This paper addresses the attitude tracking control problem of a rigid spacecraft in the presence of the modeling uncertainty,external disturbance,and saturated control input by designing two robust att计ude tracking c...This paper addresses the attitude tracking control problem of a rigid spacecraft in the presence of the modeling uncertainty,external disturbance,and saturated control input by designing two robust att计ude tracking controllers.The basic controller is formulated using an integral sliding mode surface which is continuous and provides an asymptotic convergence rate for the closed-loop system.In this case,only the external disturbance with the prior information is considered.Then,to provide a finite time convergence rate and further improve the robustness of the control system under the unknown system uncertainty containing both the modeling uncertainty and external disturbance,a novel integral terminal sliding mode surface(ITSMS)is designed and associated w计h the continuous adaptive control method.Besides,a command filter is utilized to deal with the immeasurability problem within the proposed ITSMS and an auxiliary system to counteract the input saturation problem.Digital simulations are presented to verify the effectiveness of the proposed controllers.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.61174037
文摘This paper addresses the attitude tracking control problem of a rigid spacecraft in the presence of the modeling uncertainty,external disturbance,and saturated control input by designing two robust att计ude tracking controllers.The basic controller is formulated using an integral sliding mode surface which is continuous and provides an asymptotic convergence rate for the closed-loop system.In this case,only the external disturbance with the prior information is considered.Then,to provide a finite time convergence rate and further improve the robustness of the control system under the unknown system uncertainty containing both the modeling uncertainty and external disturbance,a novel integral terminal sliding mode surface(ITSMS)is designed and associated w计h the continuous adaptive control method.Besides,a command filter is utilized to deal with the immeasurability problem within the proposed ITSMS and an auxiliary system to counteract the input saturation problem.Digital simulations are presented to verify the effectiveness of the proposed controllers.