Terahertz (THz) radiation has attracted much attention due to its wide potential applications. Though radiation can be generated with various ways, it is still a big challenge to obtain strong tabletop sources. Plas...Terahertz (THz) radiation has attracted much attention due to its wide potential applications. Though radiation can be generated with various ways, it is still a big challenge to obtain strong tabletop sources. Plasma, with the advantage of no damage limit, is a promising medium to generate strong THz radiation. This review reports recent advances on strong THz radiation generation from low-density gases and high-density solid targets at different laser intensities.展开更多
Non-equilibrium molecular dynamics simulations of liquid water in picosecond high-power terahertz pulses are performed by using a non-polarizable potential model. Numerical results show that the energy absorption of w...Non-equilibrium molecular dynamics simulations of liquid water in picosecond high-power terahertz pulses are performed by using a non-polarizable potential model. Numerical results show that the energy absorption of water molecules exhibits a pronounced resonance with THz pulses in the frequency range of 14-17 THz. With the THz pulse at resonant frequencies, the maximum temperature is about 562 K by heating the water at room temperature. Further investigation indicates that the results are independent of the size of the nanoscale water box. The efficiency of energy transfer by resonant absorption is more than seven times of microwave heating. These studies show promising applications of ultrashort THz pulses.展开更多
We study the energy scaling of terahertz (THz) emission through difference frequency generation of near-infrared pulses, and demonstrate that Gigawatt few-cycle THz transients at the central frequency of 30 THz are pr...We study the energy scaling of terahertz (THz) emission through difference frequency generation of near-infrared pulses, and demonstrate that Gigawatt few-cycle THz transients at the central frequency of 30 THz are produced from GaSe crystal pumped by two pulses at 1.65 and 1.95 micrometers, with the high quantum yield of 28%. Our analysis indicates that the high yield of DFG originates from the largely reduced group velocity mismatch as the long-wavelength pumping pulses are employed.展开更多
Scattering and propagation of terahertz pulses in random soot aggregate systems are studied by using the generalized multi-particle Mie-solution (GMM) and the pulse propagation theory. Soot aggregates are obtained b...Scattering and propagation of terahertz pulses in random soot aggregate systems are studied by using the generalized multi-particle Mie-solution (GMM) and the pulse propagation theory. Soot aggregates are obtained by the diffusion-limited aggregation (DLA) model. For a soot aggregate in soot aggregate systems, scattering characteristics are analyzed by using the GMM. Scattering intensities versus scattering angles are given. The effects of different positions of the aggregate on the scattering intensities, scattering cross sections, extinction cross sections, and absorption cross sections are computed and compared. Based on pulse propagation in random media, the transmission of terahertz pulses in random soot aggregate systems is determined by the two-frequency mutual coherence function. Numerical simulations and analysis are given for terahertz pulses (0.7956 THz).展开更多
Previous research shows that few-cycle laser(FCL) pulses with low energy and without a bias field can be used to coherently detect terahertz(THz) pulses. As we know, it is very difficult to stabilize the carrier e...Previous research shows that few-cycle laser(FCL) pulses with low energy and without a bias field can be used to coherently detect terahertz(THz) pulses. As we know, it is very difficult to stabilize the carrier envelope phase(CEP) of FCL pulses, i.e., there are some random fluctuations for the CEP. Here we theoretically investigate the influence of such instability on the accuracy of THz detection. Our results show that although there is an optimum CEP for THz detection, the fluctuations of the CEP will lead to terrible thorns on the detected THz waveform. In order to solve this problem, we propose an approach using two few-cycle laser pulses with opposite CEPs, i.e., their CEPs are differed by π.展开更多
Based on the hot electron effect in a semiconductor, an overmoded resistive sensor for 0.3-0.4 THz band is investi-gated. The distribution of electromagnetic field components, voltage standing wave ratio (VSWR), and...Based on the hot electron effect in a semiconductor, an overmoded resistive sensor for 0.3-0.4 THz band is investi-gated. The distribution of electromagnetic field components, voltage standing wave ratio (VSWR), and the average electric field in the silicon block are obtained by using the three-dimensional finite-difference time-domain (FDTD) method. By adjusting several factors (such as the length, width, height and specific resistance of the silicon block) a novel sensor with optimal structural parameters that can be used as a power measurement device for high power terahertz pulse directly is proposed. The results show that the sensor has a relative sensitivity of about 0.24 kW 1, with a fluctuation of relative sensitivity of no more than ±22%, and the maximum of VSWR is 2.74 for 0.3-0.4 THz band.展开更多
According to electro-optical sampling theory, we propose a new method to detect the spatiotemporal field of a single- shot terahertz pulse by spectral holography for the first time. The single-shot terahertz pulse is ...According to electro-optical sampling theory, we propose a new method to detect the spatiotemporal field of a single- shot terahertz pulse by spectral holography for the first time. The single-shot terahertz pulse is coupled into a broadened chirped femtosecond pulse according to electro-optical sampling theory in the detecting system. Then the reference wave and the signal wave are split by Dammann grating and spread into the interference band-pass filter. The filtered sub-waves are at different central-frequencies because of the different incident angles. These sub-waves at different central-frequencies interfere to form sub-holograms, which are recorded in a single frame of a charge coupled device (CCD). The sub-holograms are numerically processed, and the spatiotemporal field distribution of the original terahertz pulse is reconstructed. The computer simulations verify the feasibility of the proposed method.展开更多
We theoretically investigate the characteristics of terahertz(THz) radiation from monolayer graphene exposed to normal incident few-cycle laser pulses, by numerically solving the extended semiconductor Bloch equations...We theoretically investigate the characteristics of terahertz(THz) radiation from monolayer graphene exposed to normal incident few-cycle laser pulses, by numerically solving the extended semiconductor Bloch equations. Our simulations show that the THz spectra in low frequency regions are highly dependent on the carrier envelope phase(CEP) of driving laser pulses. Using an optimal CEP of few-cycle laser pulses, we can obtain broadband strong THz waves, due to the symmetry breaking of the laser-graphene system. Our results also show that the strength of the THz spectra depend on both the intensity and central wavelength of the laser pulses. The intensity dependence of the THz wave can be described by the excitation rate of graphene, while wavelength dependence can be traced back to the band velocity and the population of graphene. We find that a near single-cycle THz pulse can be obtained from graphene driven by a mid-infrared laser pulse.展开更多
The technique of terahertz pulses generated from the photoconductive switches has been applied in the ultrafast electrical pulse metrology recently.A lumped-element theoretical model is established to describe the per...The technique of terahertz pulses generated from the photoconductive switches has been applied in the ultrafast electrical pulse metrology recently.A lumped-element theoretical model is established to describe the performance of the LT-GaAs ultrafast photoconductive switch used in the ultrafast pulse standard.The carrier transport processes of the photoexcited semiconductor,the attenuation and dispersion during terahertz pulse propagating are considered in the theoretical model.According to the experimental parameters,the waveforms of the generated terahertz pulses are calculated under optical excitations with different wavelengths of 840 nm and 450 nm,respectively.And comparisons between the theoretical results and the experimental results are carried out.展开更多
The field-free alignment of molecule Cl CN is investigated by using a terahertz few-cycle pulse(THz FCP)based on the time-dependent density matrix theory.It is shown that a high degree of molecular alignment can be ob...The field-free alignment of molecule Cl CN is investigated by using a terahertz few-cycle pulse(THz FCP)based on the time-dependent density matrix theory.It is shown that a high degree of molecular alignment can be obtained by changing the matching number of the THz FCPs in the adiabatic regime and the non-adiabatic regime.The matching number can affect both the maximum value of the alignment and the time at which it is achieved.It is also found that a higher degree of alignment can be achieved by using the THz FCP at lower intensity and there exists an optimal threshold of molecular alignment with the increase of the field amplitude.Also found is the frequency sensitive region in which the degree of maximum alignment can be enhanced greatly by modulating the center frequencies of different THz FCPs.The investigation demonstrates that comparing with a THz single-cycle pulse,a better result of the field-free alignment can be created by a THz FCP at a constant rotational temperature of molecule.展开更多
The molecular dissociation with a two-laser-pulse scheme is theoretically investigated for the hydrogen molecular ion(H2^+) and its isotopes(HD^+and HT^+). The terahertz pulse is used to steer the electron moti...The molecular dissociation with a two-laser-pulse scheme is theoretically investigated for the hydrogen molecular ion(H2^+) and its isotopes(HD^+and HT^+). The terahertz pulse is used to steer the electron motion after it has been excited by an ultrashort ultraviolet laser pulse and an unprecedented electron localization ratio can be achieved. With the coupled equations, the mass effect of the nuclei on the effective time of the electron localization control is discussed.展开更多
A semi-classical model is utilized to explain the dissociation control of the hydrogen molecular ion (H^-). By ana- lyzing the curve of the dissociation asymmetry parameter as a function of the time delay between th...A semi-classical model is utilized to explain the dissociation control of the hydrogen molecular ion (H^-). By ana- lyzing the curve of the dissociation asymmetry parameter as a function of the time delay between the exciting and steering pulses, we find that the dissociation control is dependent not only on the peak intensity and direction of the electric field of the steering pulse, but also on the peak intensity of the exciting pulse.展开更多
Ultrafast optoelectronic technology has been widely used in terahertz time domain spectrum,terahertz imaging technology,terahertz communication and so on,and great progress has been achieved in the past two decade.Rec...Ultrafast optoelectronic technology has been widely used in terahertz time domain spectrum,terahertz imaging technology,terahertz communication and so on,and great progress has been achieved in the past two decade.Recently,this innovative technology has been applied in radio metrology and supplied a potential and hopeful method to solve the existent challenges of calibration devices and equipments with bandwidth up to 100 GHz.This paper generally summarizes the emerging applications of the ultrafast optoelectronic technology in radio metrology.The main applications of this technology in calibrating broadband sampling oscilloscopes,the high-speed photodiodes and calibrating the electrical pulse generators are emphasized,and the testing of monolithic microwave integrated circuits is also presented.展开更多
We systematically study the optimization of highly efficient terahertz(THz) generation in lithium niobate(LN)crystal pumped by 800 nm laser pulses with 30 fs pulse duration. At room temperature, we obtain a record...We systematically study the optimization of highly efficient terahertz(THz) generation in lithium niobate(LN)crystal pumped by 800 nm laser pulses with 30 fs pulse duration. At room temperature, we obtain a record optical-to-THz energy conversion efficiency of 0.43% by chirping the pump laser pulses. Our method provides a new technique for producing millijoule THz radiation in LN via optical rectification driven by joule-level Ti:sapphire laser systems, which deliver sub-50-fs pulse durations.展开更多
With the support by the National Natural Science Foundation of China and the Ministry of Science and Technology of China,Prof.Li Yutong(李玉同)at the Institute of Physics,Chinese Academy of Sciences,in collaboration w...With the support by the National Natural Science Foundation of China and the Ministry of Science and Technology of China,Prof.Li Yutong(李玉同)at the Institute of Physics,Chinese Academy of Sciences,in collaboration with Prof.Zhang Jie(张杰)and Sheng Zhengming(盛政明)at Shanghai Jiao Tong University,demonstrated the generation of high-energy,coherent terahertz(THz)radiation from ultra in-展开更多
Radiation at terahertz frequencies can be used to analyze the structural dynamics of water and biomolecules,but applying the technique to aqueous solutions and tissues remains challenging since terahertz radiation is ...Radiation at terahertz frequencies can be used to analyze the structural dynamics of water and biomolecules,but applying the technique to aqueous solutions and tissues remains challenging since terahertz radiation is strongly absorbed by water.While this absorption enables certain analyses,such as the structure of water and its interactions with biological solutes,it limits the thickness of samples that can be analyzed,and it drowns out weaker signals from biomolecules of interest.We present a method for analyzing water-rich samples via time-domain terahertz optoacoustics over a 104-fold thickness ranging from microns to centimeters.We demonstrate that adjusting the temperature to alter the terahertz optoacoustic(THz-OA)signal of water improves the sensitivity with which it can be analyzed and,conversely,can reduce or even“silence”its signal.Temperature-manipulated THz-OA signals of aqueous solutions allow detection of solutes such as ions with an order of magnitude greater sensitivity than terahertz time-domain spectroscopy,and potentially provide more characteristic parameters related to both terahertz absorption and ultrasonic propagation.Terahertz optoacoustics may be a powerful tool for spectroscopy and potential imaging of aqueous solutions and tissues to explore molecular interactions and biochemical processes.展开更多
Photoconductive switches were the key components that allowed the generation and detection of coherent broadband electromagnetic pulses at terahertz frequencies, opening the possibility for performing spectroscopy and...Photoconductive switches were the key components that allowed the generation and detection of coherent broadband electromagnetic pulses at terahertz frequencies, opening the possibility for performing spectroscopy and,therefore, measuring complex dielectric properties of materials in this band, which was mostly unexplored. In this paper, we present a brief introduction to the operation principles of these devices. Subsequently, we present a review of the current state-of-the-art in this field and discuss the challenges to be faced in future development of these devices.展开更多
In this paper,we review the past and recent works on generating intense terahertz(THz)pulses from photoconductive antennas(PCAs).We will focus on two types of large-aperture photoconductive antenna(LAPCA)that can gene...In this paper,we review the past and recent works on generating intense terahertz(THz)pulses from photoconductive antennas(PCAs).We will focus on two types of large-aperture photoconductive antenna(LAPCA)that can generate high-intensity THz pulses(a)those with large-aperture dipoles and(b)those with interdigitated electrodes.We will first describe the principles of THz generation from PCAs.The critical parameters for improving the peak intensity of THz radiation from LAPCAs are summarized.We will then describe the saturation and limitation process of LAPCAs along with the advantages and disadvantages of working with widebandgap semiconductor substrates.Then,we will explain the evolution of LAPCA with interdigitated electrodes,which allows one to reduce the photoconductive gap size,and thus obtain higher bias fields while applying lower voltages.We will also describe recent achievements in intense THz pulses generated by interdigitated LAPCAs based on wide-bandgap semiconductors driven by ampli-fied lasers.Finally,we will discuss the future perspectives of THz pulse generation using LAPCAs.展开更多
Tilted-pulse-front-pumping(TPFP) lithium-niobate terahertz(THz) pulse sources are widely used in pump-probe and control experiments since they can generate broadband THz pulses with tens of microjoules of energy. Howe...Tilted-pulse-front-pumping(TPFP) lithium-niobate terahertz(THz) pulse sources are widely used in pump-probe and control experiments since they can generate broadband THz pulses with tens of microjoules of energy. However, the conventional TPFP setup suffers from limitations, hindering the generation of THz pulses with peak electric field strength over 1 MV/cm.Recently, a few setups were suggested to mitigate or even eliminate these limitations. In this paper, we shortly review the setups that are suitable for the generation of single-cycle THz pulses with up to a few tens of megavolts/centimeter focused electric field strength. The THz pulses available with the new layouts pave the way for previously unattainable applications that require extremely high electric field strength and pulse energy in the multi-millijoule range.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10925421,11135012,11105217, and 11121504)
文摘Terahertz (THz) radiation has attracted much attention due to its wide potential applications. Though radiation can be generated with various ways, it is still a big challenge to obtain strong tabletop sources. Plasma, with the advantage of no damage limit, is a promising medium to generate strong THz radiation. This review reports recent advances on strong THz radiation generation from low-density gases and high-density solid targets at different laser intensities.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10975033,11404070 and 11275048the Science Foundation for Youths of Guangxi Province under Grant No 2014GXNSFBA118022the Scientific Research Foundation of Guangxi Education Department under Grant No 2013ZD039
文摘Non-equilibrium molecular dynamics simulations of liquid water in picosecond high-power terahertz pulses are performed by using a non-polarizable potential model. Numerical results show that the energy absorption of water molecules exhibits a pronounced resonance with THz pulses in the frequency range of 14-17 THz. With the THz pulse at resonant frequencies, the maximum temperature is about 562 K by heating the water at room temperature. Further investigation indicates that the results are independent of the size of the nanoscale water box. The efficiency of energy transfer by resonant absorption is more than seven times of microwave heating. These studies show promising applications of ultrashort THz pulses.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11274326,61221064,61405222,11134010 and 11127901the Shanghai Sailing Program under Grant No 14YF1406200
文摘We study the energy scaling of terahertz (THz) emission through difference frequency generation of near-infrared pulses, and demonstrate that Gigawatt few-cycle THz transients at the central frequency of 30 THz are produced from GaSe crystal pumped by two pulses at 1.65 and 1.95 micrometers, with the high quantum yield of 28%. Our analysis indicates that the high yield of DFG originates from the largely reduced group velocity mismatch as the long-wavelength pumping pulses are employed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.60971065,61308025,and 61172031)the Fundamental Research Funds for the Central Universities of Ministry of Education of China(Grant No.K5051207014)
文摘Scattering and propagation of terahertz pulses in random soot aggregate systems are studied by using the generalized multi-particle Mie-solution (GMM) and the pulse propagation theory. Soot aggregates are obtained by the diffusion-limited aggregation (DLA) model. For a soot aggregate in soot aggregate systems, scattering characteristics are analyzed by using the GMM. Scattering intensities versus scattering angles are given. The effects of different positions of the aggregate on the scattering intensities, scattering cross sections, extinction cross sections, and absorption cross sections are computed and compared. Based on pulse propagation in random media, the transmission of terahertz pulses in random soot aggregate systems is determined by the two-frequency mutual coherence function. Numerical simulations and analysis are given for terahertz pulses (0.7956 THz).
基金supported by the National Natural Science Foundation of China(Nos. 61475054 and 11574105)the Fundamental Research Funds for the Central Universities (No. 2017KFYXJJ029)
文摘Previous research shows that few-cycle laser(FCL) pulses with low energy and without a bias field can be used to coherently detect terahertz(THz) pulses. As we know, it is very difficult to stabilize the carrier envelope phase(CEP) of FCL pulses, i.e., there are some random fluctuations for the CEP. Here we theoretically investigate the influence of such instability on the accuracy of THz detection. Our results show that although there is an optimum CEP for THz detection, the fluctuations of the CEP will lead to terrible thorns on the detected THz waveform. In order to solve this problem, we propose an approach using two few-cycle laser pulses with opposite CEPs, i.e., their CEPs are differed by π.
基金Project supported by the National Natural Science Foundation of China(Grant No.61231003)
文摘Based on the hot electron effect in a semiconductor, an overmoded resistive sensor for 0.3-0.4 THz band is investi-gated. The distribution of electromagnetic field components, voltage standing wave ratio (VSWR), and the average electric field in the silicon block are obtained by using the three-dimensional finite-difference time-domain (FDTD) method. By adjusting several factors (such as the length, width, height and specific resistance of the silicon block) a novel sensor with optimal structural parameters that can be used as a power measurement device for high power terahertz pulse directly is proposed. The results show that the sensor has a relative sensitivity of about 0.24 kW 1, with a fluctuation of relative sensitivity of no more than ±22%, and the maximum of VSWR is 2.74 for 0.3-0.4 THz band.
基金supported by the National Natural Science Foundation of China(Grant No.10904079)
文摘According to electro-optical sampling theory, we propose a new method to detect the spatiotemporal field of a single- shot terahertz pulse by spectral holography for the first time. The single-shot terahertz pulse is coupled into a broadened chirped femtosecond pulse according to electro-optical sampling theory in the detecting system. Then the reference wave and the signal wave are split by Dammann grating and spread into the interference band-pass filter. The filtered sub-waves are at different central-frequencies because of the different incident angles. These sub-waves at different central-frequencies interfere to form sub-holograms, which are recorded in a single frame of a charge coupled device (CCD). The sub-holograms are numerically processed, and the spatiotemporal field distribution of the original terahertz pulse is reconstructed. The computer simulations verify the feasibility of the proposed method.
基金Supported by the National Natural Science Foundation of China (Grant Nos.11764038,11864037,11765018,and 91850209)。
文摘We theoretically investigate the characteristics of terahertz(THz) radiation from monolayer graphene exposed to normal incident few-cycle laser pulses, by numerically solving the extended semiconductor Bloch equations. Our simulations show that the THz spectra in low frequency regions are highly dependent on the carrier envelope phase(CEP) of driving laser pulses. Using an optimal CEP of few-cycle laser pulses, we can obtain broadband strong THz waves, due to the symmetry breaking of the laser-graphene system. Our results also show that the strength of the THz spectra depend on both the intensity and central wavelength of the laser pulses. The intensity dependence of the THz wave can be described by the excitation rate of graphene, while wavelength dependence can be traced back to the band velocity and the population of graphene. We find that a near single-cycle THz pulse can be obtained from graphene driven by a mid-infrared laser pulse.
文摘The technique of terahertz pulses generated from the photoconductive switches has been applied in the ultrafast electrical pulse metrology recently.A lumped-element theoretical model is established to describe the performance of the LT-GaAs ultrafast photoconductive switch used in the ultrafast pulse standard.The carrier transport processes of the photoexcited semiconductor,the attenuation and dispersion during terahertz pulse propagating are considered in the theoretical model.According to the experimental parameters,the waveforms of the generated terahertz pulses are calculated under optical excitations with different wavelengths of 840 nm and 450 nm,respectively.And comparisons between the theoretical results and the experimental results are carried out.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12274265 and 11874241)the Taishan Scholar Project of Shandong Province,China。
文摘The field-free alignment of molecule Cl CN is investigated by using a terahertz few-cycle pulse(THz FCP)based on the time-dependent density matrix theory.It is shown that a high degree of molecular alignment can be obtained by changing the matching number of the THz FCPs in the adiabatic regime and the non-adiabatic regime.The matching number can affect both the maximum value of the alignment and the time at which it is achieved.It is also found that a higher degree of alignment can be achieved by using the THz FCP at lower intensity and there exists an optimal threshold of molecular alignment with the increase of the field amplitude.Also found is the frequency sensitive region in which the degree of maximum alignment can be enhanced greatly by modulating the center frequencies of different THz FCPs.The investigation demonstrates that comparing with a THz single-cycle pulse,a better result of the field-free alignment can be created by a THz FCP at a constant rotational temperature of molecule.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11127901,60921004,11134010,11222439,11227902,and 61108012)the National Basic Research Program of China(Grant No.2011CB808103)
文摘The molecular dissociation with a two-laser-pulse scheme is theoretically investigated for the hydrogen molecular ion(H2^+) and its isotopes(HD^+and HT^+). The terahertz pulse is used to steer the electron motion after it has been excited by an ultrashort ultraviolet laser pulse and an unprecedented electron localization ratio can be achieved. With the coupled equations, the mass effect of the nuclei on the effective time of the electron localization control is discussed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11127901,60921004,11134010,11222439,11227902,and 61108012)the National Key Basic Research Program of China(Grant No.2011CB808103)
文摘A semi-classical model is utilized to explain the dissociation control of the hydrogen molecular ion (H^-). By ana- lyzing the curve of the dissociation asymmetry parameter as a function of the time delay between the exciting and steering pulses, we find that the dissociation control is dependent not only on the peak intensity and direction of the electric field of the steering pulse, but also on the peak intensity of the exciting pulse.
文摘Ultrafast optoelectronic technology has been widely used in terahertz time domain spectrum,terahertz imaging technology,terahertz communication and so on,and great progress has been achieved in the past two decade.Recently,this innovative technology has been applied in radio metrology and supplied a potential and hopeful method to solve the existent challenges of calibration devices and equipments with bandwidth up to 100 GHz.This paper generally summarizes the emerging applications of the ultrafast optoelectronic technology in radio metrology.The main applications of this technology in calibrating broadband sampling oscilloscopes,the high-speed photodiodes and calibrating the electrical pulse generators are emphasized,and the testing of monolithic microwave integrated circuits is also presented.
基金supported by the National Basic Research Program of China(No.2013CBA01501)the National Natural Science Foundation of China(No.11520101003)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Nos.XDB16010200 and XDB07030300)the "Zhuoyue" Program of Beihang University(No.GZ216S1711)
文摘We systematically study the optimization of highly efficient terahertz(THz) generation in lithium niobate(LN)crystal pumped by 800 nm laser pulses with 30 fs pulse duration. At room temperature, we obtain a record optical-to-THz energy conversion efficiency of 0.43% by chirping the pump laser pulses. Our method provides a new technique for producing millijoule THz radiation in LN via optical rectification driven by joule-level Ti:sapphire laser systems, which deliver sub-50-fs pulse durations.
文摘With the support by the National Natural Science Foundation of China and the Ministry of Science and Technology of China,Prof.Li Yutong(李玉同)at the Institute of Physics,Chinese Academy of Sciences,in collaboration with Prof.Zhang Jie(张杰)and Sheng Zhengming(盛政明)at Shanghai Jiao Tong University,demonstrated the generation of high-energy,coherent terahertz(THz)radiation from ultra in-
基金This work was supported by the National Key Research and Development Program of China(2017YFA0701004)the National Natural Science Foundation of China(61675145,61722509,81771880,61735012,and 61420106006)the Tianjin Municipal Government(19JCQNJC12800).J.L.,Y.X.Y.,and L.W.J.contributed equally to this work.The authors declare no conflicts of interest.
文摘Radiation at terahertz frequencies can be used to analyze the structural dynamics of water and biomolecules,but applying the technique to aqueous solutions and tissues remains challenging since terahertz radiation is strongly absorbed by water.While this absorption enables certain analyses,such as the structure of water and its interactions with biological solutes,it limits the thickness of samples that can be analyzed,and it drowns out weaker signals from biomolecules of interest.We present a method for analyzing water-rich samples via time-domain terahertz optoacoustics over a 104-fold thickness ranging from microns to centimeters.We demonstrate that adjusting the temperature to alter the terahertz optoacoustic(THz-OA)signal of water improves the sensitivity with which it can be analyzed and,conversely,can reduce or even“silence”its signal.Temperature-manipulated THz-OA signals of aqueous solutions allow detection of solutes such as ions with an order of magnitude greater sensitivity than terahertz time-domain spectroscopy,and potentially provide more characteristic parameters related to both terahertz absorption and ultrasonic propagation.Terahertz optoacoustics may be a powerful tool for spectroscopy and potential imaging of aqueous solutions and tissues to explore molecular interactions and biochemical processes.
文摘Photoconductive switches were the key components that allowed the generation and detection of coherent broadband electromagnetic pulses at terahertz frequencies, opening the possibility for performing spectroscopy and,therefore, measuring complex dielectric properties of materials in this band, which was mostly unexplored. In this paper, we present a brief introduction to the operation principles of these devices. Subsequently, we present a review of the current state-of-the-art in this field and discuss the challenges to be faced in future development of these devices.
文摘In this paper,we review the past and recent works on generating intense terahertz(THz)pulses from photoconductive antennas(PCAs).We will focus on two types of large-aperture photoconductive antenna(LAPCA)that can generate high-intensity THz pulses(a)those with large-aperture dipoles and(b)those with interdigitated electrodes.We will first describe the principles of THz generation from PCAs.The critical parameters for improving the peak intensity of THz radiation from LAPCAs are summarized.We will then describe the saturation and limitation process of LAPCAs along with the advantages and disadvantages of working with widebandgap semiconductor substrates.Then,we will explain the evolution of LAPCA with interdigitated electrodes,which allows one to reduce the photoconductive gap size,and thus obtain higher bias fields while applying lower voltages.We will also describe recent achievements in intense THz pulses generated by interdigitated LAPCAs based on wide-bandgap semiconductors driven by ampli-fied lasers.Finally,we will discuss the future perspectives of THz pulse generation using LAPCAs.
基金the János Bolyai Research Scholarship of the Hungarian Academy of Science for the supportsupported by the National Research, Development and Innovation Office (125808, 129134)+3 种基金European Union, co-financed by the European Social Fund grant EFOP 3.6.2-16-2017-00005 entitled by Ultrafast physical processes in atoms, molecules, nanostructures,biology structuresProject no.TKP2020-IKA-08 has been implemented with the support provided from the National Research, Development and Innovation Fund of Hungary, financed under the 2020-4.1.1-TKP2020 funding schemeThe UNKP-20-3 New National Excellence Program of the Ministry for Innovation and Technology from the source of the National Research, Development and Innovation FundProject no.2018-1.2.1-NKP-2018-00010 has been implemented with the support provided by the National Research, Development and Innovation Fund of Hungary, financed under the 2018-1.2.1-NKP funding scheme。
文摘Tilted-pulse-front-pumping(TPFP) lithium-niobate terahertz(THz) pulse sources are widely used in pump-probe and control experiments since they can generate broadband THz pulses with tens of microjoules of energy. However, the conventional TPFP setup suffers from limitations, hindering the generation of THz pulses with peak electric field strength over 1 MV/cm.Recently, a few setups were suggested to mitigate or even eliminate these limitations. In this paper, we shortly review the setups that are suitable for the generation of single-cycle THz pulses with up to a few tens of megavolts/centimeter focused electric field strength. The THz pulses available with the new layouts pave the way for previously unattainable applications that require extremely high electric field strength and pulse energy in the multi-millijoule range.