The problem of taking an unorganized point cloud in 3D space and fitting a polyhedral surface to those points is both important and difficult. Aiming at increasing applications of full three dimensional digital terrai...The problem of taking an unorganized point cloud in 3D space and fitting a polyhedral surface to those points is both important and difficult. Aiming at increasing applications of full three dimensional digital terrain surface modeling, a new algorithm for the automatic generation of three dimensional triangulated irregular network from a point cloud is pro- posed. Based on the local topological consistency test, a combined algorithm of constrained 3D Delaunay triangulation and region-growing is extended to ensure topologically correct reconstruction. This paper also introduced an efficient neighbor- ing triangle location method by making full use of the surface normal information. Experimental results prove that this algo- rithm can efficiently obtain the most reasonable reconstructed mesh surface with arbitrary topology, wherein the automati- cally reconstructed surface has only small topological difference from the true surface. This algorithm has potential applica- tions to virtual environments, computer vision, and so on.展开更多
基金Supported by the National Natural Science Foundation of China (No.40671158), the National 863 Program of China(No.2006AA12Z224) and the Program for New Century Excellent Talents in University (No.NCET-05-0626).
文摘The problem of taking an unorganized point cloud in 3D space and fitting a polyhedral surface to those points is both important and difficult. Aiming at increasing applications of full three dimensional digital terrain surface modeling, a new algorithm for the automatic generation of three dimensional triangulated irregular network from a point cloud is pro- posed. Based on the local topological consistency test, a combined algorithm of constrained 3D Delaunay triangulation and region-growing is extended to ensure topologically correct reconstruction. This paper also introduced an efficient neighbor- ing triangle location method by making full use of the surface normal information. Experimental results prove that this algo- rithm can efficiently obtain the most reasonable reconstructed mesh surface with arbitrary topology, wherein the automati- cally reconstructed surface has only small topological difference from the true surface. This algorithm has potential applica- tions to virtual environments, computer vision, and so on.