A damage prediction method based on FE simulation was proposed to predict the occurrence of hot shortness crocks and surface cracks in liquid-solid extrusion process. This method integrated the critical temperature cr...A damage prediction method based on FE simulation was proposed to predict the occurrence of hot shortness crocks and surface cracks in liquid-solid extrusion process. This method integrated the critical temperature criterion and Cockcroft & Latham ductile damage model, which were used to predict the initiation of hot shortness cracks and surface cracks of products, respectively. A coupling simulation of deformation with heat transfer as well as ductile damage was carried out to investigate the effect of extrusion temperature and extrusion speed on the damage behavior of Csf/AZ91D composites. It is concluded that the semisolid zone moves gradually toward deformation zone with the punch descending. The amplitude of the temperature rise at the exit of die from the initial billet temperature increases with the increase of extrusion speed during steady-state extrusion at a given punch displacement. In order to prevent the surface temperature of products beyond the incipient melting temperature of composites, the critical extrusion speed is decreased with the increase of extrusion temperature, otherwise the hot shortness cracks will occur. The maximum damage values increase with increasing extrusion speed or extrusion temperature. Theoretical results obtained by the Deform^TM-2D simulation agree well with the experiments.展开更多
The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element ...The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element method(FEM), often face a trade-off between calculation accuracy and efficiency. In this paper, we propose a quasi-smooth manifold element(QSME) method to address this challenge, and provide the accurate and efficient analysis of two-dimensional(2D) anisotropic heat conduction problems in composites with complex geometry. The QSME approach achieves high calculation precision by a high-order local approximation that ensures the first-order derivative continuity.The results demonstrate that the QSME method is robust and stable, offering both high accuracy and efficiency in the heat conduction analysis. With the same degrees of freedom(DOFs), the QSME method can achieve at least an order of magnitude higher calculation accuracy than the traditional FEM. Additionally, under the same level of calculation error, the QSME method requires 10 times fewer DOFs than the traditional FEM. The versatility of the proposed QSME method extends beyond anisotropic heat conduction problems in complex composites. The proposed QSME method can also be applied to other problems, including fluid flows, mechanical analyses, and other multi-field coupled problems, providing accurate and efficient numerical simulations.展开更多
Based on the interphase layer model and the spring layer model, an improved interface model was developed to evaluate the interfacial shear strength of Titanium matrix composites(TMCs) and to analyze the effects of va...Based on the interphase layer model and the spring layer model, an improved interface model was developed to evaluate the interfacial shear strength of Titanium matrix composites(TMCs) and to analyze the effects of various parameters on the interfacial properties. The results showed that the improved interface model is more suitable for calculating the interfacial properties of SiC fiber reinforced titanium matrix composites. The interfacial shear strength of SiC/Timetal-834 predicted is 500 MPa. In addition, in order to better understand the interfacial properties of composites, some push out phenomenon were analyzed.展开更多
In this paper we present the Projection Based Interpolation (PBI) technique for construction of continuous approximation of MRI scan data of the human head. We utilize the result of the PBI algorithm to perform three ...In this paper we present the Projection Based Interpolation (PBI) technique for construction of continuous approximation of MRI scan data of the human head. We utilize the result of the PBI algorithm to perform three dimensional (3D) Finite Element Method (FEM) simulations of the acoustics of the human head. The computational problem is a multi-physics problem modeled as acoustics coupled with linear elasticity. The computational grid contains tetrahedral finite elements with the number of equations and polynomial orders of approximation varying locally on finite element edges, faces, and interiors. We utilize our own out-of-core parallel direct solver for the solution of this multi-physics problem. The solver minimizes the memory usage by dumping out all local systems from all nodes of the entire elimination tree during the elimination phase.展开更多
A two-dimensional axisymmetric finite element model based on an improved cohesive element method was developed to simulate interfacial debonding, sliding friction, and residual thermal stresses in SiC composites durin...A two-dimensional axisymmetric finite element model based on an improved cohesive element method was developed to simulate interfacial debonding, sliding friction, and residual thermal stresses in SiC composites during single-fiber push-out tests to extract the interfacial bond strength and frictional stress. The numerical load–displacement curves agree well with experimental curves,indicating that this cohesive element method can be used for calculating the interfacial properties of SiC composites.The simulation results show that cracks are most likely to occur at the ends of the experimental sample, where the maximum shear stress is observed and that the interfacial shear strength and constant sliding friction stress decrease with an increase in temperature. Moreover, the load required to cause complete interfacial failure increases with the increase in critical shear strength, and the composite materials with higher fiber volume fractions have higher bearing capacities. In addition, the initial failure load increases with an increase in interphase thickness.展开更多
A semi-analytical finite element method(SAFEM),based on the two-scale asymptotic homogenization method(AHM)and the finite element method(FEM),is implemented to obtain the effective properties of two-phase fiber-reinfo...A semi-analytical finite element method(SAFEM),based on the two-scale asymptotic homogenization method(AHM)and the finite element method(FEM),is implemented to obtain the effective properties of two-phase fiber-reinforced composites(FRCs).The fibers are periodically distributed and unidirectionally aligned in a homogeneous matrix.This framework addresses the static linear elastic micropolar problem through partial differential equations,subject to boundary conditions and perfect interface contact conditions.The mathematical formulation of the local problems and the effective coefficients are presented by the AHM.The local problems obtained from the AHM are solved by the FEM,which is denoted as the SAFEM.The numerical results are provided,and the accuracy of the solutions is analyzed,indicating that the formulas and results obtained with the SAFEM may serve as the reference points for validating the outcomes of experimental and numerical computations.展开更多
The operator splitting method is used to deal with the Navier-Stokes equation, in which the physical process described by the equation is decomposed into two processes: a diffusion process and a convection process; a...The operator splitting method is used to deal with the Navier-Stokes equation, in which the physical process described by the equation is decomposed into two processes: a diffusion process and a convection process; and the finite element equation is established. The velocity field in the element is described by the shape function of the isoparametric element with nine nodes and the pressure field is described by the interpolation function of the four nodes at the vertex of the isoparametric element with nine nodes. The subroutine of the element and the integrated finite element code are generated by the Finite Element Program Generator (FEPG) successfully. The numerical simulation about the incompressible viscous liquid flowing over a cylinder is carded out. The solution agrees with the experimental results very well.展开更多
The dry friction and wear behaviors of co-continuous composites SiC/Fe–40Cr against SiC/Al 2618 alloy were investigated on a ring-on-ring friction and wear tester at sliding speed of 30-105 m/s under the load of 1.0-...The dry friction and wear behaviors of co-continuous composites SiC/Fe–40Cr against SiC/Al 2618 alloy were investigated on a ring-on-ring friction and wear tester at sliding speed of 30-105 m/s under the load of 1.0-2.5 MPa. The experimental result reveals that the characteristic of two body abrasive wear and oxidation wear mechanisms are present for SiCn/2618 Al composite under higher load and sliding speed. SiC ceramic continuous network as the reinforcement can avoid composite from the third body wear that usually occurs in traditional particle reinforced composite. The mechanically mixed layer (MML) controls greatly the wear rate and friction coefficient of the composites. The composites tested at higher sliding speed exhibit higher value of friction coefficient and fluctuation, which is associated with the intermittent formation and removal of the MML. The wear and stress—strain behaviors of SiCn/Fe–40Cr against SiCn/Al 2168 at 30-105 m/s under 1.0-2.5 MPa were analyzed by finite element method with the software Solidwork2012 Simulation, respectively. The wear and stress–strain behavior of the composite predicted by the FEM correlated well with the experimental results.展开更多
Reduced graphene oxide(rGO)enhanced B_(4)C ceramics was prepared by SPS sintering,the enhancement effect of rGO on the microstructure and mechanical properties of composites was studied through experiments and numeric...Reduced graphene oxide(rGO)enhanced B_(4)C ceramics was prepared by SPS sintering,the enhancement effect of rGO on the microstructure and mechanical properties of composites was studied through experiments and numerical simulation.The results show that the composite with 2wt%rGO has the best comprehensive mechanical properties.Compared with pure boron carbide,vickers hardness and bending strength are increased by 4.8%and 21.96%,respectively.The fracture toughness is improved by 25.71%.The microstructure observation shows that the improvement of mechanical properties is mainly attributed to the pullout and bridge mechanism of rGO and the crack deflection.Based on the cohesive force finite element method,the dynamic crack growth process of composites was simulated.The energy dissipation of B_(4)C/rGO multiphase ceramics during crack propagation was calculated and compared with that of pure boron carbide ceramics.The results show that the fracture energy dissipation can be effectively increased by adding graphene.展开更多
In this paper, the effects of interface properties on the stress transfer between matrix and fiber in short fiber reinforced metal matrix composites (SFRMMCs) is studied with the method of the elasto plastic finite ...In this paper, the effects of interface properties on the stress transfer between matrix and fiber in short fiber reinforced metal matrix composites (SFRMMCs) is studied with the method of the elasto plastic finite element. The interface properties include Young’s modulus, thickness and elasto plastic performances. In the calculation an interfacial layer with given thickness is introduced into the single fiber model. It is shown that, for a soft interface, the variation in interfacial properties influences the stress transfer greatly.展开更多
Carbon nanotube(CNT)-reinforced composites have ultra-high elastic moduli,low densities,and fibrous structures.This paper presents the multi-scale finite element modeling of CNT-reinforced polymer composites from micr...Carbon nanotube(CNT)-reinforced composites have ultra-high elastic moduli,low densities,and fibrous structures.This paper presents the multi-scale finite element modeling of CNT-reinforced polymer composites from micro-to macro-scales.The nanocomposites were modeled using representative volume elements(RVEs),and finite element code was written to simulate the modeling and loading procedure and obtain equivalent mechanical properties of the RVEs with various volume fractions of CNTs,which can be used directly in the follow-up simulation studies on the macroscopic model of CNT-reinforced nanocomposites.When using the programming to simulate the deformation and fracture process of the CNT-reinforced epoxy composites,the mechanical parameters and stress-strain curves of the composites on themacro-scale were obtained by endowing the elements of the lattice models withRVE parameters.Tensile experiments of the CNT-reinforced composites were also carried out.The validity of the finite element simulation method was verified by comparing the results of the simulations and experiments.Finite element models of functionally graded CNT-reinforced composites(FG-CNTRC)with different distributions were established,and the tensile and three-point-bending conditions for various graded material models were simulated by the methods of lattice model and birth-death element to obtain the tensile and bending parameters.In addition,the influence of the distribution and volume ratio of the CNTs on the performance of the graded composite material structures was also analyzed.展开更多
The composite that can absorb the high-performance electromagnetic(EM) wave is constructed into a sandwiched structure composed of carbon black(CB)/ethylene-vinyl acetate(EVA) and Ag naowires(Ag NWs). The Ag N...The composite that can absorb the high-performance electromagnetic(EM) wave is constructed into a sandwiched structure composed of carbon black(CB)/ethylene-vinyl acetate(EVA) and Ag naowires(Ag NWs). The Ag NWs sandwiched between two CB/EVA layers are used to improve the absorption properties of composite. The effects of EVA-to-CB weight ratio, concentration and diameter of Ag NWs with a thickness of 0.4 mm on microwave absorption are investigated.The results indicate that for an EVA-to-CB weight ratio of 1:3, Ag NW concentration of 1.0 mg/100 m L, and average diameter of 56 nm, the reflection loss(RL) of the composite is below-10 d B in a frequency range of 9.3 Ghz–18.0 GHz, with the minimum values of-40.0 d B and-25.6 d B at 13.5 GHz and 15.3 GHz, respectively. A finite element method(FEM)is used for calculating the RL of the composite. The calculated results are in agreement with the experimental data.展开更多
The generalized self-consistent finite-element iterative averaging method was adopted to analyze the elasto-plastic tensile properties of SiC whiskers reinforced aluminum matrix composites. The effects of varying fibe...The generalized self-consistent finite-element iterative averaging method was adopted to analyze the elasto-plastic tensile properties of SiC whiskers reinforced aluminum matrix composites. The effects of varying fiber's aspect ratio and volume fraction on the macroscopic elasto-plastic deformation of the composites were studied. By the analysis of microscopic stress fields, the relation between the propagation of the elasto-plastic region in the matrix and the macroscopic elasto-plastic deformation of composites was discussed. It was found that the propagation of the plastic region in the matrix between the fiber's ends would affect prominently the elasto-plastic tensile behaviour of the composites. It was shown that the characterization of the stress-strain response in terms of the 0.2% offset yield strength is incomplete.展开更多
The thermal residual stresses and the stress distributions of short fiber reinforced metal matrix composite under tensile and compressive loadings were studied using large strain axisymmetric elasto plastic finite ele...The thermal residual stresses and the stress distributions of short fiber reinforced metal matrix composite under tensile and compressive loadings were studied using large strain axisymmetric elasto plastic finite element method. It is demonstrated that the thermal residual stresses can result in asymmetrical stress distributions and matrix plasticity. The thermal residual stresses decrease the stress transfer in tension and enhance the stress transfer in compression. The fiber volume fraction has more important effects on the thermal residual stresses and the stress distributions under tensile and compressive loadings than the fiber aspect ratio and the fiber end distance. [展开更多
A unit cell model is applied to study the creep damage behavior after fiber fractures in the fiber-reinforced composites at high temperature. The user subroutine CREEP has been programmed for ABAQUS. The fiber breakag...A unit cell model is applied to study the creep damage behavior after fiber fractures in the fiber-reinforced composites at high temperature. The user subroutine CREEP has been programmed for ABAQUS. The fiber breakage results in a new crack. The results show that the stress concentration factor resulted from the fiber breakage increases with the creep time. The creep damage takes place near the crack, and then grows in the matrix along a certain angle, up to the total failure. The influences of the ratio of modulus of the fiber to the matrix (Ef/Em) on the creep deformation, damage and stress distributions have been studied. With the increasing Ef/Em, the damage in the matrix increases. Analysis on the different ductility of matrix shows that the creep damage of low ductile matrix composites is higher than high ductile matrix composites.展开更多
A general spatial interpolation method for tidal properties has been developed by solving a partial differential equation with a combination of different orders of harmonic operators using a mixed finite element metho...A general spatial interpolation method for tidal properties has been developed by solving a partial differential equation with a combination of different orders of harmonic operators using a mixed finite element method. Numerically, the equation is solved implicitly without iteration on an unstructured triangular mesh grid. The paper demonstrates the performance of the method for tidal property fields with different characteristics, boundary complexity, number of input data points, and data point distribution. The method has been successfully applied under several different tidal environments, including an idealized distribution in a square basin, coamplitude and cophase lines in the Taylor semi-infiite rotating channel, and tide coamplitude and cophase lines in the Bohai Sea and Chesapeake Bay. Compared to Laplace’s equation that NOAA/NOS currently uses for interpolation in hydrographic and oceanographic applications, the multiple-order harmonic equation method eliminates the problem of singularities at data points, and produces interpolation results with better accuracy and precision.展开更多
The cruciform specimen was selected to obtain the transverse tensile behavior of SiC fiber reinforced titanium matrix composites. Moreover, the means of combining the unilaterally coupled finite element method with th...The cruciform specimen was selected to obtain the transverse tensile behavior of SiC fiber reinforced titanium matrix composites. Moreover, the means of combining the unilaterally coupled finite element method with the transverse tensile test was developed to evaluate the interfacial normal bond strength of composites. The results showed that the initial non-linearity in the transverse stress-strain curve of SiC/Ti-6Al-4V occurs at the stress of 350 MPa. The means of combining the unilaterally coupled finite element method with the transverse tensile test is an effective method to predict the interfacial normal bond strength of composites. In addition, the interface failure mechanism of composites was analyzed in detail.展开更多
Creep damage at crack tip in short fibre composites has been sim- ulated by using the finite element method(FEM).The well-known Schapery non- linear viscoelastic constitutive relationship was used to characterize time...Creep damage at crack tip in short fibre composites has been sim- ulated by using the finite element method(FEM).The well-known Schapery non- linear viscoelastic constitutive relationship was used to characterize time-dependent behaviour of the material.A modified recurrence equation was adopted to accelerate the iteration.Kachanov-Rabotnov's damage evolution law was employed.The growth of the damage zone with time around the crack tip was calculated and the results were shown with the so-called 'digit photo',which was produced by the printer.展开更多
A multi-inclusion cell model is used to investigate the effect of deformation temperature and whisker rotation on the hot compressive behavior of metal matrix composites with misaligned whiskers. Numerical results sho...A multi-inclusion cell model is used to investigate the effect of deformation temperature and whisker rotation on the hot compressive behavior of metal matrix composites with misaligned whiskers. Numerical results show that deformation temperature influences the work-hardening behavior of the matrix and the rotation behavior of the whiskers. With increasing temperature, the work hardening rate of the matrix decreases, but the whisker rotation angle increases. Both whisker rotation and the increase of deformation temperature can induce reductions in the load supported by whisker and the load transferred from matrix to whisker. Additionally, it is found that during large strain deformation at higher temperatures, the enhancing of deformation temperature can reduce the effect of whisker rotation. Meanwhile, the stress-strain behavior of the composite is rather sensitive to deformation temperature. At a relatively lower temperature (150℃), the composite exhibits work hardening due to the matrix work hardening, but at relatively higher temperatures (300℃ and above), the composite shows strain softening due to whisker rotation. It is also found that during hot compression at higher temperatures, the softening rate of the composite decreases with increasing temperature. The predicted stress-strain behavior of the composite is approximately in agreement with the experimental results.展开更多
This presentation predicts the elastic properties of three-dimensional(3D)orthogonal woven composite(3DOWC)by finite element analysis based on micro/meso repeated unit cell(RUC)models.First,the properties of fiber yar...This presentation predicts the elastic properties of three-dimensional(3D)orthogonal woven composite(3DOWC)by finite element analysis based on micro/meso repeated unit cell(RUC)models.First,the properties of fiber yarn are obtained by analysis on a micro-scale RUC model assuming fibers in a hexagonal distribution pattern in the polymer matrix.Then a full thickness meso-scale RUC model including weft yarns,warp yarns,Z-yarns and pure resin zones is established and full stiffness matrix of the 3DOWC including the in-plane and flexural constants are predicted.For thick 3DOWC with large number of weft,warp layers,an alternative analysis method is proposed in which an inner meso-RUC and a surface meso-RUC are established,respectively.Then the properties of 3DOWC are deduced based on laminate theory and properties of the inner and surface layers.The predicted results by the above two alternative methods are in good experimental agreement.展开更多
基金Project(50972121) supported by the National Natural Science Foundation of China
文摘A damage prediction method based on FE simulation was proposed to predict the occurrence of hot shortness crocks and surface cracks in liquid-solid extrusion process. This method integrated the critical temperature criterion and Cockcroft & Latham ductile damage model, which were used to predict the initiation of hot shortness cracks and surface cracks of products, respectively. A coupling simulation of deformation with heat transfer as well as ductile damage was carried out to investigate the effect of extrusion temperature and extrusion speed on the damage behavior of Csf/AZ91D composites. It is concluded that the semisolid zone moves gradually toward deformation zone with the punch descending. The amplitude of the temperature rise at the exit of die from the initial billet temperature increases with the increase of extrusion speed during steady-state extrusion at a given punch displacement. In order to prevent the surface temperature of products beyond the incipient melting temperature of composites, the critical extrusion speed is decreased with the increase of extrusion temperature, otherwise the hot shortness cracks will occur. The maximum damage values increase with increasing extrusion speed or extrusion temperature. Theoretical results obtained by the Deform^TM-2D simulation agree well with the experiments.
基金Project supported by the National Natural Science Foundation of China (Nos. 12102043, 12072375U2241240)the Natural Science Foundation of Hunan Province of China (Nos. 2023JJ40698 and 2021JJ40710)。
文摘The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element method(FEM), often face a trade-off between calculation accuracy and efficiency. In this paper, we propose a quasi-smooth manifold element(QSME) method to address this challenge, and provide the accurate and efficient analysis of two-dimensional(2D) anisotropic heat conduction problems in composites with complex geometry. The QSME approach achieves high calculation precision by a high-order local approximation that ensures the first-order derivative continuity.The results demonstrate that the QSME method is robust and stable, offering both high accuracy and efficiency in the heat conduction analysis. With the same degrees of freedom(DOFs), the QSME method can achieve at least an order of magnitude higher calculation accuracy than the traditional FEM. Additionally, under the same level of calculation error, the QSME method requires 10 times fewer DOFs than the traditional FEM. The versatility of the proposed QSME method extends beyond anisotropic heat conduction problems in complex composites. The proposed QSME method can also be applied to other problems, including fluid flows, mechanical analyses, and other multi-field coupled problems, providing accurate and efficient numerical simulations.
基金Supported by the Natural Science Foundation of Chinathe Aviation Science Foundation of Chinathe Doctoral Innovation Foundation of Northwestern Polytechnical University
文摘Based on the interphase layer model and the spring layer model, an improved interface model was developed to evaluate the interfacial shear strength of Titanium matrix composites(TMCs) and to analyze the effects of various parameters on the interfacial properties. The results showed that the improved interface model is more suitable for calculating the interfacial properties of SiC fiber reinforced titanium matrix composites. The interfacial shear strength of SiC/Timetal-834 predicted is 500 MPa. In addition, in order to better understand the interfacial properties of composites, some push out phenomenon were analyzed.
文摘In this paper we present the Projection Based Interpolation (PBI) technique for construction of continuous approximation of MRI scan data of the human head. We utilize the result of the PBI algorithm to perform three dimensional (3D) Finite Element Method (FEM) simulations of the acoustics of the human head. The computational problem is a multi-physics problem modeled as acoustics coupled with linear elasticity. The computational grid contains tetrahedral finite elements with the number of equations and polynomial orders of approximation varying locally on finite element edges, faces, and interiors. We utilize our own out-of-core parallel direct solver for the solution of this multi-physics problem. The solver minimizes the memory usage by dumping out all local systems from all nodes of the entire elimination tree during the elimination phase.
基金supported by the National Natural Science Foundation of China(No.11405124)Science Challenge Project(No.TZ2018004)+1 种基金Natural Science Basic Research Plan in Shaanxi Province of China(No.2015JQ1030)the Shaanxi Province Postdoctoral Science Foundation(2014)
文摘A two-dimensional axisymmetric finite element model based on an improved cohesive element method was developed to simulate interfacial debonding, sliding friction, and residual thermal stresses in SiC composites during single-fiber push-out tests to extract the interfacial bond strength and frictional stress. The numerical load–displacement curves agree well with experimental curves,indicating that this cohesive element method can be used for calculating the interfacial properties of SiC composites.The simulation results show that cracks are most likely to occur at the ends of the experimental sample, where the maximum shear stress is observed and that the interfacial shear strength and constant sliding friction stress decrease with an increase in temperature. Moreover, the load required to cause complete interfacial failure increases with the increase in critical shear strength, and the composite materials with higher fiber volume fractions have higher bearing capacities. In addition, the initial failure load increases with an increase in interphase thickness.
基金Project supported by the National Council of Humanities,Sciences,and Technologies of Mexico(Nos.CF-2023-G-792 and CF-2023-G-1458)the National Council for Scientific and Technological Development of Brazil(No.09/2023)the Research on Productivity of Brazil(No.307188/2023-0)。
文摘A semi-analytical finite element method(SAFEM),based on the two-scale asymptotic homogenization method(AHM)and the finite element method(FEM),is implemented to obtain the effective properties of two-phase fiber-reinforced composites(FRCs).The fibers are periodically distributed and unidirectionally aligned in a homogeneous matrix.This framework addresses the static linear elastic micropolar problem through partial differential equations,subject to boundary conditions and perfect interface contact conditions.The mathematical formulation of the local problems and the effective coefficients are presented by the AHM.The local problems obtained from the AHM are solved by the FEM,which is denoted as the SAFEM.The numerical results are provided,and the accuracy of the solutions is analyzed,indicating that the formulas and results obtained with the SAFEM may serve as the reference points for validating the outcomes of experimental and numerical computations.
文摘The operator splitting method is used to deal with the Navier-Stokes equation, in which the physical process described by the equation is decomposed into two processes: a diffusion process and a convection process; and the finite element equation is established. The velocity field in the element is described by the shape function of the isoparametric element with nine nodes and the pressure field is described by the interpolation function of the four nodes at the vertex of the isoparametric element with nine nodes. The subroutine of the element and the integrated finite element code are generated by the Finite Element Program Generator (FEPG) successfully. The numerical simulation about the incompressible viscous liquid flowing over a cylinder is carded out. The solution agrees with the experimental results very well.
基金Project (2012BAE06B01) supported by the Key Technology R&D Program During the 12th Five-Year Plan Period, ChinaProjects(21201030, 51272039, 51032007) supported by the National Natural Science Foundation of ChinaProject (1099043) supported by the Science and Technology in Guangxi Province, China
文摘The dry friction and wear behaviors of co-continuous composites SiC/Fe–40Cr against SiC/Al 2618 alloy were investigated on a ring-on-ring friction and wear tester at sliding speed of 30-105 m/s under the load of 1.0-2.5 MPa. The experimental result reveals that the characteristic of two body abrasive wear and oxidation wear mechanisms are present for SiCn/2618 Al composite under higher load and sliding speed. SiC ceramic continuous network as the reinforcement can avoid composite from the third body wear that usually occurs in traditional particle reinforced composite. The mechanically mixed layer (MML) controls greatly the wear rate and friction coefficient of the composites. The composites tested at higher sliding speed exhibit higher value of friction coefficient and fluctuation, which is associated with the intermittent formation and removal of the MML. The wear and stress—strain behaviors of SiCn/Fe–40Cr against SiCn/Al 2168 at 30-105 m/s under 1.0-2.5 MPa were analyzed by finite element method with the software Solidwork2012 Simulation, respectively. The wear and stress–strain behavior of the composite predicted by the FEM correlated well with the experimental results.
基金by the National Natural Science Foundation of China(52002299)。
文摘Reduced graphene oxide(rGO)enhanced B_(4)C ceramics was prepared by SPS sintering,the enhancement effect of rGO on the microstructure and mechanical properties of composites was studied through experiments and numerical simulation.The results show that the composite with 2wt%rGO has the best comprehensive mechanical properties.Compared with pure boron carbide,vickers hardness and bending strength are increased by 4.8%and 21.96%,respectively.The fracture toughness is improved by 25.71%.The microstructure observation shows that the improvement of mechanical properties is mainly attributed to the pullout and bridge mechanism of rGO and the crack deflection.Based on the cohesive force finite element method,the dynamic crack growth process of composites was simulated.The energy dissipation of B_(4)C/rGO multiphase ceramics during crack propagation was calculated and compared with that of pure boron carbide ceramics.The results show that the fracture energy dissipation can be effectively increased by adding graphene.
文摘In this paper, the effects of interface properties on the stress transfer between matrix and fiber in short fiber reinforced metal matrix composites (SFRMMCs) is studied with the method of the elasto plastic finite element. The interface properties include Young’s modulus, thickness and elasto plastic performances. In the calculation an interfacial layer with given thickness is introduced into the single fiber model. It is shown that, for a soft interface, the variation in interfacial properties influences the stress transfer greatly.
基金This work was financially supported by the Foundation of the Future Industry of Shenzhen(Grant No.JCYJ20170413163838640)the Research and Development Project in Key Areas of Guangdong Province(Grant No.2020B010190002).
文摘Carbon nanotube(CNT)-reinforced composites have ultra-high elastic moduli,low densities,and fibrous structures.This paper presents the multi-scale finite element modeling of CNT-reinforced polymer composites from micro-to macro-scales.The nanocomposites were modeled using representative volume elements(RVEs),and finite element code was written to simulate the modeling and loading procedure and obtain equivalent mechanical properties of the RVEs with various volume fractions of CNTs,which can be used directly in the follow-up simulation studies on the macroscopic model of CNT-reinforced nanocomposites.When using the programming to simulate the deformation and fracture process of the CNT-reinforced epoxy composites,the mechanical parameters and stress-strain curves of the composites on themacro-scale were obtained by endowing the elements of the lattice models withRVE parameters.Tensile experiments of the CNT-reinforced composites were also carried out.The validity of the finite element simulation method was verified by comparing the results of the simulations and experiments.Finite element models of functionally graded CNT-reinforced composites(FG-CNTRC)with different distributions were established,and the tensile and three-point-bending conditions for various graded material models were simulated by the methods of lattice model and birth-death element to obtain the tensile and bending parameters.In addition,the influence of the distribution and volume ratio of the CNTs on the performance of the graded composite material structures was also analyzed.
基金Project partly supported by the National Natural Science Foundation of China(Grant No.61275174)
文摘The composite that can absorb the high-performance electromagnetic(EM) wave is constructed into a sandwiched structure composed of carbon black(CB)/ethylene-vinyl acetate(EVA) and Ag naowires(Ag NWs). The Ag NWs sandwiched between two CB/EVA layers are used to improve the absorption properties of composite. The effects of EVA-to-CB weight ratio, concentration and diameter of Ag NWs with a thickness of 0.4 mm on microwave absorption are investigated.The results indicate that for an EVA-to-CB weight ratio of 1:3, Ag NW concentration of 1.0 mg/100 m L, and average diameter of 56 nm, the reflection loss(RL) of the composite is below-10 d B in a frequency range of 9.3 Ghz–18.0 GHz, with the minimum values of-40.0 d B and-25.6 d B at 13.5 GHz and 15.3 GHz, respectively. A finite element method(FEM)is used for calculating the RL of the composite. The calculated results are in agreement with the experimental data.
基金Supported by the Key Project of the Natural Science Foundation of China
文摘The generalized self-consistent finite-element iterative averaging method was adopted to analyze the elasto-plastic tensile properties of SiC whiskers reinforced aluminum matrix composites. The effects of varying fiber's aspect ratio and volume fraction on the macroscopic elasto-plastic deformation of the composites were studied. By the analysis of microscopic stress fields, the relation between the propagation of the elasto-plastic region in the matrix and the macroscopic elasto-plastic deformation of composites was discussed. It was found that the propagation of the plastic region in the matrix between the fiber's ends would affect prominently the elasto-plastic tensile behaviour of the composites. It was shown that the characterization of the stress-strain response in terms of the 0.2% offset yield strength is incomplete.
文摘The thermal residual stresses and the stress distributions of short fiber reinforced metal matrix composite under tensile and compressive loadings were studied using large strain axisymmetric elasto plastic finite element method. It is demonstrated that the thermal residual stresses can result in asymmetrical stress distributions and matrix plasticity. The thermal residual stresses decrease the stress transfer in tension and enhance the stress transfer in compression. The fiber volume fraction has more important effects on the thermal residual stresses and the stress distributions under tensile and compressive loadings than the fiber aspect ratio and the fiber end distance. [
文摘A unit cell model is applied to study the creep damage behavior after fiber fractures in the fiber-reinforced composites at high temperature. The user subroutine CREEP has been programmed for ABAQUS. The fiber breakage results in a new crack. The results show that the stress concentration factor resulted from the fiber breakage increases with the creep time. The creep damage takes place near the crack, and then grows in the matrix along a certain angle, up to the total failure. The influences of the ratio of modulus of the fiber to the matrix (Ef/Em) on the creep deformation, damage and stress distributions have been studied. With the increasing Ef/Em, the damage in the matrix increases. Analysis on the different ductility of matrix shows that the creep damage of low ductile matrix composites is higher than high ductile matrix composites.
文摘A general spatial interpolation method for tidal properties has been developed by solving a partial differential equation with a combination of different orders of harmonic operators using a mixed finite element method. Numerically, the equation is solved implicitly without iteration on an unstructured triangular mesh grid. The paper demonstrates the performance of the method for tidal property fields with different characteristics, boundary complexity, number of input data points, and data point distribution. The method has been successfully applied under several different tidal environments, including an idealized distribution in a square basin, coamplitude and cophase lines in the Taylor semi-infiite rotating channel, and tide coamplitude and cophase lines in the Bohai Sea and Chesapeake Bay. Compared to Laplace’s equation that NOAA/NOS currently uses for interpolation in hydrographic and oceanographic applications, the multiple-order harmonic equation method eliminates the problem of singularities at data points, and produces interpolation results with better accuracy and precision.
基金Supported by the Natural Science Foundation of Chinathe Defense Fundamental Research Program of Chinathe Doctoral Innovation Foundation of Northwestern Polytechnical University
文摘The cruciform specimen was selected to obtain the transverse tensile behavior of SiC fiber reinforced titanium matrix composites. Moreover, the means of combining the unilaterally coupled finite element method with the transverse tensile test was developed to evaluate the interfacial normal bond strength of composites. The results showed that the initial non-linearity in the transverse stress-strain curve of SiC/Ti-6Al-4V occurs at the stress of 350 MPa. The means of combining the unilaterally coupled finite element method with the transverse tensile test is an effective method to predict the interfacial normal bond strength of composites. In addition, the interface failure mechanism of composites was analyzed in detail.
基金The project supported by the National Natural Science Foundation of China the LNM of Institute of Mechanics,CAS
文摘Creep damage at crack tip in short fibre composites has been sim- ulated by using the finite element method(FEM).The well-known Schapery non- linear viscoelastic constitutive relationship was used to characterize time-dependent behaviour of the material.A modified recurrence equation was adopted to accelerate the iteration.Kachanov-Rabotnov's damage evolution law was employed.The growth of the damage zone with time around the crack tip was calculated and the results were shown with the so-called 'digit photo',which was produced by the printer.
基金This study was financially supported by the National Natural Science Foundation of China (No. 50071008).
文摘A multi-inclusion cell model is used to investigate the effect of deformation temperature and whisker rotation on the hot compressive behavior of metal matrix composites with misaligned whiskers. Numerical results show that deformation temperature influences the work-hardening behavior of the matrix and the rotation behavior of the whiskers. With increasing temperature, the work hardening rate of the matrix decreases, but the whisker rotation angle increases. Both whisker rotation and the increase of deformation temperature can induce reductions in the load supported by whisker and the load transferred from matrix to whisker. Additionally, it is found that during large strain deformation at higher temperatures, the enhancing of deformation temperature can reduce the effect of whisker rotation. Meanwhile, the stress-strain behavior of the composite is rather sensitive to deformation temperature. At a relatively lower temperature (150℃), the composite exhibits work hardening due to the matrix work hardening, but at relatively higher temperatures (300℃ and above), the composite shows strain softening due to whisker rotation. It is also found that during hot compression at higher temperatures, the softening rate of the composite decreases with increasing temperature. The predicted stress-strain behavior of the composite is approximately in agreement with the experimental results.
基金BASTRI Subtopic Research about Digital Sampler Technology of Body Structure Performance Study Based on Big Data Calculation Model,China(No.MIIT Civil aircraft special purpose MJ-2017-F-20)
文摘This presentation predicts the elastic properties of three-dimensional(3D)orthogonal woven composite(3DOWC)by finite element analysis based on micro/meso repeated unit cell(RUC)models.First,the properties of fiber yarn are obtained by analysis on a micro-scale RUC model assuming fibers in a hexagonal distribution pattern in the polymer matrix.Then a full thickness meso-scale RUC model including weft yarns,warp yarns,Z-yarns and pure resin zones is established and full stiffness matrix of the 3DOWC including the in-plane and flexural constants are predicted.For thick 3DOWC with large number of weft,warp layers,an alternative analysis method is proposed in which an inner meso-RUC and a surface meso-RUC are established,respectively.Then the properties of 3DOWC are deduced based on laminate theory and properties of the inner and surface layers.The predicted results by the above two alternative methods are in good experimental agreement.