This paper reports that terahertz time-domain spectroscopy is used to measure the optical properties of CuS nanoparticles in composite samples. The complex conductivity of pure CuS nanoparticles is extracted by applyi...This paper reports that terahertz time-domain spectroscopy is used to measure the optical properties of CuS nanoparticles in composite samples. The complex conductivity of pure CuS nanoparticles is extracted by applying the Bruggeman effective medium theory. The experimental data are consistent with the Drude-Smith model of conductivity in the range of 0.2 1.5 THz. The results demonstrate that carriers become localized with a backscattering behaviour in small-size nanostructures. In addition, the time constant for the carrier scattering is obtained and is only 64.3 fs due to increased electron interaction with interfaces and grain boundaries.展开更多
Terahertz (THz) radiation, whose frequency ranges from 0.1 THz to 10.0 THz, has rich science, but limited technology. It has long been considered the last remaining scientific gap in the electromagnetic spectrum. Fa...Terahertz (THz) radiation, whose frequency ranges from 0.1 THz to 10.0 THz, has rich science, but limited technology. It has long been considered the last remaining scientific gap in the electromagnetic spectrum. Far from being fully exploited, it offers great opportunities in science, innovation, new technology, and potential applications. THz science and technology enables fundamental research directly impact our lives, from industrial quality control,展开更多
The terahertz time-domain spectroscopy (THz-TDS) system and the related technology and the applications in Capital Normal University are presented. The most often used THz-TDS system as a spectroscopic measurement ...The terahertz time-domain spectroscopy (THz-TDS) system and the related technology and the applications in Capital Normal University are presented. The most often used THz-TDS system as a spectroscopic measurement setup in our lab is introduced in detail, including the THz radiation source, the THz detection method and its measurement, and the control system. THz spectra of various materials is summarized and discussed. These materials include but not limited to two kinds of typical matter-the illegal drugs and explosives. The biological macro-molecules, cosmetics and fine chemical materials, edible pigments and food additives, homocysteic acid and related compounds, heavy ions in soil, Chinese medicines, tobacco and crops, oil and chemical products, carbon nanotubes, superconductors, and various semiconductors and their heterojunctions, are presented. THz emissions from the InAs and InN semiconductors surface are compared. THz spectral investigation of metallic mesh structures is summarized. Finally, an outlook of THz spectroscopic applications is given.展开更多
This paper reports a new way to detect the enhanced transmission of a THz electromagnetic wave through an Ag/Ag2O layer by THz-TDS (time-domain spectroscopy). As the THz beam illuminates the sub-wavelength Ag partic...This paper reports a new way to detect the enhanced transmission of a THz electromagnetic wave through an Ag/Ag2O layer by THz-TDS (time-domain spectroscopy). As the THz beam illuminates the sub-wavelength Ag particles gained by Ag2O thermal decomposition, the evanescent wave is generated. The evanescent wave is coupled by a 500μm-GaAs substrate, which attaches behind the Ag/Ag2O layer, and then it transmits to the far field to be detected. The experimental results indicate that the transmitting amplitude is enhanced, as well as the frequent shifting and spectra broadening.展开更多
In this work, we review the developing progress of two-dimensional terahertz time-domain spectroscopy(THz-TDS) and its diverse applications, including analyzing the polarization of THz radiation from a laser-induced...In this work, we review the developing progress of two-dimensional terahertz time-domain spectroscopy(THz-TDS) and its diverse applications, including analyzing the polarization of THz radiation from a laser-induced plasma source and studying the corresponding physical mechanism, and characterizing the optical properties of crystals, etc.展开更多
Copper sulfate pentahydrate is investigated by terahertz time-domain spectroscopy. It is shown that the terahertz absorption coefficients are correlated with the particle size of the samples, as well as the heating ra...Copper sulfate pentahydrate is investigated by terahertz time-domain spectroscopy. It is shown that the terahertz absorption coefficients are correlated with the particle size of the samples, as well as the heating rates of the ambient temperature. Furthermore, the water molecules of copper sulfate pentahydrate can be quantitatively characterized due to the high sensitivity of the terahertz wave to water molecules. Based on such results, the status of water incorporated in mineral opal is also characterized using terahertz time-domain spectroscopy. It indicates that terahertz technology can be considered as an efficient method to detect the dehydration of minerals.展开更多
A method for extracting optical parameters of plastics materials based on terahertz time domain spectroscopy is presented. The transmission-type Terahertz Time-Domain Spectroscopy(THz TDS) system is adopted to detect ...A method for extracting optical parameters of plastics materials based on terahertz time domain spectroscopy is presented. The transmission-type Terahertz Time-Domain Spectroscopy(THz TDS) system is adopted to detect the refractive index and extinction coefficient on different plastic materials. Then the corresponding spectral information is obtained by Fourier transform of the terahertz time domain waveform of the sampling points, including the corresponding amplitude and phase information of the waveform. The optical parameter extraction model is built. By using the simplex optimization method, the curves of the refractive index and extinction coefficient for the plastic material are obtained. The experimental samples are made of different plastic parallel plate materials. The experimental results show that the optimization of optical parameters can improve their extraction accuracy, and the error of refractive index is ±0.005. Extraction technology with the simplex optimization method of optical parameter based on THz TDS can help to extract the optical parameters of engineering plastics. It is of great significance for the research of terahertz nondestructive testing.展开更多
Terahertz time-domain spectroscopy(THz-TDS)was utilized to investigate the solid-state reaction between L(+)-Tartaric acid and sodium hydrogen carbonate.Solid sodium hydrogen L(+)-tartrate monohydrate was synthesized ...Terahertz time-domain spectroscopy(THz-TDS)was utilized to investigate the solid-state reaction between L(+)-Tartaric acid and sodium hydrogen carbonate.Solid sodium hydrogen L(+)-tartrate monohydrate was synthesized efficiently by mechanical grinding,which is particularly sustainable and environmentally benign.Distinct THz absorptions were observed for pure reactants and the proposed product.The reaction process could be clearly visualized by THz spectral patterns of the reaction mixtures at different grinding time.The observed results were further confirmed by synchrotron radiation X-ray powder diffraction(SRXRPD)and Fourier transform infrared (FT-IR)spectroscopy.The study demonstrates that THz-TDS is an effective novel tool to monitor solid-state reactions in pharmaceutical industry.展开更多
In this study, the terahertz time-domain spectroscopy (THz-TDS) of crystalline methedrine, which is one of the illegal drugs, is performed using molecular dynamics simulation by the Fourier transform of time derivativ...In this study, the terahertz time-domain spectroscopy (THz-TDS) of crystalline methedrine, which is one of the illegal drugs, is performed using molecular dynamics simulation by the Fourier transform of time derivative auto-correlation functions of the dipole moment. In order to accurately detect the drugs from samples, it is necessary to build a complete database for terahertz spectra under different external conditions from theoretical calculation, which are hardly obtained from the experiments directly. Our results show remarkable consistency with the available experimental data in the frequency range of 10 - 100 cm-1 indicating that the presented method has significant capability to simulate terahertz spectra at various conditions. We investigated the effects of temperature and pressure on THz-TDS by simulating the system at temperature range between 78.4 K and 400 K at pressures up to 100 atm. Results show the spectral features of THz-TDS both in intensity and profile are highly sensitive to the variation of temperature and with a lower magnitude to the variation of pressure. The vanishing, rebuilding and shifting of spectral peaks are due to the complex mechanisms such as the anharmonicity, shifting in the vibration energy levels, formation and destruction of hydrogen-binding and the deformation of the potential energy surface during the environment changing. This improved our understanding for complicated THz-TDS of crystalline methedrine and would be useful for assignment of the practical measurements.展开更多
Terahertz time-domain spectroscopy (THz-TDS) is a new technique in studying the conformational state of a molecule in recent years. In this work, we reported the first use of THz-TDS to examine the dena- turation of t...Terahertz time-domain spectroscopy (THz-TDS) is a new technique in studying the conformational state of a molecule in recent years. In this work, we reported the first use of THz-TDS to examine the dena- turation of two photosynthesis membrane proteins: CP43 and CP47. THz-TDS was proven to be useful in discriminating the different conformational states of given proteins with similar structure and in monitoring the denaturation process of proteins. Upon treatment with guanidine hydrochloride (GuHCl), a 1.8 THz peak appeared for CP47 and free chlorophyll a (Chl a). This peak was deemed to originate from the interaction between Chl a and GuHCl molecules. The Chl a molecules in CP47 interacted with GuHCl more easily than those in CP43.展开更多
Spectroscopic measurements and terahertz imaging of the cornea are carried out by using a rapid scanning terahertz time domain spectroscopy(THz-TDS) system.A voice coil motor stage based optical delay line(VCM-ODL...Spectroscopic measurements and terahertz imaging of the cornea are carried out by using a rapid scanning terahertz time domain spectroscopy(THz-TDS) system.A voice coil motor stage based optical delay line(VCM-ODL) is developed to provide a rather simple and robust structure with both the high scanning speed and the large delay length.The developed system is used for THz spectroscopic measurements and imaging of the corneal tissue with different amounts of water content,and the measurement results show the consistence with the reported results,in which the measurement time using VCM-ODL is a factor of 360 shorter than the traditional motorized optical delay line(MDL).With reducing the water content a monotonic decrease of the complex permittivity of the cornea is observed.The two-term Debye relaxation model is employed to explain our experimental results,revealing that the fast relaxation time of a dehydrated cornea is much larger than that of a hydrated cornea and its dielectric behavior can be affected by the presence of the biological macromolecules.These results demonstrate that our THz spectrometer may be a promising candidate for tissue hydration sensing and practical application of THz technology.展开更多
In this paper, we employed terahertz time domain spectroscopy (THz-TDS) to investigate the nitrate 0 concentration in four types of nitrate solution (sodium nitrate, aluminum nitrate, calcium nitrate and magnesium ...In this paper, we employed terahertz time domain spectroscopy (THz-TDS) to investigate the nitrate 0 concentration in four types of nitrate solution (sodium nitrate, aluminum nitrate, calcium nitrate and magnesium nitrate). Their absorption coefficient and refractive index were calculated in 0.2-2.5THz, and a logarithmic relationship was observed between NO3 concentrations and selected optical parameters regardless of the kinds of nitrate solution. Partial least square (PLS) model was built between THz-TDS and NO3 concentration. The correlation coefficient of PLS model was calculated. The results make the quantitative analysis of NO3 concentration possible by THz-TDS and indicate the bright future in practical application.展开更多
Particulate matter with the diameter of less than 2.5 μm (PM2.5) is the most important causation of air pollution. In this study, PM2.5 samples were collected in three different environment including ordinary atmo-...Particulate matter with the diameter of less than 2.5 μm (PM2.5) is the most important causation of air pollution. In this study, PM2.5 samples were collected in three different environment including ordinary atmo- spheric environment, lampblack environment and the environment with an air conditioning exhaust fan, and analyzed by using terahertz time-domain spectroscopy (THz-TDS). The linear regression analysis and the principal component analysis (PCA) are used to identify PM2.5 samples collected in different environment. The results indicate that combining THz-TDS with statistical methods can serve as a contactless and efficient approach to identify air pollutants in different environment.展开更多
This paper introduces the terahertz time- domain spectroscopy (THz-TDS) used for the quantitative detection of n-heptane volume ratios in 41 n-heptane and n-octane mixtures with the concentration range of 0-100% at ...This paper introduces the terahertz time- domain spectroscopy (THz-TDS) used for the quantitative detection of n-heptane volume ratios in 41 n-heptane and n-octane mixtures with the concentration range of 0-100% at the intervals of 2.5%. Among 41 samples, 33 were used for calibration and the remaining 8 tbr validation. Models of chemometrics methods, including partial least squares (PLS) and back propagation-artificial neural network (BP-ANN), were built between the THz- TDS and the n-heptane percentage. To evaluate the quality of the built models, we calculated the correlation coefficient (R) and root-mean-square errors (RMSE) of calibration and validation models. R and RMSE of two methods were close to 1 and 0 within acceptable levels, respectively, demonstrating that the combination of THz- TDS and chemometrics methods is a potential and promising tool for further quantitative detection of n- alkanes.展开更多
We give a brief review of the developments in terahertz time-domain spectroscopy(THz-TDS) systems and microcavity components for probing samples in the University of Shanghai for Science and Technology. The broadband ...We give a brief review of the developments in terahertz time-domain spectroscopy(THz-TDS) systems and microcavity components for probing samples in the University of Shanghai for Science and Technology. The broadband terahertz(THz) radiation sources based on GaAs m-i-n diodes have been investigated by applying high electric fields. Then, the free space THz-TDS and fiber-coupled THz-TDS systems produced in our lab and their applications in drug/cancer detection are introduced in detail. To further improve the signal-to-noise ratio(SNR) and enhance sensitivity, we introduce three general micro-cavity approaches to achieve tiny-volume sample detection, summarizing our previous results about their characteristics, performance, and potential applications.展开更多
Terahertz(THz) time-domain spectroscopy(TDS) has been applied to investigate liquid's optical property in recent years.However,comprehensive discussion of how to compute liquids' complex refractive indices and...Terahertz(THz) time-domain spectroscopy(TDS) has been applied to investigate liquid's optical property in recent years.However,comprehensive discussion of how to compute liquids' complex refractive indices and absorption rates are seldom reported.So,in this work,we try to find a way to compute liquids' optical property accurately and conveniently.展开更多
In this paper,we used terahertz time-domain spectroscopy(THz-TDS)over a range of 0.3–2.5 THz to investigate the formation of solid-state cocrystals of amino acids,formed by grinding mixtures of two different kinds of...In this paper,we used terahertz time-domain spectroscopy(THz-TDS)over a range of 0.3–2.5 THz to investigate the formation of solid-state cocrystals of amino acids,formed by grinding mixtures of two different kinds of amino acids.For comparison,we prepared dual-layer samples,combined by pressing two single-component pellets together without grinding.In the ground-mixture samples,some extra absorption peaks appeared,different from the characteristic peaks of the pure components,but these peaks did not appear in the dual-layer samples.Thus,these extra absorption peaks in the THz range are unique features of cocrystals.From our results,we believe that THz-TDS is a promising technique to characterize cocrystals.展开更多
The optical characteristics of four kinds of amino acids (tyrosine, arginine, histidine and glutamine) filled with nitrogen at room temperature were studied by THz time-domain spectroscopy (THz-TDS). Well-resolved abs...The optical characteristics of four kinds of amino acids (tyrosine, arginine, histidine and glutamine) filled with nitrogen at room temperature were studied by THz time-domain spectroscopy (THz-TDS). Well-resolved absorption and refractive spectrums between 0.1 and 2.8 THz were obtained based on the physical model for extract-ing the optical parameters of materials in THz range. The results not only fill up the spectra gap of amino acids in far-infrared range, supply data for amino acid molecular identification and conformation analysis, but also demon-strate significantly potential to promote the research and application of biological materials in bio-chemical and medical fields by THz-TDS.展开更多
Well resolved far-infrared spectra of 1,4-benzoquinone, 1,4-naphthoquinone, and 9, 10-anthraquinonme in polycrystalline form have been measured with terahertz time domain spectroscopy at room tem- perature. The charac...Well resolved far-infrared spectra of 1,4-benzoquinone, 1,4-naphthoquinone, and 9, 10-anthraquinonme in polycrystalline form have been measured with terahertz time domain spectroscopy at room tem- perature. The characterizations of power absorption and index of refraction in the frequency range 0.3 -2.0 THz are presented. Theoretical calculation is applied to assist the analysis and assignment of individual THz absorption spectra of the p-quinones with semiempirical AM1, Hartree-Fock (HF), and density functional theory (DFT) method. Observed THz responses are assigned to the translational and torsional vibrations of p-quinone dimer held together by weak hydrogen bonds.展开更多
We applied a spatial high-order finite-difference-time-domain (HO-FDTD) scheme to solve 2D Maxwell’s equations in order to develop a fluid model employed to study the production of terahertz radiation by the filament...We applied a spatial high-order finite-difference-time-domain (HO-FDTD) scheme to solve 2D Maxwell’s equations in order to develop a fluid model employed to study the production of terahertz radiation by the filamentation of two femtosecond lasers in air plasma. We examined the performance of the applied scheme, in this context, we implemented the developed model to study selected phenomena in terahertz radiation production, such as the excitation energy and conversion efficiency of the produced THz radiation, in addition to the influence of the pulse chirping on properties of the produced radiation. The obtained numerical results have clarified that the applied HO-FDTD scheme is precisely accurate to solve Maxwell’s equations and sufficiently valid to study the production of terahertz radiation by the filamentation of two femtosecond lasers in air plasma.展开更多
基金Project supported by the Research Foundation of the State Ethnic Affairs Commission of People’s Repulic of China (Grant No. 09ZY012)the National Natural Science Foundation of China (Grant No. 10904176)+1 种基金the "Project 985"the "Project 211" of Minzu University of China
文摘This paper reports that terahertz time-domain spectroscopy is used to measure the optical properties of CuS nanoparticles in composite samples. The complex conductivity of pure CuS nanoparticles is extracted by applying the Bruggeman effective medium theory. The experimental data are consistent with the Drude-Smith model of conductivity in the range of 0.2 1.5 THz. The results demonstrate that carriers become localized with a backscattering behaviour in small-size nanostructures. In addition, the time constant for the carrier scattering is obtained and is only 64.3 fs due to increased electron interaction with interfaces and grain boundaries.
文摘Terahertz (THz) radiation, whose frequency ranges from 0.1 THz to 10.0 THz, has rich science, but limited technology. It has long been considered the last remaining scientific gap in the electromagnetic spectrum. Far from being fully exploited, it offers great opportunities in science, innovation, new technology, and potential applications. THz science and technology enables fundamental research directly impact our lives, from industrial quality control,
基金supported by the National Natural Science Foundation of China under Grant No. 50971094, 61171051Beijing Key Project of Science and Technology Development under Grant No. KZ201310028032
文摘The terahertz time-domain spectroscopy (THz-TDS) system and the related technology and the applications in Capital Normal University are presented. The most often used THz-TDS system as a spectroscopic measurement setup in our lab is introduced in detail, including the THz radiation source, the THz detection method and its measurement, and the control system. THz spectra of various materials is summarized and discussed. These materials include but not limited to two kinds of typical matter-the illegal drugs and explosives. The biological macro-molecules, cosmetics and fine chemical materials, edible pigments and food additives, homocysteic acid and related compounds, heavy ions in soil, Chinese medicines, tobacco and crops, oil and chemical products, carbon nanotubes, superconductors, and various semiconductors and their heterojunctions, are presented. THz emissions from the InAs and InN semiconductors surface are compared. THz spectral investigation of metallic mesh structures is summarized. Finally, an outlook of THz spectroscopic applications is given.
文摘This paper reports a new way to detect the enhanced transmission of a THz electromagnetic wave through an Ag/Ag2O layer by THz-TDS (time-domain spectroscopy). As the THz beam illuminates the sub-wavelength Ag particles gained by Ag2O thermal decomposition, the evanescent wave is generated. The evanescent wave is coupled by a 500μm-GaAs substrate, which attaches behind the Ag/Ag2O layer, and then it transmits to the far field to be detected. The experimental results indicate that the transmitting amplitude is enhanced, as well as the frequent shifting and spectra broadening.
基金supported by the National Basic Research Program of China under Grant No.2014CB339802,No.2011CB808100the National Natural Science Foundation of China under Grant No.11174156
文摘In this work, we review the developing progress of two-dimensional terahertz time-domain spectroscopy(THz-TDS) and its diverse applications, including analyzing the polarization of THz radiation from a laser-induced plasma source and studying the corresponding physical mechanism, and characterizing the optical properties of crystals, etc.
基金Project supported by the National Natural Science Foundation of China(Grant No.61805214)the Fundamental Research Funds for the Central Universities,China(Grant No.2652017142)
文摘Copper sulfate pentahydrate is investigated by terahertz time-domain spectroscopy. It is shown that the terahertz absorption coefficients are correlated with the particle size of the samples, as well as the heating rates of the ambient temperature. Furthermore, the water molecules of copper sulfate pentahydrate can be quantitatively characterized due to the high sensitivity of the terahertz wave to water molecules. Based on such results, the status of water incorporated in mineral opal is also characterized using terahertz time-domain spectroscopy. It indicates that terahertz technology can be considered as an efficient method to detect the dehydration of minerals.
基金National defense technical basic research project,Terahertz detection technology and application research on ceramic matrix composites(JSZL2015411C002)
文摘A method for extracting optical parameters of plastics materials based on terahertz time domain spectroscopy is presented. The transmission-type Terahertz Time-Domain Spectroscopy(THz TDS) system is adopted to detect the refractive index and extinction coefficient on different plastic materials. Then the corresponding spectral information is obtained by Fourier transform of the terahertz time domain waveform of the sampling points, including the corresponding amplitude and phase information of the waveform. The optical parameter extraction model is built. By using the simplex optimization method, the curves of the refractive index and extinction coefficient for the plastic material are obtained. The experimental samples are made of different plastic parallel plate materials. The experimental results show that the optimization of optical parameters can improve their extraction accuracy, and the error of refractive index is ±0.005. Extraction technology with the simplex optimization method of optical parameter based on THz TDS can help to extract the optical parameters of engineering plastics. It is of great significance for the research of terahertz nondestructive testing.
基金Supported by National Natural Science Foundation of China(Nos.10574134,10805068,and 60907044) and National Basic Research Program of China(No. 2010CB832903)
文摘Terahertz time-domain spectroscopy(THz-TDS)was utilized to investigate the solid-state reaction between L(+)-Tartaric acid and sodium hydrogen carbonate.Solid sodium hydrogen L(+)-tartrate monohydrate was synthesized efficiently by mechanical grinding,which is particularly sustainable and environmentally benign.Distinct THz absorptions were observed for pure reactants and the proposed product.The reaction process could be clearly visualized by THz spectral patterns of the reaction mixtures at different grinding time.The observed results were further confirmed by synchrotron radiation X-ray powder diffraction(SRXRPD)and Fourier transform infrared (FT-IR)spectroscopy.The study demonstrates that THz-TDS is an effective novel tool to monitor solid-state reactions in pharmaceutical industry.
文摘In this study, the terahertz time-domain spectroscopy (THz-TDS) of crystalline methedrine, which is one of the illegal drugs, is performed using molecular dynamics simulation by the Fourier transform of time derivative auto-correlation functions of the dipole moment. In order to accurately detect the drugs from samples, it is necessary to build a complete database for terahertz spectra under different external conditions from theoretical calculation, which are hardly obtained from the experiments directly. Our results show remarkable consistency with the available experimental data in the frequency range of 10 - 100 cm-1 indicating that the presented method has significant capability to simulate terahertz spectra at various conditions. We investigated the effects of temperature and pressure on THz-TDS by simulating the system at temperature range between 78.4 K and 400 K at pressures up to 100 atm. Results show the spectral features of THz-TDS both in intensity and profile are highly sensitive to the variation of temperature and with a lower magnitude to the variation of pressure. The vanishing, rebuilding and shifting of spectral peaks are due to the complex mechanisms such as the anharmonicity, shifting in the vibration energy levels, formation and destruction of hydrogen-binding and the deformation of the potential energy surface during the environment changing. This improved our understanding for complicated THz-TDS of crystalline methedrine and would be useful for assignment of the practical measurements.
基金the National Natural Science Foundation of China (Grant No. 39890390)
文摘Terahertz time-domain spectroscopy (THz-TDS) is a new technique in studying the conformational state of a molecule in recent years. In this work, we reported the first use of THz-TDS to examine the dena- turation of two photosynthesis membrane proteins: CP43 and CP47. THz-TDS was proven to be useful in discriminating the different conformational states of given proteins with similar structure and in monitoring the denaturation process of proteins. Upon treatment with guanidine hydrochloride (GuHCl), a 1.8 THz peak appeared for CP47 and free chlorophyll a (Chl a). This peak was deemed to originate from the interaction between Chl a and GuHCl molecules. The Chl a molecules in CP47 interacted with GuHCl more easily than those in CP43.
基金Project supported by the National Natural Science Foundation of China(Grant No.61205101)the Shenzhen Municipal Research Foundation,China(Grant Nos.GJHZ201404171134305 and JCYJ20140417113130693)the Marie Curie Actions-International Research Staff Exchange Scheme(IRSES)(Grant No.FP7 PIRSES-2013-612267)
文摘Spectroscopic measurements and terahertz imaging of the cornea are carried out by using a rapid scanning terahertz time domain spectroscopy(THz-TDS) system.A voice coil motor stage based optical delay line(VCM-ODL) is developed to provide a rather simple and robust structure with both the high scanning speed and the large delay length.The developed system is used for THz spectroscopic measurements and imaging of the corneal tissue with different amounts of water content,and the measurement results show the consistence with the reported results,in which the measurement time using VCM-ODL is a factor of 360 shorter than the traditional motorized optical delay line(MDL).With reducing the water content a monotonic decrease of the complex permittivity of the cornea is observed.The two-term Debye relaxation model is employed to explain our experimental results,revealing that the fast relaxation time of a dehydrated cornea is much larger than that of a hydrated cornea and its dielectric behavior can be affected by the presence of the biological macromolecules.These results demonstrate that our THz spectrometer may be a promising candidate for tissue hydration sensing and practical application of THz technology.
文摘In this paper, we employed terahertz time domain spectroscopy (THz-TDS) to investigate the nitrate 0 concentration in four types of nitrate solution (sodium nitrate, aluminum nitrate, calcium nitrate and magnesium nitrate). Their absorption coefficient and refractive index were calculated in 0.2-2.5THz, and a logarithmic relationship was observed between NO3 concentrations and selected optical parameters regardless of the kinds of nitrate solution. Partial least square (PLS) model was built between THz-TDS and NO3 concentration. The correlation coefficient of PLS model was calculated. The results make the quantitative analysis of NO3 concentration possible by THz-TDS and indicate the bright future in practical application.
文摘Particulate matter with the diameter of less than 2.5 μm (PM2.5) is the most important causation of air pollution. In this study, PM2.5 samples were collected in three different environment including ordinary atmo- spheric environment, lampblack environment and the environment with an air conditioning exhaust fan, and analyzed by using terahertz time-domain spectroscopy (THz-TDS). The linear regression analysis and the principal component analysis (PCA) are used to identify PM2.5 samples collected in different environment. The results indicate that combining THz-TDS with statistical methods can serve as a contactless and efficient approach to identify air pollutants in different environment.
文摘This paper introduces the terahertz time- domain spectroscopy (THz-TDS) used for the quantitative detection of n-heptane volume ratios in 41 n-heptane and n-octane mixtures with the concentration range of 0-100% at the intervals of 2.5%. Among 41 samples, 33 were used for calibration and the remaining 8 tbr validation. Models of chemometrics methods, including partial least squares (PLS) and back propagation-artificial neural network (BP-ANN), were built between the THz- TDS and the n-heptane percentage. To evaluate the quality of the built models, we calculated the correlation coefficient (R) and root-mean-square errors (RMSE) of calibration and validation models. R and RMSE of two methods were close to 1 and 0 within acceptable levels, respectively, demonstrating that the combination of THz- TDS and chemometrics methods is a potential and promising tool for further quantitative detection of n- alkanes.
基金the National Key R&D Program of China (No. 2018YFF01013003)the Program of Shanghai Pujiang Program, China (No. 17PJD028)+4 种基金the National Natural Science Foundation of China (Nos. 61671302, 61601291, and 61722111)the Shuguang Program supported by the Shanghai Education Development Foundation and Shanghai Municipal Education Commission, China (No. 18SG44)the Key Scientific and Technological Project of Science and Technology Commission of Shanghai Municipality, China (No. 15DZ0500102)the Shanghai Leading Talent, China (No. 2016-019)the Young Yangtse Rive Scholar, China (No. Q2016212).
文摘We give a brief review of the developments in terahertz time-domain spectroscopy(THz-TDS) systems and microcavity components for probing samples in the University of Shanghai for Science and Technology. The broadband terahertz(THz) radiation sources based on GaAs m-i-n diodes have been investigated by applying high electric fields. Then, the free space THz-TDS and fiber-coupled THz-TDS systems produced in our lab and their applications in drug/cancer detection are introduced in detail. To further improve the signal-to-noise ratio(SNR) and enhance sensitivity, we introduce three general micro-cavity approaches to achieve tiny-volume sample detection, summarizing our previous results about their characteristics, performance, and potential applications.
基金supported in part by the National Natural Science Foundation of China (Grant No 10874074)the Major State Basic Research Development Program of China (973 Program) (Grant Nos 2006CB601006 and 2007CB310404)PhD Programs Foundation of the Ministry of Education of China (200802840031)
文摘Terahertz(THz) time-domain spectroscopy(TDS) has been applied to investigate liquid's optical property in recent years.However,comprehensive discussion of how to compute liquids' complex refractive indices and absorption rates are seldom reported.So,in this work,we try to find a way to compute liquids' optical property accurately and conveniently.
基金supported by the National Natural Science Foundation of China (61302007 and 60977065)the Fundamental Research Funds for the Central Universities (FRF-SD12-016A)
文摘In this paper,we used terahertz time-domain spectroscopy(THz-TDS)over a range of 0.3–2.5 THz to investigate the formation of solid-state cocrystals of amino acids,formed by grinding mixtures of two different kinds of amino acids.For comparison,we prepared dual-layer samples,combined by pressing two single-component pellets together without grinding.In the ground-mixture samples,some extra absorption peaks appeared,different from the characteristic peaks of the pure components,but these peaks did not appear in the dual-layer samples.Thus,these extra absorption peaks in the THz range are unique features of cocrystals.From our results,we believe that THz-TDS is a promising technique to characterize cocrystals.
文摘The optical characteristics of four kinds of amino acids (tyrosine, arginine, histidine and glutamine) filled with nitrogen at room temperature were studied by THz time-domain spectroscopy (THz-TDS). Well-resolved absorption and refractive spectrums between 0.1 and 2.8 THz were obtained based on the physical model for extract-ing the optical parameters of materials in THz range. The results not only fill up the spectra gap of amino acids in far-infrared range, supply data for amino acid molecular identification and conformation analysis, but also demon-strate significantly potential to promote the research and application of biological materials in bio-chemical and medical fields by THz-TDS.
基金Supported by the National Natural Science Foundation of China (Grant No. 10675158)the major project of the Shanghai Municipal Commission of Science and Technology (Grant No. 06dj14008)
文摘Well resolved far-infrared spectra of 1,4-benzoquinone, 1,4-naphthoquinone, and 9, 10-anthraquinonme in polycrystalline form have been measured with terahertz time domain spectroscopy at room tem- perature. The characterizations of power absorption and index of refraction in the frequency range 0.3 -2.0 THz are presented. Theoretical calculation is applied to assist the analysis and assignment of individual THz absorption spectra of the p-quinones with semiempirical AM1, Hartree-Fock (HF), and density functional theory (DFT) method. Observed THz responses are assigned to the translational and torsional vibrations of p-quinone dimer held together by weak hydrogen bonds.
文摘We applied a spatial high-order finite-difference-time-domain (HO-FDTD) scheme to solve 2D Maxwell’s equations in order to develop a fluid model employed to study the production of terahertz radiation by the filamentation of two femtosecond lasers in air plasma. We examined the performance of the applied scheme, in this context, we implemented the developed model to study selected phenomena in terahertz radiation production, such as the excitation energy and conversion efficiency of the produced THz radiation, in addition to the influence of the pulse chirping on properties of the produced radiation. The obtained numerical results have clarified that the applied HO-FDTD scheme is precisely accurate to solve Maxwell’s equations and sufficiently valid to study the production of terahertz radiation by the filamentation of two femtosecond lasers in air plasma.