期刊文献+
共找到657篇文章
< 1 2 33 >
每页显示 20 50 100
ART-2 neural network based on eternal term memory vector:Architecture and algorithm
1
作者 赵学智 叶邦彦 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2009年第6期843-848,共6页
Aimed at the problem that the traditional ART-2 neural network can not recognize a gradually changing course, an eternal term memory (ETM) vector is introduced into ART-2 to simulate the function of human brain, i.e. ... Aimed at the problem that the traditional ART-2 neural network can not recognize a gradually changing course, an eternal term memory (ETM) vector is introduced into ART-2 to simulate the function of human brain, i.e. the deep remembrance for the initial impression.. The eternal term memory vector is determined only by the initial vector that establishes category neuron node and is used to keep the remembrance for this vector for ever. Two times of vigilance algorithm are put forward, and the posterior input vector must first pass the first vigilance of this eternal term memory vector, only succeeded has it the qualification to begin the second vigilance of long term memory vector. The long term memory vector can be revised only when both of the vigilances are passed. Results of recognition examples show that the improved ART-2 overcomes the defect of traditional ART-2 and can recognize a gradually changing course effectively. 展开更多
关键词 ART-2 neural network eternal term memory vector two times of vigilance gradually changing course pattern recognition
下载PDF
Long Term Load Forecasting and Recommendations for China Based on Support Vector Regression
2
作者 Shijie Ye Guangfu Zhu Zhi Xiao 《Energy and Power Engineering》 2012年第5期380-385,共6页
Long-term load forecasting (LTLF) is a challenging task because of the complex relationships between load and factors affecting load. However, it is crucial for the economic growth of fast developing countries like Ch... Long-term load forecasting (LTLF) is a challenging task because of the complex relationships between load and factors affecting load. However, it is crucial for the economic growth of fast developing countries like China as the growth rate of gross domestic product (GDP) is expected to be 7.5%, according to China’s 11th Five-Year Plan (2006-2010). In this paper, LTLF with an economic factor, GDP, is implemented. A support vector regression (SVR) is applied as the training algorithm to obtain the nonlinear relationship between load and the economic factor GDP to improve the accuracy of forecasting. 展开更多
关键词 LONG term LOAD Forecasting Support vector Regression China
下载PDF
State of Health Estimation of Lithium-Ion Batteries Using Support Vector Regression and Long Short-Term Memory
3
作者 Inioluwa Obisakin Chikodinaka Vanessa Ekeanyanwu 《Open Journal of Applied Sciences》 CAS 2022年第8期1366-1382,共17页
Lithium-ion batteries are the most widely accepted type of battery in the electric vehicle industry because of some of their positive inherent characteristics. However, the safety problems associated with inaccurate e... Lithium-ion batteries are the most widely accepted type of battery in the electric vehicle industry because of some of their positive inherent characteristics. However, the safety problems associated with inaccurate estimation and prediction of the state of health of these batteries have attracted wide attention due to the adverse negative effect on vehicle safety. In this paper, both machine and deep learning models were used to estimate the state of health of lithium-ion batteries. The paper introduces the definition of battery health status and its importance in the electric vehicle industry. Based on the data preprocessing and visualization analysis, three features related to actual battery capacity degradation are extracted from the data. Two learning models, SVR and LSTM were employed for the state of health estimation and their respective results are compared in this paper. The mean square error and coefficient of determination were the two metrics for the performance evaluation of the models. The experimental results indicate that both models have high estimation results. However, the metrics indicated that the SVR was the overall best model. 展开更多
关键词 Support vector Regression (SVR) Long Short-term Memory (LSTM) Network State of Health (SOH) Estimation
下载PDF
改进黑猩猩算法的光伏发电功率短期预测 被引量:2
4
作者 谢国民 陈天香 《电力系统及其自动化学报》 CSCD 北大核心 2024年第2期135-143,共9页
针对晴空、非晴空条件下光伏出力预测精度不高等问题,提出一种改进K均值(K-means++)算法和黑猩猩优化算法CHOA(chimpanzee optimization algorithm)相结合,优化最小二乘支持向量机LSSVM(least squares support vector machine)的模型,... 针对晴空、非晴空条件下光伏出力预测精度不高等问题,提出一种改进K均值(K-means++)算法和黑猩猩优化算法CHOA(chimpanzee optimization algorithm)相结合,优化最小二乘支持向量机LSSVM(least squares support vector machine)的模型,进行光伏功率预测。首先,利用密度聚类和混合评价函数改进K-means++对原始数据进行自适应类别划分。其次,通过相关性分析和随机森林特征提取构建模型的输入特征集。最后,根据特征集建立基于DK-PCHOA-LSSVM的短期光伏发电预测模型。结合实际算例,结果表明:该模型在恶劣天气下预测精度明显优于其他模型,验证了其有效性和优越性。 展开更多
关键词 光伏功率短期预测 自适应聚类 最小二乘支持向量机 黑猩猩优化算法 极端天气
下载PDF
基于矢量量化IFTS的网络流量预测模型
5
作者 周志强 杨雪青 《计算机应用与软件》 北大核心 2024年第1期71-77,88,共8页
针对传统网络流量预测模型存在的局限性,提出一种基于矢量量化直觉模糊时间序列的网络流量预测模型。利用模糊直觉推理有效地表述了网络流量数据中存在的高度模糊性以及不确定性,利用直觉模糊时间序列矢量距离作为评估标准,并且通过坐... 针对传统网络流量预测模型存在的局限性,提出一种基于矢量量化直觉模糊时间序列的网络流量预测模型。利用模糊直觉推理有效地表述了网络流量数据中存在的高度模糊性以及不确定性,利用直觉模糊时间序列矢量距离作为评估标准,并且通过坐标平移与质心进行匹配,提升不同时间序列段的分类能力,从而有效地建立网络流量预测模型。通过实验分析可知,提出的预测模型能够提升预测精度并且减少计算复杂度,另外该算法有能力长期预测多个输出。 展开更多
关键词 直觉模糊时间序列 矢量量化 网络流量 长期预测
下载PDF
基于改进LSTM-SVM的双向DC-DC电力变换器故障诊断
6
作者 王福忠 任淯琳 +1 位作者 张丽 王丹 《河南理工大学学报(自然科学版)》 CAS 北大核心 2024年第5期118-126,共9页
目的为了解决双向DC-DC电力变换器的软故障诊断精度不高的问题,方法提出基于改进LSTM-SVM的双向DC-DC电力变换器故障诊断模型。首先,分析双向DC-DC电力变换器中电容、电感和MOSFET管的故障机理,通过仿真实验模拟各元件失效后变换器的输... 目的为了解决双向DC-DC电力变换器的软故障诊断精度不高的问题,方法提出基于改进LSTM-SVM的双向DC-DC电力变换器故障诊断模型。首先,分析双向DC-DC电力变换器中电容、电感和MOSFET管的故障机理,通过仿真实验模拟各元件失效后变换器的输出电气参数变化,从而确定变换器不同元件故障时对应的故障特征参数;其次,构建改进的LSTM-SVM双向DC-DC电力变换器故障诊断组合模型,在LSTM中添加Mogrifier门机制,提高LSTM提取时间序列原始数据中微弱特征的能力;最后,由于传统LSTM的末端分类器为Softmax,其主要解决单一元件诊断问题,变换器故障类型较多,维数较高,所以采用麻雀搜索算法优化的SVM代替原有的Softmax函数,对LSTM输出的数据进行故障分类,提高故障诊断的准确率。设置双向DC-DC电力变换器充放电两种状态下,包含电解电容、电感和MOSFET单双管故障在内的24组故障,分别采用本文构建的改进的LSTM-SVM和原始的LSTM-SVM双向DC-DC变换器故障诊断模型进行诊断。结果结果表明,改进的LSTM-SVM故障诊断模型诊断准确率平均值为99.71%,原始的LSTM-SVM故障诊断模型诊断准确率平均值为88.48%,改进的LSTM-SVM故障诊断模型对各元件的故障诊断正确率均高于原始的LSTM-SVM故障诊断模型的。结论基于改进LSTM-SVM的双向DC-DC电力变换器故障诊断模型实现了对双向DC-DC电力变换器中的电解电容、电感和MOSFET单双管故障的准确诊断。 展开更多
关键词 双向DC-DC变换器 软故障 改进长短期记忆网络 麻雀搜索 支持向量机 故障诊断
下载PDF
基于多特征提取与灰狼算法优化SVM的车内异响识别方法
7
作者 王若平 陈严 +2 位作者 王东 梁博洋 曾发林 《计算机应用与软件》 北大核心 2024年第3期41-48,共8页
传统的异响识别方法对测试设备要求较高且易受实验员经验差异影响。针对这种情况,提出一种基于多特征提取与灰狼算法优化支持向量机(Support Vector Machine,SVM)的车内异响识别方法。该方法以采集实验获得的6种车内常见异响作为研究对... 传统的异响识别方法对测试设备要求较高且易受实验员经验差异影响。针对这种情况,提出一种基于多特征提取与灰狼算法优化支持向量机(Support Vector Machine,SVM)的车内异响识别方法。该方法以采集实验获得的6种车内常见异响作为研究对象,提取短时能量、小波变换优化的梅尔频率倒谱系数(DWT-MFCC)及其一阶差分组成混合特征参数,将灰狼优化算法应用于SVM的参数寻优中,建立异响识别模型并进行识别分类,同时探究选用不同维度的特征或不同算法对识别效果的影响。结果表明,所提取的25维混合特征能有效传达异响信息,该方法在收敛速度与识别准确率方面优势明显,能更好地实现车内异响的识别。 展开更多
关键词 车内异响识别 短时能量 DWT-MFCC 灰狼优化算法 支持向量机
下载PDF
低资源条件下基于i-vector特征的LSTM递归神经网络语音识别系统 被引量:21
8
作者 黄光许 田垚 +2 位作者 康健 刘加 夏善红 《计算机应用研究》 CSCD 北大核心 2017年第2期392-396,共5页
在低资源条件下,由于带标注训练数据较少,搭建的语音识别系统性能往往不甚理想。针对此问题,首先在声学模型上研究了长短时记忆(LSTM)递归神经网络,通过对长序列进行建模来充分挖掘上下文信息,并且引入线性投影层减小模型参数;然后研究... 在低资源条件下,由于带标注训练数据较少,搭建的语音识别系统性能往往不甚理想。针对此问题,首先在声学模型上研究了长短时记忆(LSTM)递归神经网络,通过对长序列进行建模来充分挖掘上下文信息,并且引入线性投影层减小模型参数;然后研究了在特征空间中对说话人进行建模的技术,提取出能有效反映说话人和信道信息的身份认证矢量(i-vector);最后将上述研究结合构建了基于i-vector特征的LSTM递归神经网络系统。在Open KWS 2013标准数据集上进行实验,结果表明该技术相比于深度神经网络基线系统有相对10%的字节错误率降低。 展开更多
关键词 语音识别 长短时记忆神经网络 身份认证矢量
下载PDF
基于BiLSTM-LSSVM的螺杆转子铣削加工廓形预测
9
作者 李佳 孙兴伟 +3 位作者 赵泓荀 穆士博 刘寅 杨赫然 《组合机床与自动化加工技术》 北大核心 2024年第9期153-156,162,共5页
针对螺杆转子盘铣刀加工过程中的轮廓预测问题,提出了基于双向长短时神经网络-最小二乘支持向量机(BiLSTM-LSSVM)的螺杆廓形预测方法。首先,对加工过程中的振动信号进行采集并进行降噪预处理,降噪后的信号进行降采样处理随后输入BiLSTM... 针对螺杆转子盘铣刀加工过程中的轮廓预测问题,提出了基于双向长短时神经网络-最小二乘支持向量机(BiLSTM-LSSVM)的螺杆廓形预测方法。首先,对加工过程中的振动信号进行采集并进行降噪预处理,降噪后的信号进行降采样处理随后输入BiLSTM中进行时序预测;其次,对时序预测后的信号进行特征提取,将提取后的特征向量输入LSSVM进行廓形预测;最后,以五头螺杆为例通过正交实验对BiLSTM-LSSVM模型进行试验验证,并对预测廓形进行误差补偿实验。实验结果表明,提出的基于BiLSTM-LSSVM的螺杆廓形预测模型可对螺杆转子盘铣刀加工螺杆廓形进行准确预测,进而为螺杆转子加工廓形补偿提供支持。 展开更多
关键词 螺杆转子 长短时神经网络 最小二乘支持向量机 廓形预测
下载PDF
融合MIC与Res-LSTM模型的有效波高预测
10
作者 朱道恒 李彦 +1 位作者 李志强 刘润 《热带海洋学报》 CAS CSCD 北大核心 2024年第4期76-85,共10页
有效波高(significant wave height,SWH)的预测在海洋运输和海上活动方面发挥着重要作用。基于中国阳江海陵岛近岸实测数据,提出一种融合最大信息系数(maximal information coefficient,MIC)、残差网络(residual network,ResNet)和长短... 有效波高(significant wave height,SWH)的预测在海洋运输和海上活动方面发挥着重要作用。基于中国阳江海陵岛近岸实测数据,提出一种融合最大信息系数(maximal information coefficient,MIC)、残差网络(residual network,ResNet)和长短期记忆网络(long short-term memory networks,LSTM)的预测模型。首先,采用MIC算法从数据集中筛选出与预测指标相关性高的参数作为模型的输入;然后将ResNet引入LSTM中,构建Res-LSTM预测模型;最后选择相关系数(r-squared,R2)、均方根差(root mean squared error,RMSE)、平均绝对误差(mean absolute error,MAE)和平均绝对百分比误差(mean absolute percentage error,MAPE)来评价预测结果。同时,对比了XGBoost(extreme gradient boosting)、SVR(support vector regression)和LSTM网络的预测效果。结果表明,MIC-Res-LSTM模型能够提高短时有效波高预测值的精度。 展开更多
关键词 波高预测 最大信息系数 残差网络 长短期记忆网络 支持向量回归
下载PDF
瑞利参数在海浪波高机器学习预测中的应用
11
作者 胡明浩 谢玲玲 +1 位作者 李明明 梁朋 《海洋与湖沼》 CAS CSCD 北大核心 2024年第2期318-331,共14页
海浪直接影响海上活动和航行安全,同时也蕴藏着巨大的可再生能源,对海浪核心参数之一波高预测至关重要。基于2015年7月~2022年6月山东小麦岛(36°N,120.6°E)站点实测的波高数据,利用反向传播神经网络(back-propagation neural ... 海浪直接影响海上活动和航行安全,同时也蕴藏着巨大的可再生能源,对海浪核心参数之一波高预测至关重要。基于2015年7月~2022年6月山东小麦岛(36°N,120.6°E)站点实测的波高数据,利用反向传播神经网络(back-propagation neural network,BPNN)、长短记忆网络(long short-term memory,LSTM)和支持向量机回归(support vector regression,SVR)三种机器学习模型对波高进行预测,并分析了瑞利参数的引入对预测结果的影响。结果显示,模型输入项引入瑞利参数后,对1 h和6 h波高预测提升效果有限,预测值与测试集的相关性提升不超过0.02,均方根误差的降低不超过0.01 m;在12h和24h的预测中,BPNN和LSTM模型预测结果相关性提升0.03~0.07,均方根误差降低0.02~0.03m,而SVR模型预测结果变化不显著。说明瑞利参数有助改善BPNN和LSTM模型中长期海浪预报。此外,特征扰动方法(机器学习中特征重要性的计算方法之一)验证了瑞利参数在波高预测中的重要性,瑞利参数的引入为波高的机器学习预测提供了新思路。 展开更多
关键词 波高 反向传播神经网络 长短记忆网络 支持向量机 机器学习 瑞利参数
下载PDF
随机森林优化的静动态耦合模型在滑坡位移预测中的应用
12
作者 蒋宏伟 刘健鹏 +2 位作者 王新杰 陈春红 刘惠 《常州大学学报(自然科学版)》 CAS 2024年第3期80-92,共13页
以重庆市奉节县生基包滑坡为例,首先采用静态的支持向量回归(SVR)机器学习算法和动态的长短期记忆神经网络(LSTM)机器学习算法对滑坡位移进行预测;其次引入随机森林(RF)算法,在输入因素筛选的基础上,对SVR模型和LSTM模型的预测结果进行... 以重庆市奉节县生基包滑坡为例,首先采用静态的支持向量回归(SVR)机器学习算法和动态的长短期记忆神经网络(LSTM)机器学习算法对滑坡位移进行预测;其次引入随机森林(RF)算法,在输入因素筛选的基础上,对SVR模型和LSTM模型的预测结果进行更优解分类预测;最后通过RF模型输出概率值,对静动态耦合模型(SVR-LSTM)进行权重赋值,得到RF优化的SVR-LSTM滑坡位移预测模型。结果表明LSTM模型预测整体优于SVR模型,RF优化的SVR-LSTM滑坡位移预测模型集成了静态SVR与动态LSTM预测模型的优势,其预测性能与单一的SVR模型和LSTM模型相比更优。研究提供了一种滑坡位移预测模型集成的思路,为三峡库区的地质灾害预测预报提供借鉴和参考。 展开更多
关键词 滑坡位移预测 随机森林 长短期记忆神经网络 支持向量回归 算法集成
下载PDF
考虑分时电价和充电利用率特征的大型电动汽车充电站负荷短期预测方法
13
作者 王长春 王果 +1 位作者 赵倩宇 王守相 《南方电网技术》 CSCD 北大核心 2024年第5期75-84,共10页
考虑分时电价和充电利用率特征对电动汽车充电站负荷的影响,提出了融合长短记忆网络和支持向量回归(long short-term memory-support vector regression,LSTM-SVR)的大型电动汽车充电站负荷短期预测方法。首先,建立了分时电价、充电利... 考虑分时电价和充电利用率特征对电动汽车充电站负荷的影响,提出了融合长短记忆网络和支持向量回归(long short-term memory-support vector regression,LSTM-SVR)的大型电动汽车充电站负荷短期预测方法。首先,建立了分时电价、充电利用率、气象信息等影响充电负荷的因素以及历史充电负荷功率数据作为输入的特征矩阵。其次,运用自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)方法将包含分时电价和充电利用率的特征矩阵序列进行分解,扩充了数据多样性,并采用组合相关系数方法实现了数据降维和特征选择。然后采用北方苍鹰优化(northern goshawk optimization,NGO)算法分别优化LSTM和SVR的超参数,求解权重系数并构建融合LSTM-SVR模型。最后采用某城市一座大型充电站数据进行验证,对比实验表明,考虑分时电价和充电利用率特征可有效提高电动汽车充电站负荷预测精度8%以上,同时采用所提出的融合LSTM-SVR预测方法能使预测精度进一步提高。 展开更多
关键词 短期负荷预测 电动汽车充电站 充电利用率 分时电价 长短期记忆网络 支持向量回归 自适应噪声完备经验模态分解
下载PDF
基于间接健康特征优化与多模型融合的锂电池SOH-RUL联合预测
14
作者 蔡雨思 李泽文 +2 位作者 刘萍 夏向阳 王文 《电工技术学报》 EI CSCD 北大核心 2024年第18期5883-5898,共16页
准确预测锂电池健康状态(SOH)与电池剩余使用寿命(RUL)对提高电池安全性能具有重要意义。而当前针对SOH和RUL的预测,存在着间接健康特征选取困难,以及使用数据驱动方法缺乏不确定性表达的问题。为此,该文提出一种基于间接健康特征优化... 准确预测锂电池健康状态(SOH)与电池剩余使用寿命(RUL)对提高电池安全性能具有重要意义。而当前针对SOH和RUL的预测,存在着间接健康特征选取困难,以及使用数据驱动方法缺乏不确定性表达的问题。为此,该文提出一种基于间接健康特征优化与多模型融合的锂电池SOH-RUL联合预测方法。首先从充电电压曲线中采集多个健康特征,并通过特征并行融合方法和注意力机制进行优化处理得到间接健康特征(IHF)。然后引入贝叶斯模型平均(BMA)方法来解决预测过程中的不确定性问题,将其与支持向量回归(SVR)和长短期记忆神经网络(LSTM)相结合,构建SVR-BMA融合模型和LSTM-BMA融合模型,并分别进行SOH和RUL预测;通过自适应噪声完备集合经验模态分解(CEEMDAN)方法从SOH预测阶段的容量预测结果中提取出RUL预测的输入特征,以实现SOH和RUL的联合预测。最后利用CALCE数据集进行性能测试,实验结果表明,所提方法能有效提高SOH和RUL预测的准确性和可靠性。 展开更多
关键词 电池健康状态 剩余使用寿命 间接健康特征 贝叶斯模型平均 支持向量回归 长短期记忆神经网络
下载PDF
基于多目标回归的空调负荷预测方法
15
作者 丛琳 张勇 《江苏大学学报(自然科学版)》 CAS 北大核心 2024年第4期470-475,共6页
针对空调为二次泵变流量系统时,考虑分区域供冷工况下,采用多目标回归方式解决负荷预测问题将有利于提高负荷预测准确性的情况,提出了两种多目标回归的中央空调负荷预测模型,即多目标支持向量回归(support vector regression,SVR)负荷... 针对空调为二次泵变流量系统时,考虑分区域供冷工况下,采用多目标回归方式解决负荷预测问题将有利于提高负荷预测准确性的情况,提出了两种多目标回归的中央空调负荷预测模型,即多目标支持向量回归(support vector regression,SVR)负荷预测模型和多目标长短期记忆(long short term memory,LSTM)神经网络负荷预测模型,利用上海市某医院的二次泵变流量系统数据对两个模型进行训练和预测,并与单目标回归预测模型进行比较.研究结果表明:相较单目标回归预测模型,两种多目标预测模型的预测精度更高;多目标SVR负荷预测模型较多目标LSTM负荷预测模型的预测准确性更高. 展开更多
关键词 空调系统 负荷预测 多输出 支持向量机回归 长短期记忆神经网络
下载PDF
自发电式轨道车辆轴箱温度预测方法研究
16
作者 关博 陈威 +2 位作者 彭乐乐 丁亚琦 郑树彬 《计算机与数字工程》 2024年第5期1541-1545,共5页
针对上海地铁所采用的自发电式轴温监测系统中的轴箱温度预测问题,通过长短时记忆网络(LSTM)、BP神经网络以及支持向量回归机(SVR)三种预测方法进行轴箱温度预测并将结果进行对比分析。最后,利用实测数据,对各方法的预测结果进行对比,... 针对上海地铁所采用的自发电式轴温监测系统中的轴箱温度预测问题,通过长短时记忆网络(LSTM)、BP神经网络以及支持向量回归机(SVR)三种预测方法进行轴箱温度预测并将结果进行对比分析。最后,利用实测数据,对各方法的预测结果进行对比,结果表明,SVR的预测结果均优于其他预测方法,且预测精度可达到98.59%。 展开更多
关键词 轴箱温度预测 长短时记忆网络 BP神经网络 支持向量回归机
下载PDF
基于混合深度学习的短期风电预测研究
17
作者 余铮 金波 +2 位作者 焦尧毅 陈璞 陈家璘 《武汉理工大学学报(信息与管理工程版)》 CAS 2024年第1期170-174,共5页
针对现有风电预测精度低的问题,提出了一种基于IEMD和混合深度学习模型的超短期风力发电预测模型。首先,提出基于IEMD对原始风电数据进行分解,从而分解出电力高频、中频、低频及其趋势特征。其次,基于最小二乘支持向量机对电力中频、低... 针对现有风电预测精度低的问题,提出了一种基于IEMD和混合深度学习模型的超短期风力发电预测模型。首先,提出基于IEMD对原始风电数据进行分解,从而分解出电力高频、中频、低频及其趋势特征。其次,基于最小二乘支持向量机对电力中频、低频及其趋势特征进行预测,并基于LSTM网络预测风电高频特征。最后,根据特征叠加规则,获得最终预测结果。实验阶段,以中国某电力公司发布的风电数据集进行实验,所提模型MAPE、MAE、RMSE等指标更优,实验结果验证了所提模型的可行性和有效性。该模型为混合智能电网智能化服务以及新能源调度规划的应用发展提供了一定借鉴作用。 展开更多
关键词 智能电网 风电预测 数据分解 特征提取 长短时记忆网络 支持向量机
下载PDF
饱和非线性光学介质中带折射率项的薛定谔方程的数值模拟
18
作者 张静娴 孙建强 杨斯淇 《海南大学学报(自然科学版)》 CAS 2024年第2期121-129,共9页
首先将带折射率项的非线性薛定谔方程转化成无限维哈密尔顿系统,证明了方程的质量和能量守恒特性;再利用傅里叶拟谱方法和平均向量场方法离散方程,对离散格式中非积分项采用Boole离散进行线积分近似,得到了离散方程的能量守恒数值格式,... 首先将带折射率项的非线性薛定谔方程转化成无限维哈密尔顿系统,证明了方程的质量和能量守恒特性;再利用傅里叶拟谱方法和平均向量场方法离散方程,对离散格式中非积分项采用Boole离散进行线积分近似,得到了离散方程的能量守恒数值格式,同时给出了方程的辛格式;然后以不同振幅的入射双曲正割型光脉冲为初值条件,模拟了保能量格式和辛格式在不同参数条件下光孤子的演化过程.最后分析了不同初始光脉冲和参数对光孤子传输的影响和保方程质量和能量守恒特性. 展开更多
关键词 带折射率项的薛定谔方程 光孤子传输 哈密尔顿系统 平均向量场方法
下载PDF
逻辑回归优化的静—动态耦合模型在滑坡位移预测中的应用
19
作者 周浩 朱平华 +2 位作者 蒋宏伟 俞宏艳 沈心怡 《资源环境与工程》 2024年第4期446-456,共11页
滑坡位移的准确预测是滑坡预警系统的重要组成部分。本研究提出一种基于逻辑回归优化的静—动态耦合滑坡位移预测模型,以应对滑坡演化的动态特性体现在传统静态预测模型中的不足。以八字门滑坡为案例进行研究,首先采用移动平均法将累积... 滑坡位移的准确预测是滑坡预警系统的重要组成部分。本研究提出一种基于逻辑回归优化的静—动态耦合滑坡位移预测模型,以应对滑坡演化的动态特性体现在传统静态预测模型中的不足。以八字门滑坡为案例进行研究,首先采用移动平均法将累积位移分解为趋势项和周期项两个部分,随后采用静态机器学习算法——支持向量回归(SVR)和动态机器学习算法——长短期记忆神经网络(LSTM)来预测滑坡位移;其次,通过引入逻辑回归分类算法(LR),在原输入因子的基础上进行筛选,对SVR模型和LSTM模型的预测结果进行分类计算;最后,通过逻辑回归模型的输出,更新静动态耦合模型的结果,得到优化的SVR-LSTM滑坡位移预测模型。结果显示,优化后的模型相较于SVR模型和LSTM模型,其RMSE和MAPE分别降低了5.93 mm、0.28%和0.71 mm、0.03%。集成模型融合了静态(SVR)和动态(LSTM)模型的优势,其预测性能优于单一的SVR模型和LSTM模型。本研究为滑坡位移预测模型提供了一种新思路,可以为三峡库区的地质灾害预测提供参考。 展开更多
关键词 八字门滑坡 滑坡位移预测 逻辑回归 支持向量回归 长短时记忆神经网络 集成算法
下载PDF
基于SMA-SVR模型的城市道路短时交通流预测
20
作者 岳鑫鑫 常山 +2 位作者 马露 于敏 韩意 《安顺学院学报》 2024年第3期131-136,共6页
短时交通流预测是动态交通控制与管理领域的关键问题之一。由于不确定性和非线性的存在,短时交通流预测仍然是一项具有挑战性的任务。为了提高短时交通流预测的准确性,通过提出一种基于黏菌算法(Slime Mould Algorithm,SMA)优化的支持... 短时交通流预测是动态交通控制与管理领域的关键问题之一。由于不确定性和非线性的存在,短时交通流预测仍然是一项具有挑战性的任务。为了提高短时交通流预测的准确性,通过提出一种基于黏菌算法(Slime Mould Algorithm,SMA)优化的支持向量回归模型(Support Vector Regression,SVR)研究了短时交通流的预测。收集蚌埠市东海大道-曹山路交叉口工作日早晚高峰交通流量数据,利用SMA对SVR模型的惩罚参数和核函数参数进行高效寻优,建立SMA-SVR模型进行了案例验证。研究结果表明,相比于原始SVR模型以及基于粒子群优化算法和麻雀搜索算法的SVR模型,SMA-SVM模型预测精度是最高的,即R 2=0.97054,RMSE=47.7826,MAPE=7.1703%,并且迭代收敛速度也是最快的。可见,SMA-SVR模型能够较好地适配于城市道路的短时交通流预测。 展开更多
关键词 城市道路 短时交通流 支持向量回归模型 黏菌优化
下载PDF
上一页 1 2 33 下一页 到第
使用帮助 返回顶部