G-DINA(the generalizeddeterministic input,noisy and gate)模型限制条件少,应用范围广,满足大量心理与教育评估测验数据的要求。研究提出一种适用于G-DINA等模型的同时标定新题Q矩阵与项目参数的认知诊断计算机化自适应测验(CD-CAT)...G-DINA(the generalizeddeterministic input,noisy and gate)模型限制条件少,应用范围广,满足大量心理与教育评估测验数据的要求。研究提出一种适用于G-DINA等模型的同时标定新题Q矩阵与项目参数的认知诊断计算机化自适应测验(CD-CAT)在线标定新方法SCADOCM,以期促进CD-CAT在实践中的推广与应用。本研究分别基于模拟题库以及真实题库进行研究,结果表明:相比传统的SIE方法,SCADOCM在各实验条件下均具有较为理想的标定精度与标定效率,应用前景较好;SIE方法不适用于饱和的G-DINA等模型,其各实验条件下的Q矩阵标定精度均较低。展开更多
为了更好地应对多目标跟踪联合检测算法面对的场景遮挡问题,通过结合注意力机制,提出基于Transformer的运动预测和数据关联(Transformer-based motion prediction and data association,TrMPDA)联合检测跟踪方法。首先,考虑到置信度检...为了更好地应对多目标跟踪联合检测算法面对的场景遮挡问题,通过结合注意力机制,提出基于Transformer的运动预测和数据关联(Transformer-based motion prediction and data association,TrMPDA)联合检测跟踪方法。首先,考虑到置信度检测框的质量以及深度特征的视觉表示能力对遮挡场景下跟踪效果的影响,重新设计TrMPDA骨干网络中的ResNet卷积模块,利用相邻像素和长距离像素间丰富的上下文关系指导动态注意矩阵的学习,增强深度特征的视觉表示能力,并通过边界框的宽和高估计边界框位置,提高置信度检测框的质量。其次,在本文方法中保留所有的检测框,根据阈值大小划分高置信度检测框和低置信度检测框,分别执行数据关联匹配,以此来平衡由于遮挡导致的检测框低置信度。实验结果表明本文提出的TrMPDA方法与典型的Sort、JDE、Fairmot等多目标跟踪算法相比具有更好的跟踪效果,能够应对多目标跟踪中目标遮挡的问题。展开更多
文摘G-DINA(the generalizeddeterministic input,noisy and gate)模型限制条件少,应用范围广,满足大量心理与教育评估测验数据的要求。研究提出一种适用于G-DINA等模型的同时标定新题Q矩阵与项目参数的认知诊断计算机化自适应测验(CD-CAT)在线标定新方法SCADOCM,以期促进CD-CAT在实践中的推广与应用。本研究分别基于模拟题库以及真实题库进行研究,结果表明:相比传统的SIE方法,SCADOCM在各实验条件下均具有较为理想的标定精度与标定效率,应用前景较好;SIE方法不适用于饱和的G-DINA等模型,其各实验条件下的Q矩阵标定精度均较低。
文摘为了更好地应对多目标跟踪联合检测算法面对的场景遮挡问题,通过结合注意力机制,提出基于Transformer的运动预测和数据关联(Transformer-based motion prediction and data association,TrMPDA)联合检测跟踪方法。首先,考虑到置信度检测框的质量以及深度特征的视觉表示能力对遮挡场景下跟踪效果的影响,重新设计TrMPDA骨干网络中的ResNet卷积模块,利用相邻像素和长距离像素间丰富的上下文关系指导动态注意矩阵的学习,增强深度特征的视觉表示能力,并通过边界框的宽和高估计边界框位置,提高置信度检测框的质量。其次,在本文方法中保留所有的检测框,根据阈值大小划分高置信度检测框和低置信度检测框,分别执行数据关联匹配,以此来平衡由于遮挡导致的检测框低置信度。实验结果表明本文提出的TrMPDA方法与典型的Sort、JDE、Fairmot等多目标跟踪算法相比具有更好的跟踪效果,能够应对多目标跟踪中目标遮挡的问题。