As a nonparametric method,the Kruskal-Wallis test is widely used to compare three or more independent groups when an ordinal or interval level of data is available,especially when the assump-tions of analysis of varia...As a nonparametric method,the Kruskal-Wallis test is widely used to compare three or more independent groups when an ordinal or interval level of data is available,especially when the assump-tions of analysis of variance (ANOVA) are not met.If the Kruskal-Wallis statistic is statistically signifi-cant,Nemenyi test is an alternative method for further pairwise multiple comparisons to locate the source of significance.Unfortunately,most popular statistical packages do not integrate the Nemenyi test,which is not easy to be calculated by hand.We described the theory and applications of the Kruskal-Wallis and Nemenyi tests,and presented a flexible SAS macro to implement the two tests.The SAS macro was demonstrated by two examples from our cohort study in occupational epidemiology.It provides a useful tool for SAS users to test the differences among three or more independent groups using a nonparametric method.展开更多
Fertilizers use can be optimized through soil testing and leaf analysis. This paper deals with using soil analysis as a base for fertilizer use in maize. A field experiment was carried out in two summer seasons of 201...Fertilizers use can be optimized through soil testing and leaf analysis. This paper deals with using soil analysis as a base for fertilizer use in maize. A field experiment was carried out in two summer seasons of 2013 and 2014 with maize (triple hybrid) in Oraby Village, Mariut sector, Alexandria, Egypt. Soil testing shows that soil was clay loam, with high Na and CaCO<sub>3</sub> contents with high pH, low organic matter, medium P and K and low micronutrient contents (Fe, Zn, Mn and Cu), seven treatments were designed. The most promising treatment was when P and K were increased and micronutrients were added based on soil testing. This treatment resulted in the highest yield with better grain contents of protein and nutrients which indicated that soil-test based on fertilizer use was superior. Soil analysis at the end of the experiment showed higher P and K contents. This approach could be adopted for regions with similar soil conditions in other parts of the world.展开更多
Accurately characterizing the liver's mechanical properties is of paramount importance for disease diagnosis,treatment,surgical prosthetic modeling,and impact injury dummies.However,due to its inherent biological ...Accurately characterizing the liver's mechanical properties is of paramount importance for disease diagnosis,treatment,surgical prosthetic modeling,and impact injury dummies.However,due to its inherent biological soft tissue nature,the characterization of mechanical behavior varies across testing methods and sample types.In this study,we employed transmission electron microscope and Micro CT to observe the morphology of the marginal and center of rat livers and conducted macroscopic mechanical tests to characterize their elasticity and viscoelasticity.The results revealed that the central region displayed higher metabolic levels,elongated mitochondria,and an abundance of rough endoplasmic reticulum at the microscale.At the mesoscale,larger diameter portal veins were mainly distributed in the central region,while smaller diameter arteries were predominantly located at the periphery.At the macroscale,under a strain rate of 0.0167 s^(-1),no significant differences were observed in the elastic properties between the two regions.However,as the strain rate increased up to 0.167 s^(-1),the central region displayed higher porosity,resulting in reduced liquid loss,increased hardness,and higher viscosity compared to the periphery.Consequently,the liver demonstrated overall heterogeneity,with isotropic models suitable for the peripheral region,while more intricate models may be required to capture the complexity of the central region with its intricate vasculature.展开更多
基金supported by a grant from the National Basic Research Program of China (No. 2011CB503804)
文摘As a nonparametric method,the Kruskal-Wallis test is widely used to compare three or more independent groups when an ordinal or interval level of data is available,especially when the assump-tions of analysis of variance (ANOVA) are not met.If the Kruskal-Wallis statistic is statistically signifi-cant,Nemenyi test is an alternative method for further pairwise multiple comparisons to locate the source of significance.Unfortunately,most popular statistical packages do not integrate the Nemenyi test,which is not easy to be calculated by hand.We described the theory and applications of the Kruskal-Wallis and Nemenyi tests,and presented a flexible SAS macro to implement the two tests.The SAS macro was demonstrated by two examples from our cohort study in occupational epidemiology.It provides a useful tool for SAS users to test the differences among three or more independent groups using a nonparametric method.
文摘Fertilizers use can be optimized through soil testing and leaf analysis. This paper deals with using soil analysis as a base for fertilizer use in maize. A field experiment was carried out in two summer seasons of 2013 and 2014 with maize (triple hybrid) in Oraby Village, Mariut sector, Alexandria, Egypt. Soil testing shows that soil was clay loam, with high Na and CaCO<sub>3</sub> contents with high pH, low organic matter, medium P and K and low micronutrient contents (Fe, Zn, Mn and Cu), seven treatments were designed. The most promising treatment was when P and K were increased and micronutrients were added based on soil testing. This treatment resulted in the highest yield with better grain contents of protein and nutrients which indicated that soil-test based on fertilizer use was superior. Soil analysis at the end of the experiment showed higher P and K contents. This approach could be adopted for regions with similar soil conditions in other parts of the world.
基金supported by the National Natural Science Foundation of China(Grant Nos.U2241273,12172034,U20A20390,and 11827803)the Beijing Municipal Natural Science Foundation(Grant No.7212205)+1 种基金the 111 project(Grant No.B13003)the Fundamental Research Funds for the Central Universities.
文摘Accurately characterizing the liver's mechanical properties is of paramount importance for disease diagnosis,treatment,surgical prosthetic modeling,and impact injury dummies.However,due to its inherent biological soft tissue nature,the characterization of mechanical behavior varies across testing methods and sample types.In this study,we employed transmission electron microscope and Micro CT to observe the morphology of the marginal and center of rat livers and conducted macroscopic mechanical tests to characterize their elasticity and viscoelasticity.The results revealed that the central region displayed higher metabolic levels,elongated mitochondria,and an abundance of rough endoplasmic reticulum at the microscale.At the mesoscale,larger diameter portal veins were mainly distributed in the central region,while smaller diameter arteries were predominantly located at the periphery.At the macroscale,under a strain rate of 0.0167 s^(-1),no significant differences were observed in the elastic properties between the two regions.However,as the strain rate increased up to 0.167 s^(-1),the central region displayed higher porosity,resulting in reduced liquid loss,increased hardness,and higher viscosity compared to the periphery.Consequently,the liver demonstrated overall heterogeneity,with isotropic models suitable for the peripheral region,while more intricate models may be required to capture the complexity of the central region with its intricate vasculature.