Let be a graph with n vertices and m edges. The sum of absolute value of all coefficients of matching polynomial is called Hosoya index. In this paper, we determine 2<sup>nd</sup> to 4<sup>th</sup...Let be a graph with n vertices and m edges. The sum of absolute value of all coefficients of matching polynomial is called Hosoya index. In this paper, we determine 2<sup>nd</sup> to 4<sup>th</sup> minimum Hosoya index of a kind of tetracyclic graph, with m = n +3.展开更多
文摘Let be a graph with n vertices and m edges. The sum of absolute value of all coefficients of matching polynomial is called Hosoya index. In this paper, we determine 2<sup>nd</sup> to 4<sup>th</sup> minimum Hosoya index of a kind of tetracyclic graph, with m = n +3.