Tetrapod-shaped ZnO whiskers and microrods were synthesized in one crucible by thermal evaporation of Zn/C mixtures at 930 ℃ in air without any catalyst.The digital camera,optical microscopy,scanning electron microsc...Tetrapod-shaped ZnO whiskers and microrods were synthesized in one crucible by thermal evaporation of Zn/C mixtures at 930 ℃ in air without any catalyst.The digital camera,optical microscopy,scanning electron microscopy,energy dispersive X-ray spectroscopy,and X-ray diffraction techniques were used to study the morphologies and crystal structures of these tetrapod-shaped ZnO microcrystals.The results show that these two types of ZnO tetrapods are grown at different heights within the same crucible.The legs of these tetrapod-shaped ZnO crystals are hexagonally faceted.Some tetrapod-shaped ZnO whiskers show hierarchical structures.A short button-like hexagonal ZnO microcrystal is observed at the triple junctions of some tetrapod-shaped ZnO whiskers.The tetrapod-shaped ZnO microrods are capped by two sets of hexagonal pyramids with two different groups of crystal planes for the surfaces.These two types of tetrapod-shaped ZnO microcrystals have different side faces and aspect ratio,which are believed to be the result of their different growth behaviors.The octa-twin model was used to discuss the different growth behaviors of these two types of ZnO tetrapods.The crystal planes of the legs and the pyramids were determined.展开更多
The infrared absorption spectrum of zinc oxide whiskers with tetrapod shape was recorded and compared with ZnO powder. The absorptions of microwave and sound were investigated with a result showing that the ZnO whisk...The infrared absorption spectrum of zinc oxide whiskers with tetrapod shape was recorded and compared with ZnO powder. The absorptions of microwave and sound were investigated with a result showing that the ZnO whiskers are of excellence as absorbents of microwave and soundproofing. The results of vibration damping tests of polyvinyl chloride indicate that the material containing the tetrapod shaped ZnO whiskers appears superior damping characteristics.展开更多
Tetrapod-shaped ZnO microcrystals in forms of whiskers and microrods have been grown in the same crucible by thermal evaporation of Zn/C mixtures at a temperature of 930℃ in air without using any catalyst. The tetrap...Tetrapod-shaped ZnO microcrystals in forms of whiskers and microrods have been grown in the same crucible by thermal evaporation of Zn/C mixtures at a temperature of 930℃ in air without using any catalyst. The tetrapod-shaped ZnO microrods were capped by hexagonal pyramids. It is for the first time observed that the tetrapod-shaped ZnO whiskers and microrods have quite different morphologies, and this is believed to be a result of different growth behaviors associated with these two forms of ZnO microcrystals. The octa-twin model has been used to discuss their growth behaviors. Photoluminescence properties of these two forms of tetrapod-shaped ZnO microcrystals have been investigated using different excitation wavelengths. Both of the two forms of ZnO microcrystals showed strong green emission and weak ultraviolet emission behaviors. The excitation spectrum of the tetrapod-shaped ZnO whiskers showed a strong excitation peak at 395 nm, which was not observed for the tetrapod-shaped ZnO microrods.展开更多
基金Project(0061)supported by the Doctorate Foundation of Nanchang University,ChinaProject(2006015)supported by the Center for Analysis and Testing,Nanchang University,China
文摘Tetrapod-shaped ZnO whiskers and microrods were synthesized in one crucible by thermal evaporation of Zn/C mixtures at 930 ℃ in air without any catalyst.The digital camera,optical microscopy,scanning electron microscopy,energy dispersive X-ray spectroscopy,and X-ray diffraction techniques were used to study the morphologies and crystal structures of these tetrapod-shaped ZnO microcrystals.The results show that these two types of ZnO tetrapods are grown at different heights within the same crucible.The legs of these tetrapod-shaped ZnO crystals are hexagonally faceted.Some tetrapod-shaped ZnO whiskers show hierarchical structures.A short button-like hexagonal ZnO microcrystal is observed at the triple junctions of some tetrapod-shaped ZnO whiskers.The tetrapod-shaped ZnO microrods are capped by two sets of hexagonal pyramids with two different groups of crystal planes for the surfaces.These two types of tetrapod-shaped ZnO microcrystals have different side faces and aspect ratio,which are believed to be the result of their different growth behaviors.The octa-twin model was used to discuss the different growth behaviors of these two types of ZnO tetrapods.The crystal planes of the legs and the pyramids were determined.
文摘The infrared absorption spectrum of zinc oxide whiskers with tetrapod shape was recorded and compared with ZnO powder. The absorptions of microwave and sound were investigated with a result showing that the ZnO whiskers are of excellence as absorbents of microwave and soundproofing. The results of vibration damping tests of polyvinyl chloride indicate that the material containing the tetrapod shaped ZnO whiskers appears superior damping characteristics.
基金supported by the Doctorate Research Plan of Nanchang University (Grant No. 0061)
文摘Tetrapod-shaped ZnO microcrystals in forms of whiskers and microrods have been grown in the same crucible by thermal evaporation of Zn/C mixtures at a temperature of 930℃ in air without using any catalyst. The tetrapod-shaped ZnO microrods were capped by hexagonal pyramids. It is for the first time observed that the tetrapod-shaped ZnO whiskers and microrods have quite different morphologies, and this is believed to be a result of different growth behaviors associated with these two forms of ZnO microcrystals. The octa-twin model has been used to discuss their growth behaviors. Photoluminescence properties of these two forms of tetrapod-shaped ZnO microcrystals have been investigated using different excitation wavelengths. Both of the two forms of ZnO microcrystals showed strong green emission and weak ultraviolet emission behaviors. The excitation spectrum of the tetrapod-shaped ZnO whiskers showed a strong excitation peak at 395 nm, which was not observed for the tetrapod-shaped ZnO microrods.