法(Visual domain Adaptation method based on TEnsor Singular value decomposition,VATES),以实现上述多变量优化问题的迭代求解.文中证明了正交张量子空间约束条件下源域与目标域表征误差最小化问题的可解性问题,并求得了相应的解析解.在公开数据集Office-Caltech-10、Office31、ImageNet-VOC2007上与17个基线模型进行对比实验.结果表明本文所提出的方法与经典的机器学习方法、非深度域自适应方法、深度域自适应方法以及张量域自适应方法相比,在无标签目标域上的图像分类精度分别提高了10.6%~43.9%、0.7%~31.1%、0.7%~24.8%以及5.7%~34.9.同时,算法的运行效率也提高了40.5%~74.3%,显著优于所对比的基线方法.实验分析也表明,VATES方法的目标域分类精度会随着所选用神经网络特征抽取能力的增强而逐渐提升.
文摘从江苏省数字地震台网中选取16个宽频带台站的记录资料(震中距范围约为280~380km),利用滑动窗互相关叠加技术提取出sPn震相,并通过sPn与Pn的到时差准确地测定出2012年7月20日江苏高邮、宝应交界M4.9地震的震源深度为9.4km,总的误差小于1.2km。为了验证计算结果,采用与震相走时无关的时域矩张量反演方法(Time-Domain Moment Tensor Inverse),通过反演不同震源深度(5~25km)模型下的矩张量解来进行逆向佐证。结果显示:在震源深度为9、10km时,反演结果的相关系数达到最大,分别约为0.93、0.92,表明9~10km是此次地震的最佳震源深度范围。另外,利用波形互相关的双差定位法得到的震源深度为10.2km,两者相差仅为0.8km。