A new long term integration algorithm is proposed forhigh-dynamic targets, which can resolve the problems of spectrumspread, frequency walk and pseudorandom noise (PRN)code phase curvature caused by the motion of ta...A new long term integration algorithm is proposed forhigh-dynamic targets, which can resolve the problems of spectrumspread, frequency walk and pseudorandom noise (PRN)code phase curvature caused by the motion of targets. This algorithmfirst applies a keystone transform based improved discretepolynomial-phase transform (KT-IDPT) to estimate the Dopplerchirp rate. Then, based on the estimated Doppler chirp rate,dechirping and envelope translation are performed on the partialcorrelation results to correct the spectrum spread and the codephase curvature. The simulation results demonstrate that the proposedmethod has low integration loss and computational burden.展开更多
The acute effect of acupuncture on Alzheimer's disease,i.e.,on brain activation during treatment,has been reported.However,the effect of long-term acupuncture on brain activation in Alzheimer's disease is unclear.Th...The acute effect of acupuncture on Alzheimer's disease,i.e.,on brain activation during treatment,has been reported.However,the effect of long-term acupuncture on brain activation in Alzheimer's disease is unclear.Therefore,in this study,we performed long-term needling at Zusanli(ST36)or a sham point(1.5 mm lateral to ST36)in a rat Alzheimer's disease model,for 30 minutes,once per day,for 30 days.The rats underwent 18F-fluorodeoxyglucose positron emission tomography scanning.Positron emission tomography images were processed with SPM2.The brain areas activated after needling at ST36 included the left hippocampus,the left orbital cortex,the left infralimbic cortex,the left olfactory cortex,the left cerebellum and the left pons.In the sham-point group,the activated regions were similar to those in the ST36 group.However,the ST36 group showed greater activation in the cerebellum and pons than the sham-point group.These findings suggest that long-term acupuncture treatment has targeted regulatory effects on multiple brain regions in rats with Alzheimer's disease.展开更多
Cognitive decline is a feature of normal and pathological aging. As the proportion of the global aged population continues to grow, it is imperative to understand the molecular and cellular substrates of cognitive agi...Cognitive decline is a feature of normal and pathological aging. As the proportion of the global aged population continues to grow, it is imperative to understand the molecular and cellular substrates of cognitive aging for therapeutic discovery. This review focuses on the critical role of neural extracellular matrix in the regulation of neuroplasticity underlying learning and memory in another under-investigated "critical period": the aging process. The fascinating ideas of neural extracellular matrix forming a synaptic cradle in the tetrapartite synapse and possibly serving as a substrate for storage of very long-term memories will be introduced. We emphasize the distinct functional roles of diffusive neural extracellular matrix and perineuronal nets and the advantage of the coexistence of two structures for the adaptation to the ever-changing external and internal environments. Our study of striatal neural extracellular matrix supports the idea that chondroitin sulfate proteoglycan-associated extracellular matrix is restrictive on synaptic neuroplasticity, which plays important functional and pathogenic roles in early postnatal synaptic consolidation and aging-related cognitive decline. Therefore, the chondroitin sulfate proteoglycan-associated neural extracellular matrix can be targeted for normal and pathological aging. Future studies should focus on the cell-type specificity of neural extracellular matrix to identify the endogenous, druggable targets to restore juvenile neuroplasticity and confer a therapeutic benefit to neural circuits affected by aging.展开更多
基金supported by the Beijing Natural Science Foundation(4164097)the Chinese Postdoctoral Science Foundation(2016M591226)
文摘A new long term integration algorithm is proposed forhigh-dynamic targets, which can resolve the problems of spectrumspread, frequency walk and pseudorandom noise (PRN)code phase curvature caused by the motion of targets. This algorithmfirst applies a keystone transform based improved discretepolynomial-phase transform (KT-IDPT) to estimate the Dopplerchirp rate. Then, based on the estimated Doppler chirp rate,dechirping and envelope translation are performed on the partialcorrelation results to correct the spectrum spread and the codephase curvature. The simulation results demonstrate that the proposedmethod has low integration loss and computational burden.
基金supported by the National Basic Research Program of China(973 Program),No.2006CB504505,2012CB518504the National Natural Science Foundation of China,No.90709027+1 种基金the Student's Platform for Innovation and Entrepreneurship Training Program of Southern Medical University of China,No.201512121165the Doctoral Foundation of Guangdong Medical University of China,No.2XB13058
文摘The acute effect of acupuncture on Alzheimer's disease,i.e.,on brain activation during treatment,has been reported.However,the effect of long-term acupuncture on brain activation in Alzheimer's disease is unclear.Therefore,in this study,we performed long-term needling at Zusanli(ST36)or a sham point(1.5 mm lateral to ST36)in a rat Alzheimer's disease model,for 30 minutes,once per day,for 30 days.The rats underwent 18F-fluorodeoxyglucose positron emission tomography scanning.Positron emission tomography images were processed with SPM2.The brain areas activated after needling at ST36 included the left hippocampus,the left orbital cortex,the left infralimbic cortex,the left olfactory cortex,the left cerebellum and the left pons.In the sham-point group,the activated regions were similar to those in the ST36 group.However,the ST36 group showed greater activation in the cerebellum and pons than the sham-point group.These findings suggest that long-term acupuncture treatment has targeted regulatory effects on multiple brain regions in rats with Alzheimer's disease.
基金supported in part by National Alliance for Research on Schizophrenia & Depression(NARSAD)Young Investigator Grant from Brain Behavorial Research Foundation,No.21365(to XHL)Ike Muslow Predoctoral Fellowship from Louisiana State University Health Sciences Center-Shreveport(to ADR)
文摘Cognitive decline is a feature of normal and pathological aging. As the proportion of the global aged population continues to grow, it is imperative to understand the molecular and cellular substrates of cognitive aging for therapeutic discovery. This review focuses on the critical role of neural extracellular matrix in the regulation of neuroplasticity underlying learning and memory in another under-investigated "critical period": the aging process. The fascinating ideas of neural extracellular matrix forming a synaptic cradle in the tetrapartite synapse and possibly serving as a substrate for storage of very long-term memories will be introduced. We emphasize the distinct functional roles of diffusive neural extracellular matrix and perineuronal nets and the advantage of the coexistence of two structures for the adaptation to the ever-changing external and internal environments. Our study of striatal neural extracellular matrix supports the idea that chondroitin sulfate proteoglycan-associated extracellular matrix is restrictive on synaptic neuroplasticity, which plays important functional and pathogenic roles in early postnatal synaptic consolidation and aging-related cognitive decline. Therefore, the chondroitin sulfate proteoglycan-associated neural extracellular matrix can be targeted for normal and pathological aging. Future studies should focus on the cell-type specificity of neural extracellular matrix to identify the endogenous, druggable targets to restore juvenile neuroplasticity and confer a therapeutic benefit to neural circuits affected by aging.