Based on robust control design method,a variable structure guidance method is proposed for autonomous underwater vehicle(AUV) during the guiding course with terminal impact angle constraint.Considering the intercept g...Based on robust control design method,a variable structure guidance method is proposed for autonomous underwater vehicle(AUV) during the guiding course with terminal impact angle constraint.Considering the intercept geometry,a sliding mode controller is proposed for controlling the hne of sight angle rate and the impact angle,based on the principle which controls the line of sight angle rate to approach zero and the terminal angle to approach the expected value more quickly as the distance decreases.Simulation results show that,with the application of the proposed method,small miss distance is achieved and the expected impact angle is reached.In addition,the system is robust to the target maneuvering.展开更多
To control missile's miss distance as well as terminal impact angle, by involving the timeto-go-nth power in the cost function, an extended optimal guidance law against a constant maneuvering target or a stationary t...To control missile's miss distance as well as terminal impact angle, by involving the timeto-go-nth power in the cost function, an extended optimal guidance law against a constant maneuvering target or a stationary target is proposed using the linear quadratic optimal control theory.An extended trajectory shaping guidance(ETSG) law is then proposed under the assumption that the missile-target relative velocity is constant and the line of sight angle is small. For a lag-free ETSG system, closed-form solutions for the missile's acceleration command are derived by the method of Schwartz inequality and linear simulations are performed to verify the closed-form results. Normalized adjoint systems for miss distance and terminal impact angle error are presented independently for stationary targets and constant maneuvering targets, respectively. Detailed discussions about the terminal misses and impact angle errors induced by terminal impact angle constraint, initial heading error, seeker zero position errors and target maneuvering, are performed.展开更多
基金supported by the National Natural Science Foundation of China(61431020,61571434)
文摘Based on robust control design method,a variable structure guidance method is proposed for autonomous underwater vehicle(AUV) during the guiding course with terminal impact angle constraint.Considering the intercept geometry,a sliding mode controller is proposed for controlling the hne of sight angle rate and the impact angle,based on the principle which controls the line of sight angle rate to approach zero and the terminal angle to approach the expected value more quickly as the distance decreases.Simulation results show that,with the application of the proposed method,small miss distance is achieved and the expected impact angle is reached.In addition,the system is robust to the target maneuvering.
基金co-supported by the National Natural Scienc Foundation of China (No. 61172182)
文摘To control missile's miss distance as well as terminal impact angle, by involving the timeto-go-nth power in the cost function, an extended optimal guidance law against a constant maneuvering target or a stationary target is proposed using the linear quadratic optimal control theory.An extended trajectory shaping guidance(ETSG) law is then proposed under the assumption that the missile-target relative velocity is constant and the line of sight angle is small. For a lag-free ETSG system, closed-form solutions for the missile's acceleration command are derived by the method of Schwartz inequality and linear simulations are performed to verify the closed-form results. Normalized adjoint systems for miss distance and terminal impact angle error are presented independently for stationary targets and constant maneuvering targets, respectively. Detailed discussions about the terminal misses and impact angle errors induced by terminal impact angle constraint, initial heading error, seeker zero position errors and target maneuvering, are performed.