In this paper, we deal with the existence and multiplicity of positive solutions for the quasilinear elliptic problem -△pu-∑i=1^kμi|u|^p-2/|x-ai|p^u=|u|^p^*-2u+λ|u|^q-2u,x∈Ω,where Ω belong to R^N(N ...In this paper, we deal with the existence and multiplicity of positive solutions for the quasilinear elliptic problem -△pu-∑i=1^kμi|u|^p-2/|x-ai|p^u=|u|^p^*-2u+λ|u|^q-2u,x∈Ω,where Ω belong to R^N(N ≥ 3) is a smooth bounded domain such that the different points ai∈Ω,i= 1,2,...,k,0≤μi〈μ^-=(N-p/p)^p,λ〉0,1≤q〈p,and p^*=p^N/N-p.The results depend crucially cn the parameters λ,q and μi for i=1,2,...,k.展开更多
In this paper,we study the blow-up of solutions to a semi-linear wave equation with a nonlinear memory term of derivative type.By using methods of an iteration argument and di erential inequalities,we obtain the blow-...In this paper,we study the blow-up of solutions to a semi-linear wave equation with a nonlinear memory term of derivative type.By using methods of an iteration argument and di erential inequalities,we obtain the blow-up result for the semi-linear wave equation when the exponent of p is under certain conditions.Meanwhile,we derive an upper bound of the lifespan of solutions to the Cauchy problem for the semi-linear wave equation.展开更多
In this paper,a class of Kirchhoff type equations in R^(N)(N≥3)with zero mass and a critical term is studied.Under some appropriate conditions,the existence of multiple solutions is obtained by using variational meth...In this paper,a class of Kirchhoff type equations in R^(N)(N≥3)with zero mass and a critical term is studied.Under some appropriate conditions,the existence of multiple solutions is obtained by using variational methods and a variant of Symmetric Mountain Pass theorem.The Second Concentration Compactness lemma is used to overcome the lack of compactness in critical problem.Compared to the usual Kirchhoff-type problems,we only require the nonlinearity to satisfy the classical superquadratic condition(Ambrosetti-Rabinowitz condition).展开更多
In this paper we analyze the qualitative behaviour of the equation ε+q(X) +εX=bp(t), where e is a small parameter.We divide the interval of parameter b into four sets of subintervals,A, B,C and D.For bA,B or D,we di...In this paper we analyze the qualitative behaviour of the equation ε+q(X) +εX=bp(t), where e is a small parameter.We divide the interval of parameter b into four sets of subintervals,A, B,C and D.For bA,B or D,we discuss the different structures of the attractors of the equation and their stabilities.When chaotic phenomena appear,we also estimate the entropy.For bC,the set of bifurcation intervals,we analyze the bifurcating type and get a series of consequences from the results of Newhouse and Palis.展开更多
文摘In this paper, we deal with the existence and multiplicity of positive solutions for the quasilinear elliptic problem -△pu-∑i=1^kμi|u|^p-2/|x-ai|p^u=|u|^p^*-2u+λ|u|^q-2u,x∈Ω,where Ω belong to R^N(N ≥ 3) is a smooth bounded domain such that the different points ai∈Ω,i= 1,2,...,k,0≤μi〈μ^-=(N-p/p)^p,λ〉0,1≤q〈p,and p^*=p^N/N-p.The results depend crucially cn the parameters λ,q and μi for i=1,2,...,k.
基金Supported by the Natural Science Foundation of China(Grant No.11371175)Innovation Team Project in Colleges and Universities of Guangdong Province(Grant No.2020WCXTD008)+1 种基金Science Foundation of Huashang College Guangdong University of Finance&Economics(Grant No.2020HSDS01)Science Research Team Project in Guangzhou Huashang College(Grant No.2021HSKT01).
文摘In this paper,we study the blow-up of solutions to a semi-linear wave equation with a nonlinear memory term of derivative type.By using methods of an iteration argument and di erential inequalities,we obtain the blow-up result for the semi-linear wave equation when the exponent of p is under certain conditions.Meanwhile,we derive an upper bound of the lifespan of solutions to the Cauchy problem for the semi-linear wave equation.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.11701346,11671239,11801338)the Natural Science Foundation of Shanxi Province(Grant No.201801D211001)+1 种基金the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(Grant No.2019L0024)the Research Project Supported by Shanxi Scholarship Council of China(Grant No.2020-005).
文摘In this paper,a class of Kirchhoff type equations in R^(N)(N≥3)with zero mass and a critical term is studied.Under some appropriate conditions,the existence of multiple solutions is obtained by using variational methods and a variant of Symmetric Mountain Pass theorem.The Second Concentration Compactness lemma is used to overcome the lack of compactness in critical problem.Compared to the usual Kirchhoff-type problems,we only require the nonlinearity to satisfy the classical superquadratic condition(Ambrosetti-Rabinowitz condition).
文摘In this paper we analyze the qualitative behaviour of the equation ε+q(X) +εX=bp(t), where e is a small parameter.We divide the interval of parameter b into four sets of subintervals,A, B,C and D.For bA,B or D,we discuss the different structures of the attractors of the equation and their stabilities.When chaotic phenomena appear,we also estimate the entropy.For bC,the set of bifurcation intervals,we analyze the bifurcating type and get a series of consequences from the results of Newhouse and Palis.