Usually the water head of the pumped storage hydro-plant is high, generally up to 400-500 m, therefore the rock mass under the high-pressure bifurcation pipe have to bear as high as millions Pascal water pressure, in ...Usually the water head of the pumped storage hydro-plant is high, generally up to 400-500 m, therefore the rock mass under the high-pressure bifurcation pipe have to bear as high as millions Pascal water pressure, in according with the requirements of high water head pumped storage hydro-plant should be 1.2 times of the water head special high-pressure packer permeability test compared with normal to test the permeability of rock and rock cleavage pressure value. The test results on the choice of design options often play a decisive role. Based on the engineering practice, the authors studied the drillhole high-pressure packer permeability test in the pumped storage hydro-plant's underground powerhouse, by the analysis of test results, this article offers a demonstration of the deformation of rock fracture witch under building in the condition of high-pressure water head, it provides a more detailed engineering geological background.展开更多
Investigating and modeling fluid flow in fractured aquifers is a challenge. This study presents the results of a series of packer tests conducted in a fractured aquifer in Freiberg, Germany, where gneiss is the domina...Investigating and modeling fluid flow in fractured aquifers is a challenge. This study presents the results of a series of packer tests conducted in a fractured aquifer in Freiberg, Germany, where gneiss is the dominant rock type. Two methods were applied to acquire hydraulic properties from the packer tests: analytical and numerical modeling. MLU (Multi-Layer Unsteady state) for Windows is the analytical model that was applied. ANSYS-FLOTRAN was used to build a two-dimensional numerical model of the geometry of the layered aquifer. A reasonable match between experimental data and simulated data was achieved with the 2D numerical model while the solution from the analytical model revealed significant deviations with respect to direction.展开更多
The equivalent permeability tensor is essential to the application of the equivalent porous media model in the numerical seepage simulation for fractured rock masses. In this paper, a revised solution of the equivalen...The equivalent permeability tensor is essential to the application of the equivalent porous media model in the numerical seepage simulation for fractured rock masses. In this paper, a revised solution of the equivalent permeability tensor is proposed to represent the influence of the fracture connectivity in discontinuous fractures. A correction coefficient is involved to reflect the com- plex seepage flow type through the rock bridge. This correction coefficient is back analyzed from single-hole packer tests, based on the Artificial Neural Network (ANN) back analysis and the Finite Element Method (FEM) seepage simulation. The limitation of this back analysis algorithm is that the number of single-hole packer tests should be equal or greater than the number of fracture sets, and three is the maximum number of the fracture sets. The proposed solution and the back analysis algorithm are applied in the permea- bility measurement and the seepage simulation for the Xiaowan arch dam foundation.展开更多
文摘Usually the water head of the pumped storage hydro-plant is high, generally up to 400-500 m, therefore the rock mass under the high-pressure bifurcation pipe have to bear as high as millions Pascal water pressure, in according with the requirements of high water head pumped storage hydro-plant should be 1.2 times of the water head special high-pressure packer permeability test compared with normal to test the permeability of rock and rock cleavage pressure value. The test results on the choice of design options often play a decisive role. Based on the engineering practice, the authors studied the drillhole high-pressure packer permeability test in the pumped storage hydro-plant's underground powerhouse, by the analysis of test results, this article offers a demonstration of the deformation of rock fracture witch under building in the condition of high-pressure water head, it provides a more detailed engineering geological background.
基金supported by the Department of Hydrogeology at TU Freiberg.
文摘Investigating and modeling fluid flow in fractured aquifers is a challenge. This study presents the results of a series of packer tests conducted in a fractured aquifer in Freiberg, Germany, where gneiss is the dominant rock type. Two methods were applied to acquire hydraulic properties from the packer tests: analytical and numerical modeling. MLU (Multi-Layer Unsteady state) for Windows is the analytical model that was applied. ANSYS-FLOTRAN was used to build a two-dimensional numerical model of the geometry of the layered aquifer. A reasonable match between experimental data and simulated data was achieved with the 2D numerical model while the solution from the analytical model revealed significant deviations with respect to direction.
基金supported by the National Natural Science Foundation of China(Grant No.51079109)
文摘The equivalent permeability tensor is essential to the application of the equivalent porous media model in the numerical seepage simulation for fractured rock masses. In this paper, a revised solution of the equivalent permeability tensor is proposed to represent the influence of the fracture connectivity in discontinuous fractures. A correction coefficient is involved to reflect the com- plex seepage flow type through the rock bridge. This correction coefficient is back analyzed from single-hole packer tests, based on the Artificial Neural Network (ANN) back analysis and the Finite Element Method (FEM) seepage simulation. The limitation of this back analysis algorithm is that the number of single-hole packer tests should be equal or greater than the number of fracture sets, and three is the maximum number of the fracture sets. The proposed solution and the back analysis algorithm are applied in the permea- bility measurement and the seepage simulation for the Xiaowan arch dam foundation.