A 330-500 GHz zero-biased broadband monolithic integrated tripler is reported. The measured results show that the maximum efficiency and the maximum output power are 2% and 194μW at 348 GHz. The saturation characteri...A 330-500 GHz zero-biased broadband monolithic integrated tripler is reported. The measured results show that the maximum efficiency and the maximum output power are 2% and 194μW at 348 GHz. The saturation characteristic test shows that the output i dB compression point is about -8.5 dBm at 334 GHz and the maximum efficiency is obtained at the point, which is slightly below the 1 dB compression point. Compared with the conventional hybrid integrated circuit, a major advantage of the monolithic integrated circuit is the significant improvement of reliability and consistency. In this work, a terahertz monolithic frequency multiplier at this band is designed and fabricated.展开更多
Design and characterization of a G-band(140–220 GHz) terahertz monolithic integrated circuit(TMIC) amplifier in eight-stage common-emitter topology are performed based on the 0.5-μm In Ga As/In P double heteroju...Design and characterization of a G-band(140–220 GHz) terahertz monolithic integrated circuit(TMIC) amplifier in eight-stage common-emitter topology are performed based on the 0.5-μm In Ga As/In P double heterojunction bipolar transistor(DHBT). An inverted microstrip line is implemented to avoid a parasitic mode between the ground plane and the In P substrate. The on-wafer measurement results show that peak gains are 20 dB at 140 GHz and more than 15-dB gain at 140–190 GHz respectively. The saturation output powers are-2.688 dBm at 210 GHz and-2.88 dBm at 220 GHz,respectively. It is the first report on an amplifier operating at the G-band based on 0.5-μm InP DHBT technology. Compared with the hybrid integrated circuit of vacuum electronic devices, the monolithic integrated circuit has the advantage of reliability and consistency. This TMIC demonstrates the feasibility of the 0.5-μm InGaAs/InP DHBT amplifier in G-band frequencies applications.展开更多
The optimization of high power terahertz monolithic integrated circuit (TMIC) is systemically studied based on the physical model of the Schottky barrier varactor (SBV) with interface defects and tunneling effect. An ...The optimization of high power terahertz monolithic integrated circuit (TMIC) is systemically studied based on the physical model of the Schottky barrier varactor (SBV) with interface defects and tunneling effect. An ultra-thin dielectric layer is added to describe the extra tunneling effect and the damping of thermionic emission current induced by the interface defects. Power consumption of the dielectric layer results in the decrease of capacitance modulation ration (Cmax/Cmin), and thus leads to poor nonlinear C–V characteristics. The proposed Schottky metal-brim (SMB) terminal structure could improve the capacitance modulation ration by reducing the influence of the interface charge and eliminating the fringing capacitance effect. Finally, a 215 GHz tripler TMIC is fabricated based on the SMB terminal structure. The output power is above 5 mW at 210–218 GHz and the maximum could exceed 10 mW at 216 GHz, which could be widely used in terahertz imaging, radiometers, and so on. This paper also provides theoretical support for the SMB structure to optimize the TMIC performance.展开更多
This article presents the design and performance of a terahertz on-chip coupled-grounded coplanar waveguide(GCPW)power combiner using a 50μm-thick InP process.The proposed topology uses two coupled-GCPW lines at the ...This article presents the design and performance of a terahertz on-chip coupled-grounded coplanar waveguide(GCPW)power combiner using a 50μm-thick InP process.The proposed topology uses two coupled-GCPW lines at the end of the input port to substitute two quarter-wavelength GCPW lines,which is different from the conventional Wilkinson power combiner and can availably minimize the coverage area.According to the results obtained,for the frequency range of 210-250 GHz,the insertion losses for each two-way combiner and four-way combiner were lower than 1.05 dB and1.35 dB,respectively,and the in-band return losses were better than 11 dB.Moreover,the proposed on-chip GCPW-based combiners achieved a compromise in low-loss,broadband,and small-size,which can find wide applications in terahertz bands,such as power amplifiers and signal distribution networks.展开更多
重构了Ommic公司CGY2191UH芯片模型,建立了一个精确D波段放大器模块模型;并且设计和加工了一种D波段放大器模块验证了模型的准确性。D波段放大器模块模型包括多节波导模型、共面波导-矩形波导过渡模型、金丝键合线等效电路模型以及CGY21...重构了Ommic公司CGY2191UH芯片模型,建立了一个精确D波段放大器模块模型;并且设计和加工了一种D波段放大器模块验证了模型的准确性。D波段放大器模块模型包括多节波导模型、共面波导-矩形波导过渡模型、金丝键合线等效电路模型以及CGY2191UH芯片模型。通过对模型的分析并基于目前国内成熟工艺,设计和加工了一种D波段放大器模块。测试结果表明,该模块在110 GHz^140 GHz增益大于4.5 d B,其中最大增益在122 GHz为10 d B。增益测试曲线和模型仿真结果吻合,证明了模型的有效性。展开更多
基金Supported by the National High-Technology Research and Development Program of China under Grant No 2011AA010203the National Basic Research Program of China under Grant Nos 2011CB201704 and 2010CB327502the National Natural Science Foundation of China under Grant Nos 61434006 and 61106074
文摘A 330-500 GHz zero-biased broadband monolithic integrated tripler is reported. The measured results show that the maximum efficiency and the maximum output power are 2% and 194μW at 348 GHz. The saturation characteristic test shows that the output i dB compression point is about -8.5 dBm at 334 GHz and the maximum efficiency is obtained at the point, which is slightly below the 1 dB compression point. Compared with the conventional hybrid integrated circuit, a major advantage of the monolithic integrated circuit is the significant improvement of reliability and consistency. In this work, a terahertz monolithic frequency multiplier at this band is designed and fabricated.
基金Project supported by the National Natural Science Foundation of China(Grant No.61501091)the Fundamental Research Funds for the Central Universities of Ministry of Education of China(Grant Nos.ZYGX2014J003 and ZYGX2013J020)
文摘Design and characterization of a G-band(140–220 GHz) terahertz monolithic integrated circuit(TMIC) amplifier in eight-stage common-emitter topology are performed based on the 0.5-μm In Ga As/In P double heterojunction bipolar transistor(DHBT). An inverted microstrip line is implemented to avoid a parasitic mode between the ground plane and the In P substrate. The on-wafer measurement results show that peak gains are 20 dB at 140 GHz and more than 15-dB gain at 140–190 GHz respectively. The saturation output powers are-2.688 dBm at 210 GHz and-2.88 dBm at 220 GHz,respectively. It is the first report on an amplifier operating at the G-band based on 0.5-μm InP DHBT technology. Compared with the hybrid integrated circuit of vacuum electronic devices, the monolithic integrated circuit has the advantage of reliability and consistency. This TMIC demonstrates the feasibility of the 0.5-μm InGaAs/InP DHBT amplifier in G-band frequencies applications.
文摘The optimization of high power terahertz monolithic integrated circuit (TMIC) is systemically studied based on the physical model of the Schottky barrier varactor (SBV) with interface defects and tunneling effect. An ultra-thin dielectric layer is added to describe the extra tunneling effect and the damping of thermionic emission current induced by the interface defects. Power consumption of the dielectric layer results in the decrease of capacitance modulation ration (Cmax/Cmin), and thus leads to poor nonlinear C–V characteristics. The proposed Schottky metal-brim (SMB) terminal structure could improve the capacitance modulation ration by reducing the influence of the interface charge and eliminating the fringing capacitance effect. Finally, a 215 GHz tripler TMIC is fabricated based on the SMB terminal structure. The output power is above 5 mW at 210–218 GHz and the maximum could exceed 10 mW at 216 GHz, which could be widely used in terahertz imaging, radiometers, and so on. This paper also provides theoretical support for the SMB structure to optimize the TMIC performance.
基金Project supported in part by the National Natural Science Foundation of China(Grant No.61871072)。
文摘This article presents the design and performance of a terahertz on-chip coupled-grounded coplanar waveguide(GCPW)power combiner using a 50μm-thick InP process.The proposed topology uses two coupled-GCPW lines at the end of the input port to substitute two quarter-wavelength GCPW lines,which is different from the conventional Wilkinson power combiner and can availably minimize the coverage area.According to the results obtained,for the frequency range of 210-250 GHz,the insertion losses for each two-way combiner and four-way combiner were lower than 1.05 dB and1.35 dB,respectively,and the in-band return losses were better than 11 dB.Moreover,the proposed on-chip GCPW-based combiners achieved a compromise in low-loss,broadband,and small-size,which can find wide applications in terahertz bands,such as power amplifiers and signal distribution networks.
文摘重构了Ommic公司CGY2191UH芯片模型,建立了一个精确D波段放大器模块模型;并且设计和加工了一种D波段放大器模块验证了模型的准确性。D波段放大器模块模型包括多节波导模型、共面波导-矩形波导过渡模型、金丝键合线等效电路模型以及CGY2191UH芯片模型。通过对模型的分析并基于目前国内成熟工艺,设计和加工了一种D波段放大器模块。测试结果表明,该模块在110 GHz^140 GHz增益大于4.5 d B,其中最大增益在122 GHz为10 d B。增益测试曲线和模型仿真结果吻合,证明了模型的有效性。