The electrochemical methanol oxidation is a crucial reaction in the conversion of renewable energy.To enable the widespread adoption of direct methanol fuel cells(DMFCs),it is essential to create and engineer catalyst...The electrochemical methanol oxidation is a crucial reaction in the conversion of renewable energy.To enable the widespread adoption of direct methanol fuel cells(DMFCs),it is essential to create and engineer catalysts that are both highly effective and robust for conducting the methanol oxidation reaction(MOR).In this work,trimetallic PtCoRu electrocatalysts on nitrogen-doped carbon and multi-wall carbon nanotubes(PtCoRu@NC/MWCNTs)were prepared through a two-pot synthetic strategy.The acceleration of CO oxidation to CO_(2) and the blocking of CO reduction on adjacent Pt active sites were attributed to the crucial role played by cobalt atoms in the as-prepared electrocatalysts.The precise control of Co atoms loading was achieved through precursor stoichiometry.Various physicochemical techniques were employed to analyze the morphology,element composition,and electronic state of the catalyst.Electrochemical investigations and theoretical calculations confirmed that the Pt_(1)Co_(3)Ru_(1)@NC/MWCNTs exhibit excellent electrocatalytic performance and durability for the process of MOR.The enhanced MOR activity can be attributed to the synergistic effect between the multiple elements resulting from precisely controlled Co loading content on surface of the electrocatalyst,which facilitates efficient charge transfer.This interaction between the multiple components also modifies the electronic structures of active sites,thereby promoting the conversion of intermediates and accelerating the MOR process.Thus,achieving precise control over Co loading in PtCoRu@NC/MWCNTs would enable the development of high-performance catalysts for DMFCs.展开更多
A petal-like icosahedral quasicrystal with five branches,which is considered to be the representative morphology of the icosahedral quasicrystal,has been observed in the Y-rich Mg-Zn-Y ternary alloys. Moreover,the pol...A petal-like icosahedral quasicrystal with five branches,which is considered to be the representative morphology of the icosahedral quasicrystal,has been observed in the Y-rich Mg-Zn-Y ternary alloys. Moreover,the polygon-like morphology,another pattern of the icosahedral quasicrystal,has also been found in the Y-rich Mg-Zn-Y ternary alloys. The latter morphology results from the evolution of the former one. The growth mechanism of the petal-like morphology of the icosahedral quasicrystal was also discussed. Alloying composition,i.e.,Y element content,is a major factor inducing the morphology evolution of the icosahedral quasicrystal.展开更多
A cellular automaton-lattice Boltzmann coupled model is extended to study the dendritic growth with melt convection in the solidification of ternary alloys. With a CALPHAD-based phase equilibrium engine, the effects o...A cellular automaton-lattice Boltzmann coupled model is extended to study the dendritic growth with melt convection in the solidification of ternary alloys. With a CALPHAD-based phase equilibrium engine, the effects of melt convection, solutal diffusion, interface curvature and preferred growth orientation are incorporated into the coupled model. After model validation, the multi dendritic growth of the Al-4.0 wt%Cu-1.0 wt%Mg alloy is simulated under the conditions of pure diffusion and melt convection. The result shows that the dendritic growth behavior, the final microstructure and microsegregation are significantly influenced by melt convection in the solidification.展开更多
Ge_(50-x)Sb_xTe_(50) and Ge_(50-x)Bi_xTe_(50) ternary alloys were synthesized by vacuum melting at 1273 K with the starting materials of Ge, Bi, Sb, and Te. The lattice structures were analyzed based on X-ray ...Ge_(50-x)Sb_xTe_(50) and Ge_(50-x)Bi_xTe_(50) ternary alloys were synthesized by vacuum melting at 1273 K with the starting materials of Ge, Bi, Sb, and Te. The lattice structures were analyzed based on X-ray diffraction patterns, which could all be indexed to R3m rhombic structure. Electrical properties measurements revealed that the Ge-Sb-Te ternary alloys were p-type semiconductors with high electrical conductivity of 4.5×10~5S?m^(-1) near room temperature. And the maximum electrical property was obtained at Ge_45Sb_5Te_50, with the power factor of 2.49×10^(-3)W?m^(-1)K^(-2) at 640 K. Due to the existence of secondary phases, the electrical conductivity of Ge-Bi-Te system was lower and Seebeck coefficient was higher comparing with those of Ge-Sb-Te system.展开更多
Structural analysis was made using X-ray diffraction (XRD) Rietveld refinement on a series of La1+xMg2-xNi9 (x=0.0-1.0) ternary alloys. Results showed that each of La1+xMg2-xNi9 alloys was a PuNi3-type structure stack...Structural analysis was made using X-ray diffraction (XRD) Rietveld refinement on a series of La1+xMg2-xNi9 (x=0.0-1.0) ternary alloys. Results showed that each of La1+xMg2-xNi9 alloys was a PuNi3-type structure stacked by LaNi5 and (La, Mg) Ni2 blocks. Electrochemical tests revealed that discharge abilities of these La-Mg-Ni ternary alloys mainly depended on their atomic distances between (La, Mg) and Ni, which could be modified by varying the atomic ratios of La/Mg.展开更多
A comprehensive study on Sn macrosegregation behavior in ternary Al-Sn-Cu alloys was carried out by comparative analysis between gravity casting and squeeze casting samples.The microstructure and Sn distribution of th...A comprehensive study on Sn macrosegregation behavior in ternary Al-Sn-Cu alloys was carried out by comparative analysis between gravity casting and squeeze casting samples.The microstructure and Sn distribution of the castings were characterized by metallography,scanning electron microscopy(SEM),energy-dispersive X-ray(EDX)spectroscopy,and a direct reading spectrometer.Results show that there are obvious differences in Sn morphology between gravity casting and squeeze casting alloys.Under squeeze casting condition,the grain size of the casting is smaller and the distribution ofβ(Sn)is uniform.This effectively reduces the segregation of triangular grain boundary as well as the segregation of Sn.The segregation types of Sn in gravity casting and squeeze casting samples are obviously different.The upper surfaces of gravity casting samples show severe negative segregation,while all the lower surfaces have positive segregation.Compared with gravity casting,squeeze casting solidifies under isostatic pressure.Due to the direct contact between the upper surface of the casting and the mold,the casting solidifies faster under higher undercooling degree and pressure.Consequently,the uniform distribution of Sn reduces the segregation phenomenon on the surface of the casting.展开更多
The experiment employed the use of melt purification and cyclic superheating technique to achieve maximum undercooling of Ni65Cu31Co4 alloy at 300K.Simultaneously,high-speed photography techniques were used to capture...The experiment employed the use of melt purification and cyclic superheating technique to achieve maximum undercooling of Ni65Cu31Co4 alloy at 300K.Simultaneously,high-speed photography techniques were used to capture the process of alloy liquid phase interface migration,and analyzed the relationship between the shape characteristics of the front end of alloy solidification and undercooling.The microstructure of the alloy was observed through metallographic microscopy,and the micro-morphological characteristics and evolution of the rapidly solidified microstructure were systematically studied.It is found that the grain refinement mechanism of Ni-Cu-Co ternary alloy is similar to that of Ni-Cu binary alloy.Grain refinement at low undercooling is caused by intense dendritic remelting,while grain refinement at high undercooling is attributed to recrystallization,driven by the stress and plastic strain accumulated from the interaction of liquid flow and primary dendrites caused by rapid solidification.It also shows that the addition of the third element Co plays a significant role in solidification rate and re-ignition effect.展开更多
Nine distinct zinc-nickel-tin films with different compositions have been galvanostatically electrodeposited. The films have been characterized by scanning electron microscopy(SEM) and energy dispersive spectrometry(E...Nine distinct zinc-nickel-tin films with different compositions have been galvanostatically electrodeposited. The films have been characterized by scanning electron microscopy(SEM) and energy dispersive spectrometry(EDS). Their corrosion potentials and densities have been estimated using Tafel extrapolation. Next, the electrochemical behaviors of the films(deposited through the electrolytes containing 0, 6, 8, and10 g/L SnCl2?6H2O) have been examined based on cyclic voltammetry(CV) measurements. Further, these films have been immersed in 3.5 wt%Na Cl solution for 1 h, 1 d, 7 d, 14 d, 28 d, and 42 d followed by application of Tafel extrapolation and electrochemical impedance spectroscopy(EIS) tests on each aged sample. Finally, to analyze the morphologies and the compositions of the oxide films covering the surfaces of the 42-d aged films, FT-IR and SEM analyses have been performed. The results indicated that the Zn–Ni–Sn film produced through the bath including 6g/L SnCl2?6H2 O exhibits superior corrosion resistance because of the high Ni content in the presence of Sn that promotes the barrier protection capability of the deposit.展开更多
Based on the modification of the simplified coherent potential approximation (SCPA), a model is developed to calculate the composition dependence of the band gap energy of Ⅲ-V ternary alloys with the same anion. Th...Based on the modification of the simplified coherent potential approximation (SCPA), a model is developed to calculate the composition dependence of the band gap energy of Ⅲ-V ternary alloys with the same anion. The derived equation is used to fit the experimental band gap energy of InxAl1-xN, InxGa1-xN and A1xGal xN with x from 0 to 1. It is found that the fitting results are better than those done by using SCPA. The fitting results are also better than those obtained by using the formula with a small bowing coefficient, especially for InxAl1-xN. In addition, our model can also be used to describe the composition de- pendence of band gap energy of other Ⅲ-V ternary alloys.展开更多
The liquid state undercoolability and crystal growth kinetics of ternary Ni-5%Cu-5%Sn and Ni-10%Cu-10%Sn alloys are investigated by the glass fluxing method. In these two alloys, experimental maximum undercoolings of ...The liquid state undercoolability and crystal growth kinetics of ternary Ni-5%Cu-5%Sn and Ni-10%Cu-10%Sn alloys are investigated by the glass fluxing method. In these two alloys, experimental maximum undercoolings of 304 K (0.18TL ) and 286K (0.17TL ) are achieved and the dendritic growth velocities attain 39.8 and 25.1 m/s, respectively. The transition of morphology from coarse dendrite into equiaxed structure occurs and the grain size of the a (Ni) phase decreases remarkably when the undercooling increases. Both the lattice constant and microhardness increase obviously with the enhancement of undercooling. The enrichment of Cu and Sn solute contents reduces the dendritic growth velocity, while enhances the lattice constant and microhardness of a (Ni) phase.展开更多
The coordination numbers in the Molecular Interaction Volume Model can be calcu-lated from the common physical quantities of pure matters.A significant advantage ofthe model lies in its ability to predict the thermody...The coordination numbers in the Molecular Interaction Volume Model can be calcu-lated from the common physical quantities of pure matters.A significant advantage ofthe model lies in its ability to predict the thermodynamic properties of ternary liqmdalloys using only the binary infinite dilute activity coefficients,and the predicted values are in good agreement with the experimental data of ternary liquid alloys,whichshows that the model is reliable,convenient and economic.展开更多
An attempt was made on applying the Wilson equation to predict the thermodynamic proper- ties of ternary liquid alloys.The activity of each component in ternary liquid alloys was found to be conveniently calculated fr...An attempt was made on applying the Wilson equation to predict the thermodynamic proper- ties of ternary liquid alloys.The activity of each component in ternary liquid alloys was found to be conveniently calculated from the equation with the related binary bimolecular interaction parameters.The calculated values are in fair agreement with experimental data,and are veri- fied to be reliable by the criterion of classical thermodynamics.展开更多
This paper derives the expressions for the ordering degree and the modulation factor of A and B atoms in AXB1-xC epilayers of ternary III-V semiconductor alloys. Using these expressions, it identifies quantitatively t...This paper derives the expressions for the ordering degree and the modulation factor of A and B atoms in AXB1-xC epilayers of ternary III-V semiconductor alloys. Using these expressions, it identifies quantitatively the alternating atom-enhanced planes, compositional modulations, atomic ordering degree on the group-III sublattices and the fine structure of NMR spectra.展开更多
Small amounts of silver have been added to the intermetallic compound NiAl with the purpose of improving its mechanical properties. Four ternary NiAl-Ag alloys containing 0.5, 1, 5 and 10 at. pct Ag, denoted as NiAl-0...Small amounts of silver have been added to the intermetallic compound NiAl with the purpose of improving its mechanical properties. Four ternary NiAl-Ag alloys containing 0.5, 1, 5 and 10 at. pct Ag, denoted as NiAl-0.SAg,NiAl-1Ag, NiAl-5Ag and NiAl-10Ag, and the Ag-free NiAl have been oxidized at 1000℃ for 24 h in 0.1 MPa O2 to study the effect of the presence of silver on the oxidation behavior of NiAl. All the NiAl-Ag alloys are composed of a matrix of β-NiAl containing a dispersion of isolated particles of a second silver-rich phase. A continuous external layer of Al2O3 formed on all the alloys. In addition, the scales formed on NiAl-5Ag contained a thin and discontinuous layer of pure silver located at the alloy/Al2O3 interface, while those formed on NiAl-10Ag contained isolated particles as well as discontinuous layers of silver at various locations in the scale extending up to the gas/scale interface. The kinetic curves of all the alloys were generally composed of two main parabolic stages with smaller parabolic rate constants for the final stage. The addition of silver does not significantly affect the oxidation behavior of the NiAl intermetallic compound in all cases, as expected because silver is essentially present only as a second phase due to its very small solubility in β-NiAl.展开更多
The early aging Cu precipitations in Fe-3%Cu and Fe-3%Cu-4%Ni ternary alloys are investigated by molecular dynamics (MD) simulations. The results show that the average size of Cu clusters in Fe-3%Cu-4%Ni alloy is la...The early aging Cu precipitations in Fe-3%Cu and Fe-3%Cu-4%Ni ternary alloys are investigated by molecular dynamics (MD) simulations. The results show that the average size of Cu clusters in Fe-3%Cu-4%Ni alloy is larger than that in Fe-3%Cu alloy. The diffusion of Cu is accelerated by Ni according to the mean square displacement (MSD). Furthermore, the whole formation process of Cu-rich clusters is analyzed in detail, and it is found that the presence of Ni promotes small Cu-rich clusters to be combined into big ones. Ni atoms prefer to stay at the combination positions of small clusters energetically due to a large number of the first nearest neighbor Cu-Ni interactions, which is verified by first-principles calculations based on density functional theory (DFT).展开更多
A semi-empirical calculation of the heat of formation was applied to ternary system: La-Fe-Al,Fe-Ni-V and Cu-Pd-Si.The calculated values were compared with the experimental ones and the coincidence was satisfactory.Th...A semi-empirical calculation of the heat of formation was applied to ternary system: La-Fe-Al,Fe-Ni-V and Cu-Pd-Si.The calculated values were compared with the experimental ones and the coincidence was satisfactory.This method is helpful to predict the stabilities of ternary compounds and solid solubility.展开更多
Based on the thermodynamic point of view, a method for predication of the composition range of amorphous ternary alloys was proposed. The composition range of amorphous ternary alloys is determined by the comparison o...Based on the thermodynamic point of view, a method for predication of the composition range of amorphous ternary alloys was proposed. The composition range of amorphous ternary alloys is determined by the comparison of the excess free energy of the amorphous alloy and the free energy of competing crystalline states. The free energy is extrapolated from the data of three binary alloys by using Toop′s model. The method was applied to predict the composition range of amorphous Mg Ni Y alloys. The theoretical results are in good agreement with the available experimental results. It indicates that the present method can be used to predict the composition range for amorphous ternary alloys.展开更多
A good deal of studies have proven that effective exciton dissociation and fast hole transport can operate efficiently in non-fullerene organic photovoltaics(OPVs)despite nearly zero driving force.Even so,whether such...A good deal of studies have proven that effective exciton dissociation and fast hole transport can operate efficiently in non-fullerene organic photovoltaics(OPVs)despite nearly zero driving force.Even so,whether such a phenomenon is universal and how small the driving force can realize the best photovoltaic performance still require a thorough understanding.Herein,despite the zero driving force based on PM6:F8IC system,a maximum short-circuit current(J_(sc))of 23.0 mA/cm^(2) and high power conversion efficiency(PCE)of 12.2%can still be achieved.Due to the continuously adjustable energy levels can be realized in organic semiconducting alloys including F8IC:IT-4F and F8IC:Y6,the suitable third components can play the role of energy level regulator.Therefore,the HOMO energy level offset(DEHOMO(D A))from zero to 0.07 and 0.06 eV is accomplished in the optimized IT-4F and Y6 ternary devices.Consequently,both ternary devices achieved substantially increased PCE of 13.8%and Jsc of 24.4 and 25.2 mA/cm^(2),respectively.Besides,pseudo-planar heterojunction(PPHJ)devices based on alloyed acceptors through sequential spin-coating method further improve the photovoltaic performance.Our work puts forward the concept of energy level regulator and prove that the ternary alloy strategy has unique advantages and huge research potential in continuously adjusting the driving force.展开更多
Emf technique was employed to determine indium activities in the liquid Ag-In-Pd alloys using galvanic cells with yttria-stabilised-zirconia as solid electrolyte according to the scheme: kanthal/rhenium, Ag-In-Pd, In...Emf technique was employed to determine indium activities in the liquid Ag-In-Pd alloys using galvanic cells with yttria-stabilised-zirconia as solid electrolyte according to the scheme: kanthal/rhenium, Ag-In-Pd, In2O3 | YSZ | Ni, NiO, Pt. Composition and temperature measurement ranges were limited, because of very steep liquidus surface; 35 compositions for Xpd up to 0.3 were investigated and at temperatures from near-liquidus up to 1700 K. High temperature experiments required special moly furnace to be constructed with unique automatic gas supply system for fumace winding protective atmosphere. Emf readings were taken and recorded by automatic data acquisition system. Linear dependence of emf on temperature was observed for all compositions investigated, and results were approximated by straight line equa- tions. Then In activities were calculated using well-known relations and taking into account correction for thermoelectric power between kanthal and platinum. Results are to be used along with other existing data to perform assessment of the ternary system under accord.展开更多
A Bi-2.0Zn-0.2A1 (wt%) ternary eutectic alloy was prepared using a vacuum melting furnace and a casting furnace. The samples were directionally solidified upwards at a constant growth rate (V= 18.4 μm/s) under di...A Bi-2.0Zn-0.2A1 (wt%) ternary eutectic alloy was prepared using a vacuum melting furnace and a casting furnace. The samples were directionally solidified upwards at a constant growth rate (V= 18.4 μm/s) under different temperature gradients (G = 1.15-3.44 K/mm) and at a constant temperature gradient (G = 2.66 K/mm) under different growth rates (V= 8.3-500 μm/s) in a Bridgman-type directional so- lidification furnace. The dependence ofmicrostructure parameter (2) on the solidification parameters (G and V) and that of the microhardness (Hv) on the microstructure and solidification parameters were investigated. The resistivity (ρ) measurements of the studied alloy were per- formed using the standard four-point-probe method, and the temperature coefficient of resistivity (α) was calculated from the ρ-Tcurve. The enthalpy (AH) and the specific heat (Cp) values were determined by differential scanning calorimetry analysis. In addition, the thermal conductivities of samples, obtained using the Wiedemann-Franz and Smith-Palmer equations, were compared with the experimental results. The results revealed that, the thermal conductivity values obtained using the Wiedemarm-Franz and Smith-Palmer equations for the Bi-2.0Zn-0.2Al (wt%) alloy are in the range of 5.2-6.5 W/Km and 15.2-16.4 W/Km, respectively.展开更多
基金financially supported by the National Natural Science Foundation of China (52200076,22169005,52370057)the Growth Project of Young Scientific and Technological Talents in General Colleges and Universities in Guizhou Province ([2022]143)+4 种基金the Science and Technology Foundation of Guizhou Province ([2022]109)the Natural Science Special Foundation of Guizhou University (202017,702775203301)the Natural Science Foundation of Chongqing (CSTB2022NSCQ-BHX0035)the Special Research Assistant Program of Chinese Academy of Sciencethe Research Foundation of Chongqing University of Science and Technology (ckrc2022026)。
文摘The electrochemical methanol oxidation is a crucial reaction in the conversion of renewable energy.To enable the widespread adoption of direct methanol fuel cells(DMFCs),it is essential to create and engineer catalysts that are both highly effective and robust for conducting the methanol oxidation reaction(MOR).In this work,trimetallic PtCoRu electrocatalysts on nitrogen-doped carbon and multi-wall carbon nanotubes(PtCoRu@NC/MWCNTs)were prepared through a two-pot synthetic strategy.The acceleration of CO oxidation to CO_(2) and the blocking of CO reduction on adjacent Pt active sites were attributed to the crucial role played by cobalt atoms in the as-prepared electrocatalysts.The precise control of Co atoms loading was achieved through precursor stoichiometry.Various physicochemical techniques were employed to analyze the morphology,element composition,and electronic state of the catalyst.Electrochemical investigations and theoretical calculations confirmed that the Pt_(1)Co_(3)Ru_(1)@NC/MWCNTs exhibit excellent electrocatalytic performance and durability for the process of MOR.The enhanced MOR activity can be attributed to the synergistic effect between the multiple elements resulting from precisely controlled Co loading content on surface of the electrocatalyst,which facilitates efficient charge transfer.This interaction between the multiple components also modifies the electronic structures of active sites,thereby promoting the conversion of intermediates and accelerating the MOR process.Thus,achieving precise control over Co loading in PtCoRu@NC/MWCNTs would enable the development of high-performance catalysts for DMFCs.
基金the National Natural Science Foundation of China (No. 50571081)the Aviation Foundation of China (No. 04G53024).
文摘A petal-like icosahedral quasicrystal with five branches,which is considered to be the representative morphology of the icosahedral quasicrystal,has been observed in the Y-rich Mg-Zn-Y ternary alloys. Moreover,the polygon-like morphology,another pattern of the icosahedral quasicrystal,has also been found in the Y-rich Mg-Zn-Y ternary alloys. The latter morphology results from the evolution of the former one. The growth mechanism of the petal-like morphology of the icosahedral quasicrystal was also discussed. Alloying composition,i.e.,Y element content,is a major factor inducing the morphology evolution of the icosahedral quasicrystal.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51306037 and 51371051
文摘A cellular automaton-lattice Boltzmann coupled model is extended to study the dendritic growth with melt convection in the solidification of ternary alloys. With a CALPHAD-based phase equilibrium engine, the effects of melt convection, solutal diffusion, interface curvature and preferred growth orientation are incorporated into the coupled model. After model validation, the multi dendritic growth of the Al-4.0 wt%Cu-1.0 wt%Mg alloy is simulated under the conditions of pure diffusion and melt convection. The result shows that the dendritic growth behavior, the final microstructure and microsegregation are significantly influenced by melt convection in the solidification.
基金Funded by the Science and Technology Plan of Taizhou City of Zhejiang Province(1601KY69)
文摘Ge_(50-x)Sb_xTe_(50) and Ge_(50-x)Bi_xTe_(50) ternary alloys were synthesized by vacuum melting at 1273 K with the starting materials of Ge, Bi, Sb, and Te. The lattice structures were analyzed based on X-ray diffraction patterns, which could all be indexed to R3m rhombic structure. Electrical properties measurements revealed that the Ge-Sb-Te ternary alloys were p-type semiconductors with high electrical conductivity of 4.5×10~5S?m^(-1) near room temperature. And the maximum electrical property was obtained at Ge_45Sb_5Te_50, with the power factor of 2.49×10^(-3)W?m^(-1)K^(-2) at 640 K. Due to the existence of secondary phases, the electrical conductivity of Ge-Bi-Te system was lower and Seebeck coefficient was higher comparing with those of Ge-Sb-Te system.
基金This work was supported by the National Natural Science Foundation of China under grant No.50071052 and No.50131040.
文摘Structural analysis was made using X-ray diffraction (XRD) Rietveld refinement on a series of La1+xMg2-xNi9 (x=0.0-1.0) ternary alloys. Results showed that each of La1+xMg2-xNi9 alloys was a PuNi3-type structure stacked by LaNi5 and (La, Mg) Ni2 blocks. Electrochemical tests revealed that discharge abilities of these La-Mg-Ni ternary alloys mainly depended on their atomic distances between (La, Mg) and Ni, which could be modified by varying the atomic ratios of La/Mg.
基金financially supported by the National Natural Science Foundation of China(No.51575151)the Science and Technology Project of Anhui Province,China(No.1501021006)。
文摘A comprehensive study on Sn macrosegregation behavior in ternary Al-Sn-Cu alloys was carried out by comparative analysis between gravity casting and squeeze casting samples.The microstructure and Sn distribution of the castings were characterized by metallography,scanning electron microscopy(SEM),energy-dispersive X-ray(EDX)spectroscopy,and a direct reading spectrometer.Results show that there are obvious differences in Sn morphology between gravity casting and squeeze casting alloys.Under squeeze casting condition,the grain size of the casting is smaller and the distribution ofβ(Sn)is uniform.This effectively reduces the segregation of triangular grain boundary as well as the segregation of Sn.The segregation types of Sn in gravity casting and squeeze casting samples are obviously different.The upper surfaces of gravity casting samples show severe negative segregation,while all the lower surfaces have positive segregation.Compared with gravity casting,squeeze casting solidifies under isostatic pressure.Due to the direct contact between the upper surface of the casting and the mold,the casting solidifies faster under higher undercooling degree and pressure.Consequently,the uniform distribution of Sn reduces the segregation phenomenon on the surface of the casting.
基金Funded by the Natural Science Foundation of Shanxi Province(No.202203021211093)。
文摘The experiment employed the use of melt purification and cyclic superheating technique to achieve maximum undercooling of Ni65Cu31Co4 alloy at 300K.Simultaneously,high-speed photography techniques were used to capture the process of alloy liquid phase interface migration,and analyzed the relationship between the shape characteristics of the front end of alloy solidification and undercooling.The microstructure of the alloy was observed through metallographic microscopy,and the micro-morphological characteristics and evolution of the rapidly solidified microstructure were systematically studied.It is found that the grain refinement mechanism of Ni-Cu-Co ternary alloy is similar to that of Ni-Cu binary alloy.Grain refinement at low undercooling is caused by intense dendritic remelting,while grain refinement at high undercooling is attributed to recrystallization,driven by the stress and plastic strain accumulated from the interaction of liquid flow and primary dendrites caused by rapid solidification.It also shows that the addition of the third element Co plays a significant role in solidification rate and re-ignition effect.
文摘Nine distinct zinc-nickel-tin films with different compositions have been galvanostatically electrodeposited. The films have been characterized by scanning electron microscopy(SEM) and energy dispersive spectrometry(EDS). Their corrosion potentials and densities have been estimated using Tafel extrapolation. Next, the electrochemical behaviors of the films(deposited through the electrolytes containing 0, 6, 8, and10 g/L SnCl2?6H2O) have been examined based on cyclic voltammetry(CV) measurements. Further, these films have been immersed in 3.5 wt%Na Cl solution for 1 h, 1 d, 7 d, 14 d, 28 d, and 42 d followed by application of Tafel extrapolation and electrochemical impedance spectroscopy(EIS) tests on each aged sample. Finally, to analyze the morphologies and the compositions of the oxide films covering the surfaces of the 42-d aged films, FT-IR and SEM analyses have been performed. The results indicated that the Zn–Ni–Sn film produced through the bath including 6g/L SnCl2?6H2 O exhibits superior corrosion resistance because of the high Ni content in the presence of Sn that promotes the barrier protection capability of the deposit.
基金supported by the Special Funds for Major State Basic Research Project (Grant No. 2011CB301900)the National Natural Science Foundation of China (Grant No. 60990311)
文摘Based on the modification of the simplified coherent potential approximation (SCPA), a model is developed to calculate the composition dependence of the band gap energy of Ⅲ-V ternary alloys with the same anion. The derived equation is used to fit the experimental band gap energy of InxAl1-xN, InxGa1-xN and A1xGal xN with x from 0 to 1. It is found that the fitting results are better than those done by using SCPA. The fitting results are also better than those obtained by using the formula with a small bowing coefficient, especially for InxAl1-xN. In addition, our model can also be used to describe the composition de- pendence of band gap energy of other Ⅲ-V ternary alloys.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51327901 and 51301138the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No 20126102120064+1 种基金the Aviation Science Foundation of China under Grant No 2014ZF53069the Fundamental Research Funds for the Central Universities under Grant No3102014KYJD044
文摘The liquid state undercoolability and crystal growth kinetics of ternary Ni-5%Cu-5%Sn and Ni-10%Cu-10%Sn alloys are investigated by the glass fluxing method. In these two alloys, experimental maximum undercoolings of 304 K (0.18TL ) and 286K (0.17TL ) are achieved and the dendritic growth velocities attain 39.8 and 25.1 m/s, respectively. The transition of morphology from coarse dendrite into equiaxed structure occurs and the grain size of the a (Ni) phase decreases remarkably when the undercooling increases. Both the lattice constant and microhardness increase obviously with the enhancement of undercooling. The enrichment of Cu and Sn solute contents reduces the dendritic growth velocity, while enhances the lattice constant and microhardness of a (Ni) phase.
文摘The coordination numbers in the Molecular Interaction Volume Model can be calcu-lated from the common physical quantities of pure matters.A significant advantage ofthe model lies in its ability to predict the thermodynamic properties of ternary liqmdalloys using only the binary infinite dilute activity coefficients,and the predicted values are in good agreement with the experimental data of ternary liquid alloys,whichshows that the model is reliable,convenient and economic.
文摘An attempt was made on applying the Wilson equation to predict the thermodynamic proper- ties of ternary liquid alloys.The activity of each component in ternary liquid alloys was found to be conveniently calculated from the equation with the related binary bimolecular interaction parameters.The calculated values are in fair agreement with experimental data,and are veri- fied to be reliable by the criterion of classical thermodynamics.
基金Project supported by the National Natural Science Foundation of China (Grant No 60572177)CAUC Foundation (Grant No 05yk27s)
文摘This paper derives the expressions for the ordering degree and the modulation factor of A and B atoms in AXB1-xC epilayers of ternary III-V semiconductor alloys. Using these expressions, it identifies quantitatively the alternating atom-enhanced planes, compositional modulations, atomic ordering degree on the group-III sublattices and the fine structure of NMR spectra.
基金The financial support by the National Natural Science Foundation of China under grant No.50271079 is gratefully acknowledged.
文摘Small amounts of silver have been added to the intermetallic compound NiAl with the purpose of improving its mechanical properties. Four ternary NiAl-Ag alloys containing 0.5, 1, 5 and 10 at. pct Ag, denoted as NiAl-0.SAg,NiAl-1Ag, NiAl-5Ag and NiAl-10Ag, and the Ag-free NiAl have been oxidized at 1000℃ for 24 h in 0.1 MPa O2 to study the effect of the presence of silver on the oxidation behavior of NiAl. All the NiAl-Ag alloys are composed of a matrix of β-NiAl containing a dispersion of isolated particles of a second silver-rich phase. A continuous external layer of Al2O3 formed on all the alloys. In addition, the scales formed on NiAl-5Ag contained a thin and discontinuous layer of pure silver located at the alloy/Al2O3 interface, while those formed on NiAl-10Ag contained isolated particles as well as discontinuous layers of silver at various locations in the scale extending up to the gas/scale interface. The kinetic curves of all the alloys were generally composed of two main parabolic stages with smaller parabolic rate constants for the final stage. The addition of silver does not significantly affect the oxidation behavior of the NiAl intermetallic compound in all cases, as expected because silver is essentially present only as a second phase due to its very small solubility in β-NiAl.
基金supported by the National Natural Science Foundation of China(Grant Nos.50931003 and 51301102)the 085 Project at Shanghai University,China.
文摘The early aging Cu precipitations in Fe-3%Cu and Fe-3%Cu-4%Ni ternary alloys are investigated by molecular dynamics (MD) simulations. The results show that the average size of Cu clusters in Fe-3%Cu-4%Ni alloy is larger than that in Fe-3%Cu alloy. The diffusion of Cu is accelerated by Ni according to the mean square displacement (MSD). Furthermore, the whole formation process of Cu-rich clusters is analyzed in detail, and it is found that the presence of Ni promotes small Cu-rich clusters to be combined into big ones. Ni atoms prefer to stay at the combination positions of small clusters energetically due to a large number of the first nearest neighbor Cu-Ni interactions, which is verified by first-principles calculations based on density functional theory (DFT).
文摘A semi-empirical calculation of the heat of formation was applied to ternary system: La-Fe-Al,Fe-Ni-V and Cu-Pd-Si.The calculated values were compared with the experimental ones and the coincidence was satisfactory.This method is helpful to predict the stabilities of ternary compounds and solid solubility.
文摘Based on the thermodynamic point of view, a method for predication of the composition range of amorphous ternary alloys was proposed. The composition range of amorphous ternary alloys is determined by the comparison of the excess free energy of the amorphous alloy and the free energy of competing crystalline states. The free energy is extrapolated from the data of three binary alloys by using Toop′s model. The method was applied to predict the composition range of amorphous Mg Ni Y alloys. The theoretical results are in good agreement with the available experimental results. It indicates that the present method can be used to predict the composition range for amorphous ternary alloys.
基金support the National Natural Science Foundation of China(NSFC)(51973032,and 21905043)support from the National Natural Science Foundation of China(NSFC)(51833004)financial support by the National Key Research and Development Program of China(2017YFA0207700)。
文摘A good deal of studies have proven that effective exciton dissociation and fast hole transport can operate efficiently in non-fullerene organic photovoltaics(OPVs)despite nearly zero driving force.Even so,whether such a phenomenon is universal and how small the driving force can realize the best photovoltaic performance still require a thorough understanding.Herein,despite the zero driving force based on PM6:F8IC system,a maximum short-circuit current(J_(sc))of 23.0 mA/cm^(2) and high power conversion efficiency(PCE)of 12.2%can still be achieved.Due to the continuously adjustable energy levels can be realized in organic semiconducting alloys including F8IC:IT-4F and F8IC:Y6,the suitable third components can play the role of energy level regulator.Therefore,the HOMO energy level offset(DEHOMO(D A))from zero to 0.07 and 0.06 eV is accomplished in the optimized IT-4F and Y6 ternary devices.Consequently,both ternary devices achieved substantially increased PCE of 13.8%and Jsc of 24.4 and 25.2 mA/cm^(2),respectively.Besides,pseudo-planar heterojunction(PPHJ)devices based on alloyed acceptors through sequential spin-coating method further improve the photovoltaic performance.Our work puts forward the concept of energy level regulator and prove that the ternary alloy strategy has unique advantages and huge research potential in continuously adjusting the driving force.
基金This work contributes to Group Project No. 4, within the frame of European Project COST "Action 531: Lead-free sol-ders". Financial support from Polish State Committee for Scientific Research under grant No. 62/E - 88/SPB/COST/ T08//DZ 459/2003-2006 is gratefully acknowledged.
文摘Emf technique was employed to determine indium activities in the liquid Ag-In-Pd alloys using galvanic cells with yttria-stabilised-zirconia as solid electrolyte according to the scheme: kanthal/rhenium, Ag-In-Pd, In2O3 | YSZ | Ni, NiO, Pt. Composition and temperature measurement ranges were limited, because of very steep liquidus surface; 35 compositions for Xpd up to 0.3 were investigated and at temperatures from near-liquidus up to 1700 K. High temperature experiments required special moly furnace to be constructed with unique automatic gas supply system for fumace winding protective atmosphere. Emf readings were taken and recorded by automatic data acquisition system. Linear dependence of emf on temperature was observed for all compositions investigated, and results were approximated by straight line equa- tions. Then In activities were calculated using well-known relations and taking into account correction for thermoelectric power between kanthal and platinum. Results are to be used along with other existing data to perform assessment of the ternary system under accord.
基金financially supported by the Nigde University Scientific Research Project Unit(No.FEB 2009/02)
文摘A Bi-2.0Zn-0.2A1 (wt%) ternary eutectic alloy was prepared using a vacuum melting furnace and a casting furnace. The samples were directionally solidified upwards at a constant growth rate (V= 18.4 μm/s) under different temperature gradients (G = 1.15-3.44 K/mm) and at a constant temperature gradient (G = 2.66 K/mm) under different growth rates (V= 8.3-500 μm/s) in a Bridgman-type directional so- lidification furnace. The dependence ofmicrostructure parameter (2) on the solidification parameters (G and V) and that of the microhardness (Hv) on the microstructure and solidification parameters were investigated. The resistivity (ρ) measurements of the studied alloy were per- formed using the standard four-point-probe method, and the temperature coefficient of resistivity (α) was calculated from the ρ-Tcurve. The enthalpy (AH) and the specific heat (Cp) values were determined by differential scanning calorimetry analysis. In addition, the thermal conductivities of samples, obtained using the Wiedemann-Franz and Smith-Palmer equations, were compared with the experimental results. The results revealed that, the thermal conductivity values obtained using the Wiedemarm-Franz and Smith-Palmer equations for the Bi-2.0Zn-0.2Al (wt%) alloy are in the range of 5.2-6.5 W/Km and 15.2-16.4 W/Km, respectively.