To generate test vector sets that can efficiently activate hardware Trojans and improve probability of the hardware Trojan activation,an efficient hardware Trojan activation method is proposed based on greedy algorith...To generate test vector sets that can efficiently activate hardware Trojans and improve probability of the hardware Trojan activation,an efficient hardware Trojan activation method is proposed based on greedy algorithm for combinatorial hardware Trojans. Based on the greedy algorithm and the recursive construction method in the combination test,the method formulates appropriate and useful greedy strategy and generates test vector sets with different combinatorial correlation coefficients to activate hardware Trojans in target circuits. The experiment was carried out based on advanced encryption standard( AES) hardware encryption circuit,different combinatorial hardware Trojans were implanted in AES as target circuits,the experiment of detecting hardware Trojans in target circuits was performed by applying the proposed method and different combinatorial hardware Trojans in target circuits were activated successfully many times in the experiment. The experimental results showthat the test vector sets generated using the proposed method could effectively activate combinatorial hardware Trojans,improve the probability of the hardware Trojan being activated,and also be applied to practice.展开更多
This paper presents a framework of a multi-terminal HVDC transmission system and its multi-functional control strategy.The framework possesses the basic characteristics of the DC-grid and is suitable in integrating di...This paper presents a framework of a multi-terminal HVDC transmission system and its multi-functional control strategy.The framework possesses the basic characteristics of the DC-grid and is suitable in integrating distributed power sources.The paper proposes the first architecture for a multiterminal HVDC transmission system using the VSC technology.Its control strategy offers various functionalities that include controls for operation mode,start-up and shutdown,DC voltage,and station online re-connecting,which are significantly different from the control of point-to-point VSC-HVDC systems.The framework has not only been evaluated in real-time simulation studies,but has also been implemented onsite for the first time via the China Southern Grid's Nan'ao Multi-terminal VSCHVDC(VSC-MTDC)project.This paper gives a brief review of the current research and engineering achievements in this field,which includes four aspects:the architecture of the VSCMTDC system,the structure of the control and protection system,simulation verification tests setting,and the results of real-time hardware in hardware in loop(HIL)simulation studies and onsite tests.展开更多
IHEP, China is constructing a 100 MeV/100 kW electron Linac for NSC KIPT, Ukraine. This linac will be used as the driver of a neutron source based on a subcritical assembly. In 2012, the injector part of the accelerat...IHEP, China is constructing a 100 MeV/100 kW electron Linac for NSC KIPT, Ukraine. This linac will be used as the driver of a neutron source based on a subcritical assembly. In 2012, the injector part of the accelerator was pre-installed as a testing facility in the experimental hall #2 of IHEP. The injector beam and key hardware testing results met the design goal. Recently, the injector testing facility was disassembled and all of the components for the whole accelerator have been shipped to Ukraine from China by the ocean shipping. The installation of the whole machine in KIPT will be started in June, 2013. The construction progress, the design and testing results of the injector beam and key hardware are presented.展开更多
文摘To generate test vector sets that can efficiently activate hardware Trojans and improve probability of the hardware Trojan activation,an efficient hardware Trojan activation method is proposed based on greedy algorithm for combinatorial hardware Trojans. Based on the greedy algorithm and the recursive construction method in the combination test,the method formulates appropriate and useful greedy strategy and generates test vector sets with different combinatorial correlation coefficients to activate hardware Trojans in target circuits. The experiment was carried out based on advanced encryption standard( AES) hardware encryption circuit,different combinatorial hardware Trojans were implanted in AES as target circuits,the experiment of detecting hardware Trojans in target circuits was performed by applying the proposed method and different combinatorial hardware Trojans in target circuits were activated successfully many times in the experiment. The experimental results showthat the test vector sets generated using the proposed method could effectively activate combinatorial hardware Trojans,improve the probability of the hardware Trojan being activated,and also be applied to practice.
基金supported by the 863 National High Technology Research and Development Program of China(2011AA05AI02)China Southern Power Grid Company.
文摘This paper presents a framework of a multi-terminal HVDC transmission system and its multi-functional control strategy.The framework possesses the basic characteristics of the DC-grid and is suitable in integrating distributed power sources.The paper proposes the first architecture for a multiterminal HVDC transmission system using the VSC technology.Its control strategy offers various functionalities that include controls for operation mode,start-up and shutdown,DC voltage,and station online re-connecting,which are significantly different from the control of point-to-point VSC-HVDC systems.The framework has not only been evaluated in real-time simulation studies,but has also been implemented onsite for the first time via the China Southern Grid's Nan'ao Multi-terminal VSCHVDC(VSC-MTDC)project.This paper gives a brief review of the current research and engineering achievements in this field,which includes four aspects:the architecture of the VSCMTDC system,the structure of the control and protection system,simulation verification tests setting,and the results of real-time hardware in hardware in loop(HIL)simulation studies and onsite tests.
文摘IHEP, China is constructing a 100 MeV/100 kW electron Linac for NSC KIPT, Ukraine. This linac will be used as the driver of a neutron source based on a subcritical assembly. In 2012, the injector part of the accelerator was pre-installed as a testing facility in the experimental hall #2 of IHEP. The injector beam and key hardware testing results met the design goal. Recently, the injector testing facility was disassembled and all of the components for the whole accelerator have been shipped to Ukraine from China by the ocean shipping. The installation of the whole machine in KIPT will be started in June, 2013. The construction progress, the design and testing results of the injector beam and key hardware are presented.