Non-contact remote sensing techniques,such as terrestrial laser scanning(TLS)and unmanned aerial vehicle(UAV)photogrammetry,have been globally applied for landslide monitoring in high and steep mountainous areas.These...Non-contact remote sensing techniques,such as terrestrial laser scanning(TLS)and unmanned aerial vehicle(UAV)photogrammetry,have been globally applied for landslide monitoring in high and steep mountainous areas.These techniques acquire terrain data and enable ground deformation monitoring.However,practical application of these technologies still faces many difficulties due to complex terrain,limited access and dense vegetation.For instance,monitoring high and steep slopes can obstruct the TLS sightline,and the accuracy of the UAV model may be compromised by absence of ground control points(GCPs).This paper proposes a TLS-and UAV-based method for monitoring landslide deformation in high mountain valleys using traditional real-time kinematics(RTK)-based control points(RCPs),low-precision TLS-based control points(TCPs)and assumed control points(ACPs)to achieve high-precision surface deformation analysis under obstructed vision and impassable conditions.The effects of GCP accuracy,GCP quantity and automatic tie point(ATP)quantity on the accuracy of UAV modeling and surface deformation analysis were comprehensively analyzed.The results show that,the proposed method allows for the monitoring accuracy of landslides to exceed the accuracy of the GCPs themselves by adding additional low-accuracy GCPs.The proposed method was implemented for monitoring the Xinhua landslide in Baoxing County,China,and was validated against data from multiple sources.展开更多
The tolerance of terrestrial ecosystems to anthropogenic stress and climate change has received increasing attention considering the intensification of global changes caused by human activities.Improvement of the carb...The tolerance of terrestrial ecosystems to anthropogenic stress and climate change has received increasing attention considering the intensification of global changes caused by human activities.Improvement of the carbon sequestration capacity and ability to mitigate global changes in ecosystems,especially forest ecosystems,are simultaneously receiving increasing attention owing to the lack of sufficient effective negative emission technologies.展开更多
Terrestrial water storage(TWs)variations are associated with water mass movements,which may cause the deformation displacements of the Global Navigation Satellite System(GNSS)stations.This study investigates the spati...Terrestrial water storage(TWs)variations are associated with water mass movements,which may cause the deformation displacements of the Global Navigation Satellite System(GNSS)stations.This study investigates the spatio-temporal Tws variations and addresses the relationship between deformation variations observed in the Huang-Huai-Hai River Basin(HHHRB)and local hydrological features.Results indicate that the vertical velocities at the GNSS stations induced by TWS changes are relatively small,and the impacts of the terrestrial water storage changes are mainly reflected in the changes of seasonal characteristics.Although there is a downward TWS trend from 2011 to 2022 in most HHHRB areas,velocities from the vertical displacements of both Gravity Recovery and Climate Experiment(GRACE)and GRACE Follow-On(GFO)and the GNSS reflect that the HHHRB is undergoing an uplift process,while the magnitude of the GRACE/GFO derived velocities is much smaller than that of the GNSS solutions.Common hydrological deformations estimated from GRACE/GFO and GNSS measurements reveal that the TWS-derived displacements can explain 54.5%of the GNSS seasonal variations,with the phases of terrestrial water storage advancing by about one month relative to GNss common signal phases.Moreover,the decrease of the groundwater storage in the HHHRB has been accelerating since 2008.After reaching its lowest level around mid-2020,it began to rise rapidly,which might be closely related to the implementation of the South-North Water Transfer Central Project.展开更多
Changes in water resource storage are inevitable due to climate change and human activities,thus understanding alterations in water storage within a specific region is imperative for the planning and management of wat...Changes in water resource storage are inevitable due to climate change and human activities,thus understanding alterations in water storage within a specific region is imperative for the planning and management of water resources.Data from the Gravity Recovery and Climate Experiment(GRACE)satellite mission are extensively employed to analyze large-scale total terrestrial water storage anomalies(TWSA).In this study,we derived a more reliable TWSA using different types of GRACE gravity models,which served as the basis for evaluating spatial and temporal variations in total terrestrial water storage and its hydrological components(soil moisture and groundwater)across the Loess Plateau.Additionally,we analyzed the impact of natural and anthropogenic influences on water storage in the Loess Plateau,categorizing them into primary and secondary influences,utilizing data on climate and human activities.The findings revealed a declining trend in the overall TWSA of the Loess Plateau,with a rate of decrease at-0.65±0.05 cm/yr from 2003 to 2020(P<0.01).As the direct factors affecting TWSA,soil moisture dominated the change of TWSA before 2009,and groundwater dominated the change of TWSA after 2009.Spatially,there was variability in the changes of TWSA in the Loess Plateau.More in-depth studies showed that soil moisture changes in the study area were primarily driven by evapotranspiration and temperature,with precipitation and vegetation cover status playing a secondary role.Human activities had a secondary effect on soil moisture in some sub-regions.Population change and agricultural development were major factors in altering groundwater storage in the study area.Other than that,groundwater was influenced by natural factors to a limited extent.These findings provided valuable insights for local governments to implement proactive water management policies.展开更多
The construction of dams for intercepting and storing water has altered surface water distributions, landsea water exchanges, and the load response of the solid Earth. The lack of accurate estimation of reservoir prop...The construction of dams for intercepting and storing water has altered surface water distributions, landsea water exchanges, and the load response of the solid Earth. The lack of accurate estimation of reservoir properties through the land surface and hydrological models can lead to water storage simulation and extraction errors. This impact is particularly evident in many artificial reservoirs in China. The study aims to comprehensively assess the spatiotemporal distribution and trends of water storage in medium and large reservoirs(MLRs) in Chinese mainland during 1950-2016, and to investigate the gravity,displacement, and strain effects induced by the reservoir mass concentration using the load elasticity theory. In addition, the impoundment contributions of MLRs to the relative sea level changes were assessed using a sea-level equation. The results show impoundment increases in the MLRs during1950-2016, particularly in the Yangtze River(Changjiang) and southern basins, causing significant elastic load effects in the surrounding areas of the reservoirs and increasing the relative sea level in China's offshore. However, long-term groundwater estimation trends are overestimated and underestimated in the Yangtze River and southwestern basins, respectively, due to the neglect of the MLRs impacts or the uncertainty of the hydrological model's output(e.g., soil moisture, etc.). The construction of MLRs may reduce the water mass input from land to the ocean, thus slowing global sea level rise. The results of the impact of human activities on the regional water cycle provide important references and data support for improving the integration of hydrological models, evaluating Earth's viscoelastic responses under longterm reservoir storage, enhancing in-situ and satellite geodetic measurements, and identifying the main factors driving sea level changes.展开更多
Vertical forest structure is closely linked to multiple ecosystem characteristics,such as biodiversity,habitat,and productivity.Mixing tree species in planted forests has the potential to create diverse vertical fores...Vertical forest structure is closely linked to multiple ecosystem characteristics,such as biodiversity,habitat,and productivity.Mixing tree species in planted forests has the potential to create diverse vertical forest structures due to the different physiological and morphological traits of the composing tree species.However,the relative importance of species richness,species identity and species interactions for the variation in vertical forest structure remains unclear,mainly because traditional forest inventories do not observe vertical stand structure in detail.Terrestrial laser scanning(TLS),however,allows to study vertical forest structure in an unprecedented way.Therefore,we used TLS single scan data from 126 plots across three experimental planted forests of a largescale tree diversity experiment in Belgium to study the drivers of vertical forest structure.These plots were 9–11years old young pure and mixed forests,characterized by four levels of tree species richness ranging from monocultures to four-species mixtures,across twenty composition levels.We generated vertical plant profiles from the TLS data and derived six stand structural variables.Linear mixed models were used to test the effect of species richness on structural variables.Employing a hierarchical diversity interaction modelling framework,we further assessed species identity effect and various species interaction effects on the six stand structural variables.Our results showed that species richness did not significantly influence most of the stand structure variables,except for canopy height and foliage height diversity.Species identity on the other hand exhibited a significant impact on vertical forest structure across all sites.Species interaction effects were observed to be site-dependent due to varying site conditions and species pools,and rapidly growing tree species tend to dominate these interactions.Overall,our results highlighted the importance of considering both species identity and interaction effects in choosing suitable species combinations for forest management practices aimed at enhancing vertical forest structure.展开更多
As the demands of massive connections and vast coverage rapidly grow in the next wireless communication networks, rate splitting multiple access(RSMA) is considered to be the new promising access scheme since it can p...As the demands of massive connections and vast coverage rapidly grow in the next wireless communication networks, rate splitting multiple access(RSMA) is considered to be the new promising access scheme since it can provide higher efficiency with limited spectrum resources. In this paper, combining spectrum splitting with rate splitting, we propose to allocate resources with traffic offloading in hybrid satellite terrestrial networks. A novel deep reinforcement learning method is adopted to solve this challenging non-convex problem. However, the neverending learning process could prohibit its practical implementation. Therefore, we introduce the switch mechanism to avoid unnecessary learning. Additionally, the QoS constraint in the scheme can rule out unsuccessful transmission. The simulation results validates the energy efficiency performance and the convergence speed of the proposed algorithm.展开更多
The increasing temperature in the Yellow River Basin has led to a rapid rise in the melting level height,at a rate of 5.98 m yr^(-1)during the cold season,which further contributes to the transition from snowfall to r...The increasing temperature in the Yellow River Basin has led to a rapid rise in the melting level height,at a rate of 5.98 m yr^(-1)during the cold season,which further contributes to the transition from snowfall to rainfall patterns.Between 1979 and 2020,there has been a decrease in snowfall in the Yellow River Basin at a rate of-3.03 mm dec^(-1),while rainfall has been increasing at a rate of 1.00 mm dec^(-1).Consequently,the snowfall-to-rainfall ratio(SRR)has decreased.Snowfall directly replenishes terrestrial water storage(TWS)in solid form until it melts,while rainfall is rapidly lost through runoff and evaporation,in addition to infiltrating underground or remaining on the surface.Therefore,the decreasing SRR accelerates the depletion of water resources.According to the surface water balance equation,the reduction in precipitation and runoff,along with an increase in evaporation,results in a decrease in TWS during the cold season within the Yellow River Basin.In addition to climate change,human activities,considering the region's dense population and extensive agricultural land,also accelerate the decline of TWS.Notably,irrigation accounts for the largest proportion of water withdrawals in the Yellow River Basin(71.8%)and primarily occurs during the warm season(especially from June to August).The impact of human activities and climate change on the water cycle requires further in-depth research.展开更多
The fore leg of mole cricket (Orthoptera: Glyllotalpidae) has developed into claw for digging and excavating. As the result of having a well-suited body and appendages for living underground, mole cricket still nee...The fore leg of mole cricket (Orthoptera: Glyllotalpidae) has developed into claw for digging and excavating. As the result of having a well-suited body and appendages for living underground, mole cricket still needs to manoeuvre on land in some cases with some kinds of gait. In this paper, the three-dimensional kinematics information of mole cricket in terrestrial walking was recorded by using a high speed 3D video recording system. The mode and the gait of the terrestrial walking mole cricket were investigated by analyzing the kinematics parameters, and the kinematics coupling disciplines of each limb and body were discussed. The results show that the locomotion gait of mole cricket in terrestrial walking belongs to a distinctive alternating tripod gait. We also found that the fore legs of a mole cricket are not as effective as that of common hexapod insects, its middle legs and body joints act more effective in walking and turning which compensate the function of fore legs. The terrestrial lo-comotion of mole cricket is the result of biological coupling of three pairs of legs, the distinctive alternating tripod gait and the trunk locomotion.展开更多
In this paper, we use CEVSA, a process-based model, which has been validated on regional and global scales, to explore the temporal and spatial patterns of Net Primary Productivity (NPP) a...In this paper, we use CEVSA, a process-based model, which has been validated on regional and global scales, to explore the temporal and spatial patterns of Net Primary Productivity (NPP) and its responses to interannual climate fluctuations in China's terrestrial ecosystems over the period 1981-1998. The estimated results suggest that, in this study period, the averaged annual total NPP is about 3.09 Gt C/yr -1 and average NPP is about 342 g C/m 2 . The results also showed that the precipitation was the key factor determining the spatial distribution and temporal trends of NPP. Temporally, the total NPP exhibited a slowly increasing trend. In some ENSO years (e.g. 1982, 1986, 1997) NPP decreased clearly compared to the previous year, but the relationship between ENSO and NPP is complex due to the integrated effects of monsoons and regional differentiation. Spatially, the relatively high NPP occurred at the middle high latitudes, the low latitudes and the lower appeared at the middle latitudes. On national scale, precipitation is the key control factor on NPP variations and there exists a weak correlation between NPP and temperature, but regional responses are greatly different.展开更多
Owing to the lack o f terrestrial heat flow data, studying lithospheric thermal structure and geodynamics of the Yingen-Ejinaqi Basin in Inner Mongolia is limited. In this paper, the terrestrial heat flow o f the Chag...Owing to the lack o f terrestrial heat flow data, studying lithospheric thermal structure and geodynamics of the Yingen-Ejinaqi Basin in Inner Mongolia is limited. In this paper, the terrestrial heat flow o f the Chagan sag in the YingenEjinaqi Basin were calculated by 193 system steady-state temperature measurements of 4 wells, and newly measuring 62 rock thermal conductivity and 20 heat production rate data on basis o f the original 107 rock thermal conductivity and 70 heat production data. The results show that the average thermal conductivity and heat production rate are 2.11 ±0.28 W/(m.K) and2.42±0.25 nW/m^3 in the Lower Cretaceous o f the Chagan sag. The average geothermal gradient from the Lower Suhongtu 2 Formation to the Suhongtu 1 Fonnation is 37.6 °C/km, and that o f the Bayingebi 2 Formation is 27.4 °C/km. Meanwhile, the average terrestrial heat flow in the Chagan sag is 70.6 mW/m^2. On the above results, it is clear that there is an obvious negative correlation between the thermal conductivity o f the stratum and its geothermal gradient. Moreover, it reveals that there is a geothermal state between tectonically stable and active areas. This work may provide geothermal parameters for further research o f lithospheric thermal structure and geodynamics in the Chagan sag.展开更多
The spatial and temporal variability of land carbon flux over the past one hundred years was investi- gated based on an empirical model directry calculating soil respiration rate. Our model shows that during 1901-1995...The spatial and temporal variability of land carbon flux over the past one hundred years was investi- gated based on an empirical model directry calculating soil respiration rate. Our model shows that during 1901-1995, about 44-89 PgC (equals to 0.5, 0.9 PgC/ yr respectively) were absorbed by terrestrial biosphere. The simulated net ecosystem productivity (NEP) after the 1930s was close to the estimated value of u missing C sink' from deconvolution analysis. Most of the total carbon sink happened during 1951 -1985 with the estimated value of 33-50 PgC Three major sinks were located in the tropics (10°S-10°N), North- ern mid-latitudes (30°-60°N) and Southern subtropics (10°-40°S). During 1940s-mid-1970s, carbon sinks by terrestrial ecosystem increased with time, and decreased after the mid-1970s. These may be due to the ch anging of climate condition, as during the 1940s-1970s, temPerature decreased and precipitation increased, while after the mid-1970s, an opposite climate situation occurred with evident increasing in temperature and decreasing in precipitation. Usually, warmer and dryer climate condition is not favor for carbon absorption by biosphere and even induces net carbon release from soil, while cooler and wetter condition may induce more carbon sink. Our model results show that the net carbon flux is particularly dependent on moisture / precipitation effect despite of temperature effect, The changing of climate in the past century may be a possible factor inducing increases in carbon sink in addition to CO2 and N fertilizer.展开更多
Time-variable gravity data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission are used to study terrestrial water storage (TWS) changes over the Pearl River Basin (PRB) for the period 200...Time-variable gravity data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission are used to study terrestrial water storage (TWS) changes over the Pearl River Basin (PRB) for the period 2003-Nov. 2014. TWS estimates from GRACE generally show good agreement with those from two hydrological models GLDAS and WGHM. But they show different capability of detecting significant TWS changes over the PRB. Among them, WGHM is likely to underestimate the seasonal variability of TWS, while GRACE detects long- term water depletions over the upper PRB as was done by hydrological models, and observes significant water increases around the Longtan Reservoir (LTR) due to water impoundment. The heavy drought in 2011 caused by the persistent precipitation deficit has resulted in extreme low surface runoff and water level of the LTR. Moreover, large variability of summer and autumn precipitation may easily trigger floods and droughts in the rainy season in the PRB, especially for summer, as a high correlation of 0.89 was found between precipitation and surface runoff. Generally, the PRB TWS was negatively correlated with El Nifio-Southern Oscillation (ENSO) events. However, the modulation of the Pacific Decadal Oscillation (PDO) may impact this relationship, and the significant TWS anomaly was likely to occur in the peak of PDO phase as they agree well in both of the magnitude and timing of peaks. This indicates that GRACE-based TWS could be a valuable parameter for studying climatic in- fluences in the PRB.展开更多
Terrestrial supply to marginal seas is a function of interaction between land and ocean in response to climate changes.Terrestrial flux in sediments,therefore,is potential not only to reflect the paleoceanographic evo...Terrestrial supply to marginal seas is a function of interaction between land and ocean in response to climate changes.Terrestrial flux in sediments,therefore,is potential not only to reflect the paleoceanographic evolution of sedimentary basin,but also to reveal the paleoclimatic changes in source regions.Sediments from the Okinawa Trough were quantitatively partitioned into terrestrial,volcanic and biogenitic end members using constrained least-squares technique for geochemical compositional data.Combined with the density of bulk sediments and sedimentation rate,the terrestrial flux in sediments from the Okinawa Trough since the last 35 000 a was estimated.Based on surface seawater temperature(SST) and sea level changes over the past 35 000 a,the response of terrestrial flux to the climate changes was discussed.It is demonstrated that the terrestrial supply to the Okinawa Trough mainly derived from Chinese landmass via the Changjiang(Yangtze) River and controlled by sea level changes.During the post-glaciation,the terrestrial flux was the lowest in response to the highest sea level stand.During the last glacial maximum(LGM),the terrestrial flux was not so high as previously expected,indicating the arid climatic condition in source region was responsible for lowering the Changjiang River's runoff during that time.During the deglaciation,the terrestrial flux increased in response to a quick rising of the sea level,probably implicating occurrence of down-slope transport.The four events characterized by slight increase in terrestrial flux exactly correspond to the LGM,Heinrich events(H1,H2,H3),respectively.展开更多
Studies of the seasonal acclimatisation of behavioural and physiological processes usually focus on aquatic or semi-aquatic ectotherms and focus less effort on terrestrial ectotherms that experience more thermally het...Studies of the seasonal acclimatisation of behavioural and physiological processes usually focus on aquatic or semi-aquatic ectotherms and focus less effort on terrestrial ectotherms that experience more thermally heterogeneous environments. We conducted comparative studies and thermal acclimation experiments on the locomotion of the Chinese skink (Plestiodon chinensis) to test whether seasonal acclimatisation in locomotion exists in these terrestrial ectothermic vertebrates, and whether seasonal acclimatisation is predominantly induced by thermal environments. In natural populations, skinks ran faster during the summer season than during the spring season at high-test temperatures ranging from 27℃ to 36℃ but not at low-test temperatures ranging from 18℃ to 24℃. In contrast, the thermal acclimation experiments showed that the cold-acclimated skinks ran faster than the warm-acclimated skinks at the low- test temperatures but not at high-test temperatures. Therefore, the seasonal acclimatisation occurs to P chinensis, and may be induced by temperature as well as other factors like food availability, as indicated by the seasonal variation in the thermal dependence of locomotion, and the discrepancy between seasonal acclimatisation and thermal acclimation on locomotion.展开更多
To integrate the satellite communications with the LTE/5G services, the concept of Hybrid Satellite Terrestrial Relay Networks(HSTRNs) has been proposed. In this paper, we investigate the secure transmission in a HSTR...To integrate the satellite communications with the LTE/5G services, the concept of Hybrid Satellite Terrestrial Relay Networks(HSTRNs) has been proposed. In this paper, we investigate the secure transmission in a HSTRN where the eavesdropper can wiretap the transmitted messages from both the satellite and the intermediate relays. To effectively protect the message from wiretapping in these two phases, we consider cooperative jamming by the relays, where the jamming signals are optimized to maximize the secrecy rate under the total power constraint of relays. In the first phase, the Maximal Ratio Transmission(MRT) scheme is used to maximize the secrecy rate, while in the second phase, by interpolating between the sub-optimal MRT scheme and the null-space projection scheme, the optimal scheme can be obtained via an efficient one-dimensional searching method. Simulation results show that when the number of cooperative relays is small, the performance of the optimal scheme significantly outperforms that of MRT and null-space projection scheme. When the number of relays increases, the performance of the null-space projection approaches that of the optimal one.展开更多
Background: The stem curve of standing trees is an essential parameter for accurate estimation of stem volume.This study aims to directly quantify the occlusions within the single-scan terrestrial laser scanning(TLS) ...Background: The stem curve of standing trees is an essential parameter for accurate estimation of stem volume.This study aims to directly quantify the occlusions within the single-scan terrestrial laser scanning(TLS) data,evaluate its correlation with the accuracy of the retrieved stem curves, and subsequently, to assess the capacity of single-scan TLS to estimate stem curves.Methods: We proposed an index, occlusion rate, to quantify the occlusion level in TLS data. We then analyzed three influencing factors for the occlusion rate: the percentage of basal area near the scanning center, the scanning distance and the source of occlusions. Finally, we evaluated the effects of occlusions on stem curve estimates from single-scan TLS data.Results: The results showed that the correlations between the occlusion rate and the stem curve estimation accuracies were strong(r = 0.60–0.83), so was the correlations between the occlusion rate and its influencing factors(r = 0.84–0.99). It also showed that the occlusions from tree stems were the main factor of the low detection rate of stems, while the non-stem components mainly influenced the completeness of the retrieved stem curves.Conclusions: Our study demonstrates that the occlusions significantly affect the accuracy of stem curve retrieval from the single-scan TLS data in a typical-size(32 m × 32 m) forest plot. However, the single-scan mode has the capacity to accurately estimate the stem curve in a small forest plot(< 10 m × 10 m) or a plot with a lower occlusion rate, such as less than 35% in our tested datasets. The findings from this study are useful for guiding the practice of retrieving forest parameters using single-scan TLS data.展开更多
In recent years, with the development of terrestrial sequence stratigraphy, more attention has been focused on the study of the terrestrial lacustrine sequence stratigraphic model globally. Different viewpoints are pr...In recent years, with the development of terrestrial sequence stratigraphy, more attention has been focused on the study of the terrestrial lacustrine sequence stratigraphic model globally. Different viewpoints are preferred by researchers. Under the guidance of the theory of sequence stratigraphy, the findings of this paper indicate that climate is a major factor controlling the formation of the fourth-order sequence, based upon the study of the sequence stratigraphy in the Green River Formation of the Uinta basin in the USA. It also divides the fourth-order sequence in the terrestrial lacustrine basin into two system tracts: the wet (rising) half-cycle and the dry (falling) half- cycle, establishing a new-style fourth-order sequence stratigraphic model for the terrestrial lacustrine basin, that is, the climate-genetic sequence stratigraphic model. As a result, the theory of sequence stratigraphy is greatly enriched.展开更多
Carbon-isotope stratigraphy launched since the early technological development of carbon- isotope measurement in 1950s, however, the emergence and advance of terrestrial carbon-isotope stratigraphy took quite a long w...Carbon-isotope stratigraphy launched since the early technological development of carbon- isotope measurement in 1950s, however, the emergence and advance of terrestrial carbon-isotope stratigraphy took quite a long way. At early stage the exploration of carbon-isotope stratigraphy based on the marine biological shell carbonates was verified by repeatable carbon-isotope stratigraphic data, laboratory chemical experiments and the later laboratory foraminiferal culture experiments. The breakthrough for testifying the fundamentals of terrestrial carbon-isotope stratigraphy lies on the synchronous fluctuations between the carbon-isotope stratigraphic curves derived from marine biological shell carbonates and those derived from terrestrial C3 plants. The character that carbon-isotope stratigraphic curves can be globally synchronously correlated over the marine and terrestrial/atmospheric reservoir mainly excludes the potential biasing factors, such as diagenetic bias, carbon-isotope variations in intra/inter individual plant in same species or between species, ecological changes, changes in aridity, changes in source input and representative sampling. Therefore, the fundamentals of terrestrial carbon-isotope stratigraphy based on C3 plant successfully established. The terrestrial carbon-isotope stratigraphy can be used for global stratigraphic correlation, reconstructing the evolution of atmospheric CO2 and can further verify the published global carbon-cycle models. The terrestrial carbon-isotope stratigraphy based on the compound specific biomarkers and single-grained pollen may be a promising perspective in future.展开更多
Mobile communication standards have been developed into a new era of B5G and 6G.In recent years,low earth orbit(LEO)satellites and space Internet have become hot topics.The integrated satellite and terrestrial systems...Mobile communication standards have been developed into a new era of B5G and 6G.In recent years,low earth orbit(LEO)satellites and space Internet have become hot topics.The integrated satellite and terrestrial systems have been widely discussed by industries and academics,and even are expected to be applied in those huge constellations in construction.This paper points out the trends of two stages towards system integration of the terrestrial mobile communication and the satellite communications:to be compatible with 5G,and to be integrated within 6G.Based on analysis of the challenges of both stages,key technologies are thereafter analyzed in detail,covering both air interface currently discussed in 3GPP for B5G and also novel network architecture and related transmission technologies toward future 6G.展开更多
基金support of the National Natural Science Foundation of China(Grant Nos.U2240221 and 41977229)the Sichuan Youth Science and Technology Innovation Research Team Project(Grant No.2020JDTD0006).
文摘Non-contact remote sensing techniques,such as terrestrial laser scanning(TLS)and unmanned aerial vehicle(UAV)photogrammetry,have been globally applied for landslide monitoring in high and steep mountainous areas.These techniques acquire terrain data and enable ground deformation monitoring.However,practical application of these technologies still faces many difficulties due to complex terrain,limited access and dense vegetation.For instance,monitoring high and steep slopes can obstruct the TLS sightline,and the accuracy of the UAV model may be compromised by absence of ground control points(GCPs).This paper proposes a TLS-and UAV-based method for monitoring landslide deformation in high mountain valleys using traditional real-time kinematics(RTK)-based control points(RCPs),low-precision TLS-based control points(TCPs)and assumed control points(ACPs)to achieve high-precision surface deformation analysis under obstructed vision and impassable conditions.The effects of GCP accuracy,GCP quantity and automatic tie point(ATP)quantity on the accuracy of UAV modeling and surface deformation analysis were comprehensively analyzed.The results show that,the proposed method allows for the monitoring accuracy of landslides to exceed the accuracy of the GCPs themselves by adding additional low-accuracy GCPs.The proposed method was implemented for monitoring the Xinhua landslide in Baoxing County,China,and was validated against data from multiple sources.
基金This work was sponsored by the National Natural Science Foundation of China(No.32301442).
文摘The tolerance of terrestrial ecosystems to anthropogenic stress and climate change has received increasing attention considering the intensification of global changes caused by human activities.Improvement of the carbon sequestration capacity and ability to mitigate global changes in ecosystems,especially forest ecosystems,are simultaneously receiving increasing attention owing to the lack of sufficient effective negative emission technologies.
基金funded by the National Natural Science Foundation of China (NO. 42104028, 42174030 and 42004017)the Project Supported by the Open Fund of Hubei Luojia Laboratory (Grant No. 220100048 and 230100021)Program for Hubei Provincial Science and Technology Innovation Talents (Grant No. 2022EJD010)
文摘Terrestrial water storage(TWs)variations are associated with water mass movements,which may cause the deformation displacements of the Global Navigation Satellite System(GNSS)stations.This study investigates the spatio-temporal Tws variations and addresses the relationship between deformation variations observed in the Huang-Huai-Hai River Basin(HHHRB)and local hydrological features.Results indicate that the vertical velocities at the GNSS stations induced by TWS changes are relatively small,and the impacts of the terrestrial water storage changes are mainly reflected in the changes of seasonal characteristics.Although there is a downward TWS trend from 2011 to 2022 in most HHHRB areas,velocities from the vertical displacements of both Gravity Recovery and Climate Experiment(GRACE)and GRACE Follow-On(GFO)and the GNSS reflect that the HHHRB is undergoing an uplift process,while the magnitude of the GRACE/GFO derived velocities is much smaller than that of the GNSS solutions.Common hydrological deformations estimated from GRACE/GFO and GNSS measurements reveal that the TWS-derived displacements can explain 54.5%of the GNSS seasonal variations,with the phases of terrestrial water storage advancing by about one month relative to GNss common signal phases.Moreover,the decrease of the groundwater storage in the HHHRB has been accelerating since 2008.After reaching its lowest level around mid-2020,it began to rise rapidly,which might be closely related to the implementation of the South-North Water Transfer Central Project.
基金supported in part by the National Natural Science Foundation of China under Grant 42374037the State Key Laboratory of Geodesy and Earth’s Dynamics,Innovation Academy for Precision Measurement Science and Technology under Grant SKLGED2022-3-5in part by the Outstanding Youth Science Fund of Xi’an University of Science and Technology under Grant 2018YQ2-10。
文摘Changes in water resource storage are inevitable due to climate change and human activities,thus understanding alterations in water storage within a specific region is imperative for the planning and management of water resources.Data from the Gravity Recovery and Climate Experiment(GRACE)satellite mission are extensively employed to analyze large-scale total terrestrial water storage anomalies(TWSA).In this study,we derived a more reliable TWSA using different types of GRACE gravity models,which served as the basis for evaluating spatial and temporal variations in total terrestrial water storage and its hydrological components(soil moisture and groundwater)across the Loess Plateau.Additionally,we analyzed the impact of natural and anthropogenic influences on water storage in the Loess Plateau,categorizing them into primary and secondary influences,utilizing data on climate and human activities.The findings revealed a declining trend in the overall TWSA of the Loess Plateau,with a rate of decrease at-0.65±0.05 cm/yr from 2003 to 2020(P<0.01).As the direct factors affecting TWSA,soil moisture dominated the change of TWSA before 2009,and groundwater dominated the change of TWSA after 2009.Spatially,there was variability in the changes of TWSA in the Loess Plateau.More in-depth studies showed that soil moisture changes in the study area were primarily driven by evapotranspiration and temperature,with precipitation and vegetation cover status playing a secondary role.Human activities had a secondary effect on soil moisture in some sub-regions.Population change and agricultural development were major factors in altering groundwater storage in the study area.Other than that,groundwater was influenced by natural factors to a limited extent.These findings provided valuable insights for local governments to implement proactive water management policies.
基金supported by the National Natural Science Foundation of China (No.42274110 and 42374106)long-term monitoring project in the Three Gorges Reservoir area (the National Natural Science Foundation of China,No.41874090 and 41504065)。
文摘The construction of dams for intercepting and storing water has altered surface water distributions, landsea water exchanges, and the load response of the solid Earth. The lack of accurate estimation of reservoir properties through the land surface and hydrological models can lead to water storage simulation and extraction errors. This impact is particularly evident in many artificial reservoirs in China. The study aims to comprehensively assess the spatiotemporal distribution and trends of water storage in medium and large reservoirs(MLRs) in Chinese mainland during 1950-2016, and to investigate the gravity,displacement, and strain effects induced by the reservoir mass concentration using the load elasticity theory. In addition, the impoundment contributions of MLRs to the relative sea level changes were assessed using a sea-level equation. The results show impoundment increases in the MLRs during1950-2016, particularly in the Yangtze River(Changjiang) and southern basins, causing significant elastic load effects in the surrounding areas of the reservoirs and increasing the relative sea level in China's offshore. However, long-term groundwater estimation trends are overestimated and underestimated in the Yangtze River and southwestern basins, respectively, due to the neglect of the MLRs impacts or the uncertainty of the hydrological model's output(e.g., soil moisture, etc.). The construction of MLRs may reduce the water mass input from land to the ocean, thus slowing global sea level rise. The results of the impact of human activities on the regional water cycle provide important references and data support for improving the integration of hydrological models, evaluating Earth's viscoelastic responses under longterm reservoir storage, enhancing in-situ and satellite geodetic measurements, and identifying the main factors driving sea level changes.
基金Mengxi Wang holds a doctoral scholarship from the China scholarship council(CSC:202003270025)。
文摘Vertical forest structure is closely linked to multiple ecosystem characteristics,such as biodiversity,habitat,and productivity.Mixing tree species in planted forests has the potential to create diverse vertical forest structures due to the different physiological and morphological traits of the composing tree species.However,the relative importance of species richness,species identity and species interactions for the variation in vertical forest structure remains unclear,mainly because traditional forest inventories do not observe vertical stand structure in detail.Terrestrial laser scanning(TLS),however,allows to study vertical forest structure in an unprecedented way.Therefore,we used TLS single scan data from 126 plots across three experimental planted forests of a largescale tree diversity experiment in Belgium to study the drivers of vertical forest structure.These plots were 9–11years old young pure and mixed forests,characterized by four levels of tree species richness ranging from monocultures to four-species mixtures,across twenty composition levels.We generated vertical plant profiles from the TLS data and derived six stand structural variables.Linear mixed models were used to test the effect of species richness on structural variables.Employing a hierarchical diversity interaction modelling framework,we further assessed species identity effect and various species interaction effects on the six stand structural variables.Our results showed that species richness did not significantly influence most of the stand structure variables,except for canopy height and foliage height diversity.Species identity on the other hand exhibited a significant impact on vertical forest structure across all sites.Species interaction effects were observed to be site-dependent due to varying site conditions and species pools,and rapidly growing tree species tend to dominate these interactions.Overall,our results highlighted the importance of considering both species identity and interaction effects in choosing suitable species combinations for forest management practices aimed at enhancing vertical forest structure.
文摘As the demands of massive connections and vast coverage rapidly grow in the next wireless communication networks, rate splitting multiple access(RSMA) is considered to be the new promising access scheme since it can provide higher efficiency with limited spectrum resources. In this paper, combining spectrum splitting with rate splitting, we propose to allocate resources with traffic offloading in hybrid satellite terrestrial networks. A novel deep reinforcement learning method is adopted to solve this challenging non-convex problem. However, the neverending learning process could prohibit its practical implementation. Therefore, we introduce the switch mechanism to avoid unnecessary learning. Additionally, the QoS constraint in the scheme can rule out unsuccessful transmission. The simulation results validates the energy efficiency performance and the convergence speed of the proposed algorithm.
基金National Natural Science Foundation of China (42041004)。
文摘The increasing temperature in the Yellow River Basin has led to a rapid rise in the melting level height,at a rate of 5.98 m yr^(-1)during the cold season,which further contributes to the transition from snowfall to rainfall patterns.Between 1979 and 2020,there has been a decrease in snowfall in the Yellow River Basin at a rate of-3.03 mm dec^(-1),while rainfall has been increasing at a rate of 1.00 mm dec^(-1).Consequently,the snowfall-to-rainfall ratio(SRR)has decreased.Snowfall directly replenishes terrestrial water storage(TWS)in solid form until it melts,while rainfall is rapidly lost through runoff and evaporation,in addition to infiltrating underground or remaining on the surface.Therefore,the decreasing SRR accelerates the depletion of water resources.According to the surface water balance equation,the reduction in precipitation and runoff,along with an increase in evaporation,results in a decrease in TWS during the cold season within the Yellow River Basin.In addition to climate change,human activities,considering the region's dense population and extensive agricultural land,also accelerate the decline of TWS.Notably,irrigation accounts for the largest proportion of water withdrawals in the Yellow River Basin(71.8%)and primarily occurs during the warm season(especially from June to August).The impact of human activities and climate change on the water cycle requires further in-depth research.
基金Acknowledgement This work was supported by the National Natural Science Foundation (Grant No. 50635030).
文摘The fore leg of mole cricket (Orthoptera: Glyllotalpidae) has developed into claw for digging and excavating. As the result of having a well-suited body and appendages for living underground, mole cricket still needs to manoeuvre on land in some cases with some kinds of gait. In this paper, the three-dimensional kinematics information of mole cricket in terrestrial walking was recorded by using a high speed 3D video recording system. The mode and the gait of the terrestrial walking mole cricket were investigated by analyzing the kinematics parameters, and the kinematics coupling disciplines of each limb and body were discussed. The results show that the locomotion gait of mole cricket in terrestrial walking belongs to a distinctive alternating tripod gait. We also found that the fore legs of a mole cricket are not as effective as that of common hexapod insects, its middle legs and body joints act more effective in walking and turning which compensate the function of fore legs. The terrestrial lo-comotion of mole cricket is the result of biological coupling of three pairs of legs, the distinctive alternating tripod gait and the trunk locomotion.
基金Knowledge Innovation Project of IGSNRR CAS No.CXIOG-E01-02-04
文摘In this paper, we use CEVSA, a process-based model, which has been validated on regional and global scales, to explore the temporal and spatial patterns of Net Primary Productivity (NPP) and its responses to interannual climate fluctuations in China's terrestrial ecosystems over the period 1981-1998. The estimated results suggest that, in this study period, the averaged annual total NPP is about 3.09 Gt C/yr -1 and average NPP is about 342 g C/m 2 . The results also showed that the precipitation was the key factor determining the spatial distribution and temporal trends of NPP. Temporally, the total NPP exhibited a slowly increasing trend. In some ENSO years (e.g. 1982, 1986, 1997) NPP decreased clearly compared to the previous year, but the relationship between ENSO and NPP is complex due to the integrated effects of monsoons and regional differentiation. Spatially, the relatively high NPP occurred at the middle high latitudes, the low latitudes and the lower appeared at the middle latitudes. On national scale, precipitation is the key control factor on NPP variations and there exists a weak correlation between NPP and temperature, but regional responses are greatly different.
基金funded by the National Natural Science Foundation of China (grant no. 41374089, 41402219)the Foundation of the Geoscience Young Science Foundation of Liu Baojun (Grant No. DMSM2017003)+1 种基金the Sichuan Science & Technology Foundation (Grant No. 2016JQ0043)the State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing (Grant No. PRP/open-1705)
文摘Owing to the lack o f terrestrial heat flow data, studying lithospheric thermal structure and geodynamics of the Yingen-Ejinaqi Basin in Inner Mongolia is limited. In this paper, the terrestrial heat flow o f the Chagan sag in the YingenEjinaqi Basin were calculated by 193 system steady-state temperature measurements of 4 wells, and newly measuring 62 rock thermal conductivity and 20 heat production rate data on basis o f the original 107 rock thermal conductivity and 70 heat production data. The results show that the average thermal conductivity and heat production rate are 2.11 ±0.28 W/(m.K) and2.42±0.25 nW/m^3 in the Lower Cretaceous o f the Chagan sag. The average geothermal gradient from the Lower Suhongtu 2 Formation to the Suhongtu 1 Fonnation is 37.6 °C/km, and that o f the Bayingebi 2 Formation is 27.4 °C/km. Meanwhile, the average terrestrial heat flow in the Chagan sag is 70.6 mW/m^2. On the above results, it is clear that there is an obvious negative correlation between the thermal conductivity o f the stratum and its geothermal gradient. Moreover, it reveals that there is a geothermal state between tectonically stable and active areas. This work may provide geothermal parameters for further research o f lithospheric thermal structure and geodynamics in the Chagan sag.
基金his research was funded by CAS One Hundred Talents project Knowledge Innovation Project ofCAS (KZCX2-201).
文摘The spatial and temporal variability of land carbon flux over the past one hundred years was investi- gated based on an empirical model directry calculating soil respiration rate. Our model shows that during 1901-1995, about 44-89 PgC (equals to 0.5, 0.9 PgC/ yr respectively) were absorbed by terrestrial biosphere. The simulated net ecosystem productivity (NEP) after the 1930s was close to the estimated value of u missing C sink' from deconvolution analysis. Most of the total carbon sink happened during 1951 -1985 with the estimated value of 33-50 PgC Three major sinks were located in the tropics (10°S-10°N), North- ern mid-latitudes (30°-60°N) and Southern subtropics (10°-40°S). During 1940s-mid-1970s, carbon sinks by terrestrial ecosystem increased with time, and decreased after the mid-1970s. These may be due to the ch anging of climate condition, as during the 1940s-1970s, temPerature decreased and precipitation increased, while after the mid-1970s, an opposite climate situation occurred with evident increasing in temperature and decreasing in precipitation. Usually, warmer and dryer climate condition is not favor for carbon absorption by biosphere and even induces net carbon release from soil, while cooler and wetter condition may induce more carbon sink. Our model results show that the net carbon flux is particularly dependent on moisture / precipitation effect despite of temperature effect, The changing of climate in the past century may be a possible factor inducing increases in carbon sink in addition to CO2 and N fertilizer.
基金supported by the National Natural Science Foundation of China (41174020, 41131067)the Fundamental Research Funds for the Central Universities (2014214020203)+1 种基金the open fund of Key Laboratory of Geospace Environment and Geodesy, Ministry of Education (14-02-011)the open fund of Guangxi Key Laboratory of Spatial Information and Geomatics (14-045-24-17)
文摘Time-variable gravity data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission are used to study terrestrial water storage (TWS) changes over the Pearl River Basin (PRB) for the period 2003-Nov. 2014. TWS estimates from GRACE generally show good agreement with those from two hydrological models GLDAS and WGHM. But they show different capability of detecting significant TWS changes over the PRB. Among them, WGHM is likely to underestimate the seasonal variability of TWS, while GRACE detects long- term water depletions over the upper PRB as was done by hydrological models, and observes significant water increases around the Longtan Reservoir (LTR) due to water impoundment. The heavy drought in 2011 caused by the persistent precipitation deficit has resulted in extreme low surface runoff and water level of the LTR. Moreover, large variability of summer and autumn precipitation may easily trigger floods and droughts in the rainy season in the PRB, especially for summer, as a high correlation of 0.89 was found between precipitation and surface runoff. Generally, the PRB TWS was negatively correlated with El Nifio-Southern Oscillation (ENSO) events. However, the modulation of the Pacific Decadal Oscillation (PDO) may impact this relationship, and the significant TWS anomaly was likely to occur in the peak of PDO phase as they agree well in both of the magnitude and timing of peaks. This indicates that GRACE-based TWS could be a valuable parameter for studying climatic in- fluences in the PRB.
基金The National Natural Science Foundation of China under contract Nos 40431002, 40276024 and 40606016
文摘Terrestrial supply to marginal seas is a function of interaction between land and ocean in response to climate changes.Terrestrial flux in sediments,therefore,is potential not only to reflect the paleoceanographic evolution of sedimentary basin,but also to reveal the paleoclimatic changes in source regions.Sediments from the Okinawa Trough were quantitatively partitioned into terrestrial,volcanic and biogenitic end members using constrained least-squares technique for geochemical compositional data.Combined with the density of bulk sediments and sedimentation rate,the terrestrial flux in sediments from the Okinawa Trough since the last 35 000 a was estimated.Based on surface seawater temperature(SST) and sea level changes over the past 35 000 a,the response of terrestrial flux to the climate changes was discussed.It is demonstrated that the terrestrial supply to the Okinawa Trough mainly derived from Chinese landmass via the Changjiang(Yangtze) River and controlled by sea level changes.During the post-glaciation,the terrestrial flux was the lowest in response to the highest sea level stand.During the last glacial maximum(LGM),the terrestrial flux was not so high as previously expected,indicating the arid climatic condition in source region was responsible for lowering the Changjiang River's runoff during that time.During the deglaciation,the terrestrial flux increased in response to a quick rising of the sea level,probably implicating occurrence of down-slope transport.The four events characterized by slight increase in terrestrial flux exactly correspond to the LGM,Heinrich events(H1,H2,H3),respectively.
基金supported by grants from the National Natural Science Foundation of China (30770274)the "One Hundred Talents Program" of the Chinese Academy of Sciences for W. G. DU
文摘Studies of the seasonal acclimatisation of behavioural and physiological processes usually focus on aquatic or semi-aquatic ectotherms and focus less effort on terrestrial ectotherms that experience more thermally heterogeneous environments. We conducted comparative studies and thermal acclimation experiments on the locomotion of the Chinese skink (Plestiodon chinensis) to test whether seasonal acclimatisation in locomotion exists in these terrestrial ectothermic vertebrates, and whether seasonal acclimatisation is predominantly induced by thermal environments. In natural populations, skinks ran faster during the summer season than during the spring season at high-test temperatures ranging from 27℃ to 36℃ but not at low-test temperatures ranging from 18℃ to 24℃. In contrast, the thermal acclimation experiments showed that the cold-acclimated skinks ran faster than the warm-acclimated skinks at the low- test temperatures but not at high-test temperatures. Therefore, the seasonal acclimatisation occurs to P chinensis, and may be induced by temperature as well as other factors like food availability, as indicated by the seasonal variation in the thermal dependence of locomotion, and the discrepancy between seasonal acclimatisation and thermal acclimation on locomotion.
基金supported in part by the National Natural Science Foundation of China under Grant No.61871032in part by Chinese Ministry of Education-China Mobile Communication Corporation Research Fund under Grant MCM20170101in part by the Open Research Fund of Key Laboratory of Cognitive Radio and Information Processing,Ministry of Education (Guilin University of Electronic Technology) under Grant CRKL190204
文摘To integrate the satellite communications with the LTE/5G services, the concept of Hybrid Satellite Terrestrial Relay Networks(HSTRNs) has been proposed. In this paper, we investigate the secure transmission in a HSTRN where the eavesdropper can wiretap the transmitted messages from both the satellite and the intermediate relays. To effectively protect the message from wiretapping in these two phases, we consider cooperative jamming by the relays, where the jamming signals are optimized to maximize the secrecy rate under the total power constraint of relays. In the first phase, the Maximal Ratio Transmission(MRT) scheme is used to maximize the secrecy rate, while in the second phase, by interpolating between the sub-optimal MRT scheme and the null-space projection scheme, the optimal scheme can be obtained via an efficient one-dimensional searching method. Simulation results show that when the number of cooperative relays is small, the performance of the optimal scheme significantly outperforms that of MRT and null-space projection scheme. When the number of relays increases, the performance of the null-space projection approaches that of the optimal one.
基金supported by the National Natural Science Foundation of China(Grant Nos.41671414,41971380,41331171 and 41171265)the National Key Research and Development Program of China(No.2016YFB0501404)
文摘Background: The stem curve of standing trees is an essential parameter for accurate estimation of stem volume.This study aims to directly quantify the occlusions within the single-scan terrestrial laser scanning(TLS) data,evaluate its correlation with the accuracy of the retrieved stem curves, and subsequently, to assess the capacity of single-scan TLS to estimate stem curves.Methods: We proposed an index, occlusion rate, to quantify the occlusion level in TLS data. We then analyzed three influencing factors for the occlusion rate: the percentage of basal area near the scanning center, the scanning distance and the source of occlusions. Finally, we evaluated the effects of occlusions on stem curve estimates from single-scan TLS data.Results: The results showed that the correlations between the occlusion rate and the stem curve estimation accuracies were strong(r = 0.60–0.83), so was the correlations between the occlusion rate and its influencing factors(r = 0.84–0.99). It also showed that the occlusions from tree stems were the main factor of the low detection rate of stems, while the non-stem components mainly influenced the completeness of the retrieved stem curves.Conclusions: Our study demonstrates that the occlusions significantly affect the accuracy of stem curve retrieval from the single-scan TLS data in a typical-size(32 m × 32 m) forest plot. However, the single-scan mode has the capacity to accurately estimate the stem curve in a small forest plot(< 10 m × 10 m) or a plot with a lower occlusion rate, such as less than 35% in our tested datasets. The findings from this study are useful for guiding the practice of retrieving forest parameters using single-scan TLS data.
基金These research results are part of a key international cooperation project carried out during 2003 and 2005 and financially supported by SINOPEC.
文摘In recent years, with the development of terrestrial sequence stratigraphy, more attention has been focused on the study of the terrestrial lacustrine sequence stratigraphic model globally. Different viewpoints are preferred by researchers. Under the guidance of the theory of sequence stratigraphy, the findings of this paper indicate that climate is a major factor controlling the formation of the fourth-order sequence, based upon the study of the sequence stratigraphy in the Green River Formation of the Uinta basin in the USA. It also divides the fourth-order sequence in the terrestrial lacustrine basin into two system tracts: the wet (rising) half-cycle and the dry (falling) half- cycle, establishing a new-style fourth-order sequence stratigraphic model for the terrestrial lacustrine basin, that is, the climate-genetic sequence stratigraphic model. As a result, the theory of sequence stratigraphy is greatly enriched.
基金the China Oxford Scholarship Fund (COSF) from Hong KongBurdett-Coutts Fund from Department of Earth Sciences and Graduate Student Award from St Peter’s College,University of Oxford, Wing Yip Bursary from Wing Yip Fund, LondonSeed Science Fund (No.2462014YJRC027) from China University of Petroleum-Beijing for this research
文摘Carbon-isotope stratigraphy launched since the early technological development of carbon- isotope measurement in 1950s, however, the emergence and advance of terrestrial carbon-isotope stratigraphy took quite a long way. At early stage the exploration of carbon-isotope stratigraphy based on the marine biological shell carbonates was verified by repeatable carbon-isotope stratigraphic data, laboratory chemical experiments and the later laboratory foraminiferal culture experiments. The breakthrough for testifying the fundamentals of terrestrial carbon-isotope stratigraphy lies on the synchronous fluctuations between the carbon-isotope stratigraphic curves derived from marine biological shell carbonates and those derived from terrestrial C3 plants. The character that carbon-isotope stratigraphic curves can be globally synchronously correlated over the marine and terrestrial/atmospheric reservoir mainly excludes the potential biasing factors, such as diagenetic bias, carbon-isotope variations in intra/inter individual plant in same species or between species, ecological changes, changes in aridity, changes in source input and representative sampling. Therefore, the fundamentals of terrestrial carbon-isotope stratigraphy based on C3 plant successfully established. The terrestrial carbon-isotope stratigraphy can be used for global stratigraphic correlation, reconstructing the evolution of atmospheric CO2 and can further verify the published global carbon-cycle models. The terrestrial carbon-isotope stratigraphy based on the compound specific biomarkers and single-grained pollen may be a promising perspective in future.
基金This work was supported in part by the National Science Fund for Distinguished Young Scholars in China under grant 61425012the National Science Foundation Project in China under grant 61931005 and 61731017.
文摘Mobile communication standards have been developed into a new era of B5G and 6G.In recent years,low earth orbit(LEO)satellites and space Internet have become hot topics.The integrated satellite and terrestrial systems have been widely discussed by industries and academics,and even are expected to be applied in those huge constellations in construction.This paper points out the trends of two stages towards system integration of the terrestrial mobile communication and the satellite communications:to be compatible with 5G,and to be integrated within 6G.Based on analysis of the challenges of both stages,key technologies are thereafter analyzed in detail,covering both air interface currently discussed in 3GPP for B5G and also novel network architecture and related transmission technologies toward future 6G.