Ternary deep eutectic solvents(TDESs) comprising choline chloride(Ch Cl), glycerol and L-arginine were synthesized as catalysts and solvents for the conversion of D-glucosamine(GlcNH_(2)) into deoxyfructosazine(DOF). ...Ternary deep eutectic solvents(TDESs) comprising choline chloride(Ch Cl), glycerol and L-arginine were synthesized as catalysts and solvents for the conversion of D-glucosamine(GlcNH_(2)) into deoxyfructosazine(DOF). The interactions between these three components in the prepared TDESs were studied by ^(1)H-,^(35)Cl-NMR spectra and ^(1)H diffusion-ordered spectroscopy(DOSY) measurements. The chemical shift changes of active hydrogen in the ^(1)H-NMR spectra of TDES system and widening of signals in the^(35)Cl-NMR spectra confirmed the hydrogen bonding interaction between the components, which was further supported by the decrease of diffusion coefficients(D) of the TDES components according to ^(1)H DOSY measurements. The influences of reaction temperature and L-arginine content in the TDESs on the yield of DOF were also studied. The experimental results have shown that when the molar ratio of Ch Cl, glycerol, and L-arginine was 1:2:0.1, DOF was the major product with a yield of 22.6% at 90℃ for 120 min. The chemical shift titration indicated that the carboxyl group of L-arginine in the TDES is the catalytical active site, so the mechanism of the catalytic reaction between Glc NH_(2) and the TDES was proposed. Moreover, a reaction intermediate, dihydrofructosazine, was identified in the self-condensation reaction of Glc NH_(2) by an in situ ^(1)H NMR technique.展开更多
Denaturation was examined for the first time in a ternary mixed solution of water/hydrophilic/ hydrophobic organic solvent using λ-DNA and a plasmid as models. The absorbance of λ-DNA and the plasmid at 260 nm gradu...Denaturation was examined for the first time in a ternary mixed solution of water/hydrophilic/ hydrophobic organic solvent using λ-DNA and a plasmid as models. The absorbance of λ-DNA and the plasmid at 260 nm gradually increased for several days up to 1.68 and 1.38 times the initial values, respectively, in a water/acetonitrile/ethyl acetate (15:3:2, volume ratio) mixed solution, whereas there was little change in a water/acetonitrile (15:3, volume ratio) mixed solution. The plasmid treated with the ternary mixed solution was also examined with agarose gel electrophoresis. These experimental data indicated that λ-DNA changed from a double helix structure to a single helix structure and that the plasmid partially transformed to generate a denaturation bubble in the structure. The new idea of using the ternary mixed solution first enabled the interaction of the hydrophobic organic solvent (e.g., ethyl acetate) molecule with the double helical structure of DNA, leading to specific slow-proceeding denaturation.展开更多
Microfluidic behavior of ternary mixed carrier solvents of water-acetonitrile-ethyl acetate (2:3:1 volume ratio) was examined by use of a microchip incorporating microchannels in which one wide channel was separated i...Microfluidic behavior of ternary mixed carrier solvents of water-acetonitrile-ethyl acetate (2:3:1 volume ratio) was examined by use of a microchip incorporating microchannels in which one wide channel was separated into three narrow channels, i.e., triple-branched microchannels. When the ternary carrier solution containing the fluorescent dyes, hydrophobic perylene (blue) and relatively hydrophilic Eosin Y (green), was fed into the wide channel under laminar flow conditions, the carrier solvent molecules or fluorescence dyes were radially distributed in the channel, forming inner (organic solvent-rich major;blue) and outer (water-rich minor;green) phases in the wide channel. And then, in the narrow channels, perylene molecules mostly appeared to flow through the center narrow channel and Eosin Y, which is distributed in the outer phases in the wide channel, flowed through the both side narrow channels. A metal ion, Cu(II) as a model, dissolved in the ternary mixed carrier solution was also examined. The Cu(II) showed fluidic behavior, transferring from the homogeneous carrier solution to the water-rich solution in the side narrow channels through the triple-branched microchannels.展开更多
An artificial neural network(ANN)method is introduced to predict drop size in two kinds of pulsed columns with small-scale data sets.After training,the deviation between calculate and experimental results are 3.8%and ...An artificial neural network(ANN)method is introduced to predict drop size in two kinds of pulsed columns with small-scale data sets.After training,the deviation between calculate and experimental results are 3.8%and 9.3%,respectively.Through ANN model,the influence of interfacial tension and pulsation intensity on the droplet diameter has been developed.Droplet size gradually increases with the increase of interfacial tension,and decreases with the increase of pulse intensity.It can be seen that the accuracy of ANN model in predicting droplet size outside the training set range is reach the same level as the accuracy of correlation obtained based on experiments within this range.For two kinds of columns,the drop size prediction deviations of ANN model are 9.6%and 18.5%and the deviations in correlations are 11%and 15%.展开更多
With plenty of popular and effective ternary organic solar cells(OSCs)construction strategies proposed and applied,its power conversion efficiencies(PCEs)have come to a new level of over 19%in single-junction devices....With plenty of popular and effective ternary organic solar cells(OSCs)construction strategies proposed and applied,its power conversion efficiencies(PCEs)have come to a new level of over 19%in single-junction devices.However,previous studies are heavily based in chloroform(CF)leaving behind substantial knowledge deficiencies in understanding the influence of solvent choice when introducing a third component.Herein,we present a case where a newly designed asymmetric small molecular acceptor using fluoro-methoxylated end-group modification strategy,named BTP-BO-3FO with enlarged bandgap,brings different morphological evolution and performance improvement effect on host system PM6:BTP-eC9,processed by CF and ortho-xylene(o-XY).With detailed analyses supported by a series of experiments,the best PCE of 19.24%for green solvent-processed OSCs is found to be a fruit of finely tuned crystalline ordering and general aggregation motif,which furthermore nourishes a favorable charge generation and recombination behavior.Likewise,over 19%PCE can be achieved by replacing spin-coating with blade coating for active layer deposition.This work focuses on understanding the commonly met yet frequently ignored issues when building ternary blends to demonstrate cutting-edge device performance,hence,will be instructive to other ternary OSC works in the future.展开更多
Due to environmental protection requirements,extraction of bioactive compounds from plant materials using environment-friendly green solvents has always been a research hotspot.And great efforts of scholars have been ...Due to environmental protection requirements,extraction of bioactive compounds from plant materials using environment-friendly green solvents has always been a research hotspot.And great efforts of scholars have been made in this direction,as well as environment-friendly solvents have been used to develop many innovative extraction techniques.Ionic liquids(ILs)and deep eutectic solvents(DESs)are two kinds of typical designable green solvents,which are potential replacements for traditional volatile organic solvents used for extracting.Under the substances action of inorganic salts or polymers,ILs/DESs can form an aqueous two-phase system(ATPS),which has obvious advantages for separating natural products.This paper discussed the phase separation principle of ILs/DESs-based ATPSs and reviewed the applications in the extraction of natural active molecules in recent years,as well as to promote the development of separation of the active constituents in Chinese materia medica.展开更多
Designing novel lubricants with easily customized structures,devisable compositions,and simple and economic synthesis over traditional lubricants is critical to fulfilling complex applications,prolonging machine lifet...Designing novel lubricants with easily customized structures,devisable compositions,and simple and economic synthesis over traditional lubricants is critical to fulfilling complex applications,prolonging machine lifetime,and saving energy.Deep eutectic solvents(DESs),which show tunable composition,adjustable structure,easy fabrication,and environmental friendliness,are promising candidates for variable and complicated lubricants applications.To promote the use of DESs as lubricants,a series of PEG200-based DESs with active heteroatoms were fabricated to tailor the tribological performance via tribo-chemistry.Thereinto,PEG200/boric acid(BA)DES shows optimal lubrication performance by forming tribo-chemical reaction film composited of B2O3,iron oxides,and FeOOH,and PEG200/thiourea(TU)DES displays abrasive wear-reducing property by producing FeS tribo-chemical film.Given the excellent abrasive wear-resistance of PEG200/TU DES and friction reduction of PEG200/BA DES,ternary PEG200/BA/TU DESs,composited of PEG200/TU DES and PEG200/BA DES,are first exploited.The ternary DESs possess superior wettability and thermal stability,which render them potential lubricants.Tribological tests of the ternary DESs demonstrate that synergistic lubrication is achieved by forming a transfer film consisting of FexBy,BN,B2O3,and FeS.Wherein FexBy,BN,and B2O3 increase load bearing of the film,and FeS mitigates severe abrasive wear.The proposed design philosophy of novel DESs as lubricants opens up a unique realm that is unattainable by traditional DESs lubrication mechanisms and provides a platform to design next-generation DESs lubrication systems.展开更多
基金National Natural Science Foundation of China(U1710106,U1810111)the Key Research and Development Program of Shanxi Province(international cooperation)(201703D421041)for financial support。
文摘Ternary deep eutectic solvents(TDESs) comprising choline chloride(Ch Cl), glycerol and L-arginine were synthesized as catalysts and solvents for the conversion of D-glucosamine(GlcNH_(2)) into deoxyfructosazine(DOF). The interactions between these three components in the prepared TDESs were studied by ^(1)H-,^(35)Cl-NMR spectra and ^(1)H diffusion-ordered spectroscopy(DOSY) measurements. The chemical shift changes of active hydrogen in the ^(1)H-NMR spectra of TDES system and widening of signals in the^(35)Cl-NMR spectra confirmed the hydrogen bonding interaction between the components, which was further supported by the decrease of diffusion coefficients(D) of the TDES components according to ^(1)H DOSY measurements. The influences of reaction temperature and L-arginine content in the TDESs on the yield of DOF were also studied. The experimental results have shown that when the molar ratio of Ch Cl, glycerol, and L-arginine was 1:2:0.1, DOF was the major product with a yield of 22.6% at 90℃ for 120 min. The chemical shift titration indicated that the carboxyl group of L-arginine in the TDES is the catalytical active site, so the mechanism of the catalytic reaction between Glc NH_(2) and the TDES was proposed. Moreover, a reaction intermediate, dihydrofructosazine, was identified in the self-condensation reaction of Glc NH_(2) by an in situ ^(1)H NMR technique.
文摘Denaturation was examined for the first time in a ternary mixed solution of water/hydrophilic/ hydrophobic organic solvent using λ-DNA and a plasmid as models. The absorbance of λ-DNA and the plasmid at 260 nm gradually increased for several days up to 1.68 and 1.38 times the initial values, respectively, in a water/acetonitrile/ethyl acetate (15:3:2, volume ratio) mixed solution, whereas there was little change in a water/acetonitrile (15:3, volume ratio) mixed solution. The plasmid treated with the ternary mixed solution was also examined with agarose gel electrophoresis. These experimental data indicated that λ-DNA changed from a double helix structure to a single helix structure and that the plasmid partially transformed to generate a denaturation bubble in the structure. The new idea of using the ternary mixed solution first enabled the interaction of the hydrophobic organic solvent (e.g., ethyl acetate) molecule with the double helical structure of DNA, leading to specific slow-proceeding denaturation.
文摘Microfluidic behavior of ternary mixed carrier solvents of water-acetonitrile-ethyl acetate (2:3:1 volume ratio) was examined by use of a microchip incorporating microchannels in which one wide channel was separated into three narrow channels, i.e., triple-branched microchannels. When the ternary carrier solution containing the fluorescent dyes, hydrophobic perylene (blue) and relatively hydrophilic Eosin Y (green), was fed into the wide channel under laminar flow conditions, the carrier solvent molecules or fluorescence dyes were radially distributed in the channel, forming inner (organic solvent-rich major;blue) and outer (water-rich minor;green) phases in the wide channel. And then, in the narrow channels, perylene molecules mostly appeared to flow through the center narrow channel and Eosin Y, which is distributed in the outer phases in the wide channel, flowed through the both side narrow channels. A metal ion, Cu(II) as a model, dissolved in the ternary mixed carrier solution was also examined. The Cu(II) showed fluidic behavior, transferring from the homogeneous carrier solution to the water-rich solution in the side narrow channels through the triple-branched microchannels.
基金the support of the National Natural Science Foundation of China(22278234,21776151)。
文摘An artificial neural network(ANN)method is introduced to predict drop size in two kinds of pulsed columns with small-scale data sets.After training,the deviation between calculate and experimental results are 3.8%and 9.3%,respectively.Through ANN model,the influence of interfacial tension and pulsation intensity on the droplet diameter has been developed.Droplet size gradually increases with the increase of interfacial tension,and decreases with the increase of pulse intensity.It can be seen that the accuracy of ANN model in predicting droplet size outside the training set range is reach the same level as the accuracy of correlation obtained based on experiments within this range.For two kinds of columns,the drop size prediction deviations of ANN model are 9.6%and 18.5%and the deviations in correlations are 11%and 15%.
基金R.Ma thanks the support from PolyU Distinguished Postdoc Fellowship(1-YW4C)Z.Luo thanks the National Natural Science Foundation of China(NSFC,No.22309119)+7 种基金J.Wu thanks the Guangdong government and the Guangzhou government for funding(2021QN02C110)the Guangzhou Municipal Science and Technology Project(No.2023A03J0097 and 2023A03J0003)H.Yan appreciates the support from the National Key Research and Development Program of China(No.2019YFA0705900)funded by MOST,the Basic and Applied Research Major Program of Guangdong Province(No.2019B030302007)the Shen Zhen Technology and Innovation Commission through(Shenzhen Fundamental Research Program,JCYJ20200109140801751)the Hong Kong Research Grants Council(research fellow scheme RFS2021-6S05,RIF project R6021-18,CRF project C6023‐19G,GRF project 16310019,16310020,16309221,and 16309822)Hong Kong Innovation and Technology Commission(ITC‐CNERC14SC01)Foshan‐HKUST(Project NO.FSUST19‐CAT0202)Zhongshan Municipal Bureau of Science and Technology(NO.ZSST20SC02)and Tencent Xplorer Prize。
文摘With plenty of popular and effective ternary organic solar cells(OSCs)construction strategies proposed and applied,its power conversion efficiencies(PCEs)have come to a new level of over 19%in single-junction devices.However,previous studies are heavily based in chloroform(CF)leaving behind substantial knowledge deficiencies in understanding the influence of solvent choice when introducing a third component.Herein,we present a case where a newly designed asymmetric small molecular acceptor using fluoro-methoxylated end-group modification strategy,named BTP-BO-3FO with enlarged bandgap,brings different morphological evolution and performance improvement effect on host system PM6:BTP-eC9,processed by CF and ortho-xylene(o-XY).With detailed analyses supported by a series of experiments,the best PCE of 19.24%for green solvent-processed OSCs is found to be a fruit of finely tuned crystalline ordering and general aggregation motif,which furthermore nourishes a favorable charge generation and recombination behavior.Likewise,over 19%PCE can be achieved by replacing spin-coating with blade coating for active layer deposition.This work focuses on understanding the commonly met yet frequently ignored issues when building ternary blends to demonstrate cutting-edge device performance,hence,will be instructive to other ternary OSC works in the future.
基金supported by National Natural Science Foundation of China(No.21864012)Jishou University National and Local United Engineering Laboratory of Integrative Utilization of Eucommia ulmoides open item(No.DZL201801)Natural Science Innovation Project of Jishou University(No.Jdy20049)。
文摘Due to environmental protection requirements,extraction of bioactive compounds from plant materials using environment-friendly green solvents has always been a research hotspot.And great efforts of scholars have been made in this direction,as well as environment-friendly solvents have been used to develop many innovative extraction techniques.Ionic liquids(ILs)and deep eutectic solvents(DESs)are two kinds of typical designable green solvents,which are potential replacements for traditional volatile organic solvents used for extracting.Under the substances action of inorganic salts or polymers,ILs/DESs can form an aqueous two-phase system(ATPS),which has obvious advantages for separating natural products.This paper discussed the phase separation principle of ILs/DESs-based ATPSs and reviewed the applications in the extraction of natural active molecules in recent years,as well as to promote the development of separation of the active constituents in Chinese materia medica.
基金support from the National Natural Science Foundation of China(Nos.52175190 and 51805455)and the Fundamental Research Funds for the Central Universities(No.2682021CX117).
文摘Designing novel lubricants with easily customized structures,devisable compositions,and simple and economic synthesis over traditional lubricants is critical to fulfilling complex applications,prolonging machine lifetime,and saving energy.Deep eutectic solvents(DESs),which show tunable composition,adjustable structure,easy fabrication,and environmental friendliness,are promising candidates for variable and complicated lubricants applications.To promote the use of DESs as lubricants,a series of PEG200-based DESs with active heteroatoms were fabricated to tailor the tribological performance via tribo-chemistry.Thereinto,PEG200/boric acid(BA)DES shows optimal lubrication performance by forming tribo-chemical reaction film composited of B2O3,iron oxides,and FeOOH,and PEG200/thiourea(TU)DES displays abrasive wear-reducing property by producing FeS tribo-chemical film.Given the excellent abrasive wear-resistance of PEG200/TU DES and friction reduction of PEG200/BA DES,ternary PEG200/BA/TU DESs,composited of PEG200/TU DES and PEG200/BA DES,are first exploited.The ternary DESs possess superior wettability and thermal stability,which render them potential lubricants.Tribological tests of the ternary DESs demonstrate that synergistic lubrication is achieved by forming a transfer film consisting of FexBy,BN,B2O3,and FeS.Wherein FexBy,BN,and B2O3 increase load bearing of the film,and FeS mitigates severe abrasive wear.The proposed design philosophy of novel DESs as lubricants opens up a unique realm that is unattainable by traditional DESs lubrication mechanisms and provides a platform to design next-generation DESs lubrication systems.